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Exciton‑to‑trion conversion 
as a control mechanism for valley 
polarization in room‑temperature 
monolayer  WS2
Joris J. Carmiggelt1,2, Michael Borst1,2 & Toeno van der Sar1*

Transition metal dichalcogenide (TMD) monolayers are two‑dimensional semiconductors with two 
valleys in their band structure that can be selectively addressed using circularly polarized light. Their 
photoluminescence spectrum is characterized by neutral and charged excitons (trions) that form a 
chemical equilibrium governed by the net charge density. Here, we use chemical doping to drive the 
conversion of excitons into trions in WS

2
 monolayers at room temperature, and study the resulting 

valley polarization via photoluminescence measurements under valley‑selective optical excitation. 
We show that the doping causes the emission to become dominated by trions with a strong valley 
polarization associated with rapid non‑radiative recombination. Simultaneously, the doping results 
in strongly quenched but highly valley‑polarized exciton emission due to the enhanced conversion 
into trions. A rate equation model explains the observed valley polarization in terms of the doping‑
controlled exciton‑trion equilibrium. Our results shed light on the important role of exciton‑trion 
conversion on valley polarization in monolayer TMDs.

Transition metal dichalcogenide (TMD) monolayers are direct-bandgap semiconductors of which the conduc-
tion and valence band extrema consist of two  valleys1,2. The broken inversion symmetry of the lattice gives rise 
to optical selection rules that enable valley-selective, inter-band excitation of electrons using circularly polarized 
 light3–5. A strong Coulomb interaction results in the subsequent formation of  excitons6, which maintain a valley 
polarization that is determined by the ratio between the intervalley scattering time and the exciton  lifetime3,7. 
Such valley-polarized excitons have been proposed as carriers of information and play a central role in the field 
of  valleytronics8,9. As such, understanding the processes that govern the exciton lifetime and associated valley 
polarization is important for assessing the potential applicability of valley-polarized excitons in devices.

Under optical excitation, a charge-density-controlled chemical equilibrium between neutral and charged 
excitons (trions) forms in a TMD  monolayer10–12. The conversion into trions reduces the exciton  lifetime13 and 
may therefore be expected to lead to a large valley polarization of excitons that are created via valley-selective 
optical pumping, but demonstrating this effect has thus far remained elusive.

The charge density of TMD monolayers can be controlled via electrostatic gating or chemical  doping10,11,14–20. 
While electrostatic gating is a flexible technique that allows a continuous change of the charge  density10,11,14, 
chemical doping provides a convenient alternative that requires no microfabrication and is well suited for achiev-
ing high doping  levels15–20. Here, we study the valley polarization of excitons and trions in monolayer WS2 and 
show that chemical doping via aromatic anisole (methoxy-benzene) quenches the exciton photoluminescence 
and causes the spectrum to become dominated by trions with a strong valley polarization. A spatial study of the 
remaining exciton emission shows that also the excitons attain a strong valley polarization, which we attribute 
to the rapid doping-induced conversion into trions. We extend a rate equation model describing exciton-trion 
 conversion10 to include the two valleys and use it to explain the observed valley polarization in terms of the 
doping-controlled chemical equilibrium between excitons and trions.
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Results
When doping a TMD monolayer using aromatic molecules such as anisole, Hard Soft Acid Base (HSAB) theory 
allows predicting whether the dopant will be n- or p-type16. Electrons hop between the adsorbed molecules (A) 
and the monolayer (B) to compensate for the difference in chemical potential µ between both  systems21. The 
chemical hardness η of the materials determines how quickly an equilibrium is reached, leading to an average 
number of transferred electrons per molecule �N:

For both anisole and monolayer WS2 , the chemical potential and chemical hardness has been calculated using 
density functional  theory22,23. Using these values (Supplementary Section S1) we find �N = 0.22 , such that we 
expect the monolayer to be n-doped upon physisorption of anisole molecules (Fig. 1a).

To study the effect of chemical doping with anisole on the valley polarization properties of WS2 , we start by 
characterizing the photoluminescence of exfoliated WS2 monolayers on 280 nm Si/SiO2 substrates. The emission 
spectrum of an as-prepared monolayer shows the characteristic bright exciton resonance at 2.01 eV (Fig. 1b, 
black line)24. After chemical doping by a 2-h treatment in liquid anisole at 70 ◦C , the bright exciton resonance is 
strongly quenched and only a weak emission peak that is red-shifted by �E = 23meV remains (Fig. 1b, red line). 
Because the increased binding energy of trions compared to excitons should lead to such a red  shift14 and the 
expected n-type doping by the anisole molecules should favour trion formation, we attribute this peak to emis-
sion associated with trions. This conclusion is further supported by spatial studies of emission spectra showing 
both exciton and trion components that we will describe below. As expected, the trion emission is weak due to 
its long radiative lifetime and strong non-radiative decay attributed to Auger  recombination10,25,26.

Doping by adsorbed carbon-hydrogen  groups27 was previously shown to result in an increase of the longi-
tudinal acoustic LA(M) and LA(K) modes in the Raman spectrum of WS2 monolayers. Our treatment causes a 
similar increase of the LA(M) Raman mode (Fig. 1c), which we therefore attribute to the adsorption of anisole 
molecules. We do not observe an associated increase of the LA(K) mode at about 190 cm−1 , which may be due to 
the different nature of the adsorbates resulting in different lattice deformations and/or defects in the monolayer. 
We note that a similar behaviour was observed in previous work on WS2  monolayers7, which showed an increasing 
intensity of the LA(M) Raman mode without an associated increase in the LA(K) mode as a function of the defect 
concentration. In addition, we find that the double-resonance 2LA(M) mode remains unaffected by the doping, 
indicating that our treatment does not significantly change the monolayer’s electronic  structure28.

To study the valley polarization of chemically-doped WS2 monolayers, we use near-resonant excitation with 
a 594 nm circularly polarized, continuous-wave laser that is focused to a diffraction-limited spot. The resulting 
photoluminescence is polarization filtered and collected using a home-built confocal microscope (see “Methods” 
section). Before detecting the emission with an avalanche photodiode (APD), we apply a spectral bandpass filter 
with a transmission window centred around the exciton and trion resonances (see the shaded area in Fig. 1b).

We quantify the valley polarization ρ via polarization-resolved photoluminescence measurements according 
to

(1)�N =
µA − µB

ηA + ηB
.

(2)ρ =
Iσ+ − Iσ−

Iσ+ + Iσ+

.

Figure 1.  Controlling the photoluminescence properties of monolayer WS2 via chemical doping. (a) WS2 
monolayers on Si/SiO2 substrates become n-doped by treating them with anisole for 2 h at 70 ◦C . The insets 
show the chemical structures of WS2 and anisole. (b) Photoluminescence spectrum of a monolayer WS2 before 
and after the anisole treatment. The treatment quenches the neutral exciton resonance, leading to the emergence 
of the trion resonance. The spectrum before (after) treatment was taken at 4µW ( 40µW ) off-resonant laser 
excitation ( E = 2.331 eV , � = 532 nm ). The shaded area indicates the transmission window of the bandpass 
filter used for the maps in Fig. 2. (c) Raman spectra before and after the treatment of the same monolayer as 
in (b), at 514 nm laser excitation. The inset shows the enhanced intensity of the longitudinal acoustic LA(M) 
phonon mode, attributed to the adsorption of the anisole molecules. Both spectra are averages over multiple 
positions of the flake, which all show the same mode enhancement.
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Here, Iσ+ and Iσ− represent the intensities of the right- and left-handed emission by the sample under σ+ exci-
tation and the total photoluminescence is given by I = Iσ+ + Iσ− . By scanning the sample while detecting its 
emission using the APD, we make photoluminescence and valley-polarization maps of our flakes, before and 
after treating them.

Before the anisole treatment, the photoluminescence is characterized by bright exciton emission (Fig. 2a, left 
panel) with no valley polarization (Fig. 2b, left panel). Strikingly, the trion emission that remains after chemi-
cal doping (Fig. 2a, right panel) has a valley polarization of about 25% (Fig. 2b, right panel). We consistently 
observe the emergence of strong valley polarization after anisole treatment in multiple samples (Supplementary 
Section S2).

Next, we demonstrate the substrate independence of the effect of our treatment by repeating the measurements 
on an yttrium iron garnet (YIG) substrate. YIG is a magnetic insulator that was shown to effectively negatively 
dope MoS2 monolayers at low temperatures, possibly due to dangling oxygen bonds at the YIG  surface29. As 
such, the total level of doping could be larger for monolayers on YIG due to additional doping from the substrate.

We exfoliated monolayers WS2 onto polydimethylsiloxane (PDMS) stamps and deposited them onto the 
YIG  substrates30. As before, the emission of the monolayers is strongly quenched after chemical doping and a 
valley polarization of about 20–40% emerges (Fig. 3, Supplementary Section S2). Compared to the monolayers 
on Si/SiO2 substrates we conclude that these data do not indicate significant additional doping from the YIG 
substrate.

To assess the spatial homogeneity of the doping, we characterize the photoluminescence and valley 
polarization of a relatively large-area monolayer flake on YIG (Fig. 3a,b). In most parts of the flake, we 
observe a valley polarization of about 40%. In addition, at multiple spots in the monolayer, we observe an 
enhanced photoluminescence and reduced valley polarization. A comparison with an atomic force microscope 
topography image (Fig. 3c) shows that these spots are associated with wrinkles in the flake. Spectrally, the spots 
are characterized by the simultaneous presence of an exciton resonance and a trion resonance, with the exciton 
resonance rapidly vanishing as we move off the spot and the trion resonance remaining approximately constant 
(Fig. 3d). We extract the valley polarization and brightness of the exciton and trion resonances by fitting similar 
emission spectra near multiple wrinkles with an exciton and trion component (Supplementary Section S3). 
The extracted trion brightness and valley polarization is independent of the local exciton emission (Fig. 3e), 
highlighting their spatial homogeneity. In particular, the trion valley polarization of about 40% is similar to that 
in the flat areas of the flake (Fig. 3b,f). The stronger exciton emission at wrinkles indicates that the doping is less 
effective, possibly resulting from the restricted physical access to the monolayer at wrinkles or from a decreased 
substrate-induced doping due to the increased substrate-monolayer distance. In addition, the exciton and trion 
formation could be altered at the wrinkles as a result of local  strain31.

Strikingly, the excitons at the wrinkles also attained a strong valley polarization, as can be seen from the spec-
tra in Fig. 3d. We extend an existing rate equation  model10 to argue that this is the result of the doping-induced 
conversion of excitons into trions (Fig. 4a). This conversion acts as a decay channel for the excitons, enhancing 
their valley polarization and quenching their photoluminescence. The model predicts that the excitonic val-
ley polarization starts to increase strongly when the conversion rate into trions ŴT←X becomes comparable to 
the intervalley scattering rate Ŵiv,X (Fig. 4b, green line). Since ŴT←X is proportional to the electron density as 
described by a law of mass-action11,12, indeed an emergent exciton polarization is expected when doping is strong.

Strongly valley-polarized excitons are expected in the limit of large doping (Fig. 4b). For our flakes, doping 
is strongest in the flat areas away from the wrinkles as reflected by the low photoluminescence in these areas. 

Figure 2.  Spatial maps of the photoluminescence (a) and valley polarization (b) of a monolayer WS2 before 
and after chemical doping with anisole. The treatment quenches the brightness of the flake and gives rise to 
strongly valley-polarized emission. The flake was exfoliated on a Si/SiO2 substrate and excited near-resonance 
( E = 2.087 eV , � = 594 nm , 4µW ). Scale bar: 2µm.
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Because we are unable to spectrally distinguish the weak exciton emission from the dominant trion emission in 
these areas, we analyse the valley polarization of the integrated photoluminescence spectrum using our APD. 
When plotting the local valley polarization against the local photoluminescence (Fig. 4c), we observe a non-
monotonous behaviour with a maximum at low photoluminescence. According to our model, this maximum 
occurs because the exciton valley polarization (green line in Fig. 4b) increases with doping while the exciton 
photoluminescence vanishes. As a result, the trion contribution (red line) starts to dominate the total signal 
(black line). These results highlight that the exciton valley polarization becomes large because of the rapid 
conversion into trions.

On wrinkles, we observe that the excitons have a lower valley polarization than the trions (Fig. 3d). In 
contrast, our model predicts that the local valley polarization of the trions cannot exceed that of the excitons 
even at low doping (Fig. 4b, Supplementary Section S4). This indicates that the observed spectra on wrinkles are a 
result of spatial averaging over less-doped, wrinkled areas with a strong exciton contribution and strongly-doped 
surrounding areas with a dominant trion emission (Supplementary Section S5). Such averaging is expected from 
the diffraction-limited optical spotsize of our confocal microscope (diameter: ∼ 500 nm).

In summary, we have demonstrated that chemical doping with anisole is an effective method to generate 
highly valley-polarized excitons and trions in monolayer WS2 at room temperature. The emission spectrum 
of as-prepared monolayers is characterized by a bright exciton resonance that exhibits no valley polarization. 
After chemical doping, a trion resonance appears with a polarization up to 40%. The doping is less efficient at 
wrinkled areas, which are marked by the simultaneous presence of exciton and trion resonances. The excitons 
have a robust valley polarization, which we attribute to the rapid conversion into trions induced by the doping. 
A rate equation model captures the quenching-induced valley polarization, indicating the presence of excitons 
with a higher polarization than trions in the limit of maximal quenching. Our results shed light on the effect 
of the doping-controlled conversion between excitons and trions on the valley polarization in single layers of 
WS2 and highlight that valley polarization by itself does not necessarily reflect optovalleytronic potential, since 
a strongly-quenched carrier lifetime and emission may constrain its application in devices.

Methods
Experimental setup. A schematic overview of the setup is presented in Supplementary Section S6. Our 
samples are excited by a lowpass-filtered 594 nm OBIS laser (Coherent) of which we control the polarization 
using achromatic half- and quarter-wave plates (Thorlabs). A 50 × , NA = 0.95 (Olympus) objective focuses the 
laser to a diffraction-limited spot and collects the emission from the sample. The emission is separated from the 

Figure 3.  Spatial characterization of the exciton and trion emission of a chemically-doped monolayer WS2 on 
an yttrium iron garnet (YIG) substrate. (a,b) Spatial maps of the photoluminescence and valley polarization 
under near-resonant excitation (594 nm, 200µW ) after chemical doping. The sample was submerged in 
liquid anisole for 12 h at room temperature and vacuum-annealed for 6 h ( 400 ◦C , < 1mTorr ) to remove 
contaminants. Multilayer areas of the flake surrounding the monolayer are identified by their low brightness 
due to their indirect  bandgap2 and large  polarization33. A comparison with the atomic force microscope image 
in (c) shows that spots with increased photoluminescence and reduced valley polarization occur at wrinkles of 
the monolayer. (d) Emission spectra at different locations close to a wrinkle indicated by the black arrow in the 
inset of (c). Lorentzian fits of the trion (red) and exciton (green) resonances reveal the simultaneous presence of 
trion and exciton emission at wrinkles. (e) Average trion brightness and valley polarization plotted against the 
local exciton photoluminescence at different wrinkles. (f) Typical σ+ and σ− emission spectra of trions in flat 
parts of the flake, obtained at the location indicated by the triangle in the inset of (c), corresponding to a valley 
polarization of about 40%. Scale bar: 5µm.



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17389  | https://doi.org/10.1038/s41598-020-74376-3

www.nature.com/scientificreports/

excitation by a 10:90 beam splitter (R:T, Thorlabs). The handedness of the excitation and detection is controlled 
by a second quarter-wave plate, which projects both circular polarizations of the photoluminescence onto two 
orthogonal linear polarizations of which we select one with the polarizer. The emission is longpass filtered (2 × 
Semrock, BLP01-594R-25) to eliminate the laser reflection. We use a mirror on a computer-controlled flipmount 
to switch between a fiber-coupled spectrometer (Kymera 193 spectrograph with a cooled iVac 324 CCD detec-
tor) and an avalanche photodiode (APD, Laser Components) for the detection of the photoluminescence. Before 
the emission is detected by the APD, it is filtered with a pinhole and bandpass filter (Semrock, FF01-623/32-25). 
The sample is mounted on an xyz-piezo stage (Mad City Labs, Nano-3D200FT) to allow nanoscale positioning 
of the sample. An ADwin Gold II was used to control the piezo stage and read out the APD. The grating in the 
Raman microscope (Renishaw inVia Reflex, 514 nm laser) had 1600 lines per mm, giving a spectral resolution 
of ∼ 2 cm−1 per pixel. All measurements were performed at room temperature.

Sample fabrication. The WS2 monolayers were exfoliated from commercially-purchased bulk crystals 
(HQ Graphene) on PDMS stamps, and were transferred to Si/SiO2 and YIG chips. The 245 nm thick YIG films 
were grown on a gadolinium gallium garnet (GGG) substrate via liquid phase epitaxy and were purchased at 
Matesy gmbh. YIG samples were sonicated in acetone and cleaned in IPA before stamping.

Data availability
The numerical data plotted in the figures in this work are available in  Zenodo32.
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