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Time‑correlated single molecule 
localization microscopy enhances 
resolution and fidelity
Kobi Hermon, Shachar Schidorsky, Yair Razvag, Oren Yakovian & Eilon Sherman  *

Single-molecule-localization-microscopy (SMLM) enables superresolution imaging of biological 
samples down to ~ 10–20 nm and in single molecule detail. However, common SMLM reconstruction 
largely disregards information embedded in the entire intensity trajectories of individual emitters. 
Here, we develop and demonstrate an approach, termed time-correlated-SMLM (tcSMLM), that uses 
such information for enhancing SMLM reconstruction. Specifically, tcSMLM is shown to increase the 
spatial resolution and fidelity of SMLM reconstruction of both simulated and experimental data; esp. 
upon acquisition under stringent conditions of low SNR, high acquisition rate and high density of 
emitters. We further provide detailed guidelines and optimization procedures for effectively applying 
tcSMLM to data of choice. Importantly, our approach can be readily added in tandem to multiple 
SMLM and related superresolution reconstruction algorithms. Thus, we expect that our approach will 
become an effective and readily accessible tool for enhancing SMLM and superresolution imaging.

Recent breakthroughs in optical microscopy have allowed to visualize biological samples below the diffraction 
limit of light. One such approach is known as single molecule localization microscopy (SMLM) and includes 
PALM1, FPALM2, STORM3, dSTORM4 and their variants. SMLM uses the photoactivation or photoswitching 
properties of fluorophores5–8. Regularly, these fluorophores are used to specifically label proteins of interest within 
a cell either as chimeric proteins with photoactivatable fluorescent proteins (PAFPs; in PALM) or as synthetic 
labels of primary or secondary antibodies (STORM). The photoactivation properties of these fluorophores are 
used to lower the effective density of visible fluorophores such that their detected intensity profile (i.e. their point-
spread function; PSF) can be well separated over space and time. The time-dependent intensity trajectories of 
the individual fluorophores are captured in wide-field using an imaging detector such as EMCCD or sCMOS. 
Then, an SMLM reconstruction algorithm is used to localize individual emitters beyond the diffraction limit, 
and up to a resolution of ~ 10–20nm9.

By now, a large number of SMLM algorithms have been demonstrated10,11. Traditionally, the single molecule 
reconstruction algorithms fit Gaussians to individual intensity peaks that are related to sparsely detected mol-
ecules in each frame of the acquired movie. These detected peaks can then be grouped over space and time to 
estimate the location of the individual emitters. Last, all of the emitter localizations are typically collapsed onto 
a single super-resolved image, having single molecular detail. The resolution of this image is defined by the 
localization precision, depending on the photon budget (signal and background) and system noises9.

All fluorophores differ in their photophysical properties, esp. in their intensity fluctuations, decay and lifetime. 
Thus, such properties may be indicative of the presence of individual fluorophores. Still, most current SMLM 
techniques are performed on individually detected peaks in individual frames. Thus, they do not consider infor-
mation embedded in the time-dependent intensity of the emitters. In contrast to these techniques, methods such 
as Super-resolution Optical Fluctuation Imaging (SOFI)12 use temporal intensity statistics, namely high-order 
moments, to provide super-resolved images. A few recent methods use statistical analysis of intensity fluctua-
tions, among them MUSICAL13, SPARCOM14, 3B15, DeconSTORM16, BaLM17 and HAWK18. Important advan-
tages of temporal information-based super resolutions methods include their improved SNR, relative simplicity 
and potentially faster acquisition. Though some methods do show a resolution enhancement approaching to 
SMLM, most are limited to a resolution of ~ 50 nm. More importantly, most temporal statistics based methods 
provide a super-resolved image (regularly based on deconvolution), yet do not provide the explicit localizations 
of individual emitters. So far, a few SMLM algorithms have attempted at using temporal information toward 
single molecule localization. Some use SOFI and SMLM separately: one to lower the effects of over-counting and 
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under-counting issues in SMLM19; and the other to enhance signal to noise (SNR) in SMLM20, while HAWK17 is 
used to decrease the density in the dataset before fitting. Others showed, only in principle, the efficiency of using 
temporal statistics to enhance identification of clustering artifacts21, acquisition time22, and counting precision8.

Here, we use the temporal information that is associated with the individual fluorophores detected via SMLM 
to enhance its reconstruction performance. Specifically, we consider the temporal decay in the intensity of 
the fluorophores and perform SMLM on modified PSFs that contain this information. We term the new data-
set ’time-correlated-data’ (tcData). As in other temporal-based datasets, imaging conditions suitable for SOFI 
reconstruction12 are sufficient for our approach. Thus, we perform SMLM reconstruction over tcData, and term 
our approach ’time-correlated-SMLM’ (tcSMLM). The advantages of using statistics of temporal fluctuations 
and the high spatial resolution provided by SMLM are inherent to tcSMLM. We use extensive simulations and 
experiments to show that our approach results in improved resolution and higher fidelity of reconstructed images. 
Our tested cases include multiple samples, fluorophore types and publically available datasets.

The enhancement in reconstruction performance of our approach was most prominent under conditions 
of high fluorophore density, poor signal to background (e.g. from out-of-focus emission), and high frame-rate 
imaging that are typically problematic for traditional SMLM reconstruction approaches. Moreover, our approach 
can be utilized in tandem with additional (and likely, any) SMLM reconstruction algorithms that do not already 
utilize ’deep’ (i.e. more than 2 frames) temporal fluctuations of the emitters. For instance, such algorithms may 
utilize deconvolution techniques (e.g. DeconSTORM becoming ’tcDeconSTORM’ when applied to tcData) or 
spatial correlations (e.g. SRRF23, likewise becoming ’tcSRRF’). Thus, we provide a versatile and user-friendly 
add-on tool for the enhancement of SMLM reconstruction, esp. under stringent imaging conditions.

Results
The algorithm of time correlated SMLM (tcSMLM).  We provide below a schematic description of our 
approach for decoding SMLM using time correlations, which we refer to as ’time correlated SMLM’ (tcSMLM). 
Intuitively, each PSF that belongs to a single fluorophore has a specific temporal dependence. This dependence 
can be captured as decay in the temporal correlation of its intensity. Considering that, we compare the correla-
tion decay for each PSF in the acquired data to a common model—the characteristic correlation decay of the 
fluorophore under study. Thus, temporal information is added to the spatial data during the reconstruction pro-
cess. We then show that such reconstruction can improve the localization performance of the individual PSFs. 
We next describe a detailed scheme of our algorithm in Fig. 1, and through the following steps:

(1)	 We start with acquiring the fluorescence intensity of single photoactivatable fluorescent emitters through 
SMLM imaging. We refer to this time-dependent intensity data as ‘RawData’, for simplicity (Fig. 1, item 
(1)). Then, we choose a ’Moving Window’ (MW) with size τ (Fig. 1(2)), which is associated with a specific 
imaged fluorophore. More details, considerations and analyses regarding the MW choice are provided later 
in the main and supplemental text (see Fig. 6 and Figs. S1, S2). Next, we consider a complete time trajectory 
in the RawData, I(j,t) (Fig. 1(1)), of length N, where N is the number of frames in RawData and where j is 
the index of a pixel of interest. We then create a time-dependent function f(t), derived either from a model 
of the time-dependent intensity of a typical fluorophore (see SI, note 5 and Fig. S7) or from representative 
experimental data.

(2)	 We acquire a vector Ij(τ) with size τ (Fig. 1(2)), constructed from the first τ time-dependent terms in I
(

j, t
)

 . 
Similarly, we construct a vector f(τ) from the first τ time-dependent terms in f(t).

(3)	 Then, we perform auto-correlation ( AC ) of the time-dependent trajectory Ij(τ) . Similarly, we perform AC 
of f(τ) (see Fig. 1(3)). As fluorophore intensity fluctuations strongly depend on imaging conditions7, we 
used an averaged model for AC(f(t)) throughout our research. See SI, note 3.3 for a thorough description 
of the choice of an averaged model.

(4)	 We calculate the covariance ( Cov ) of the resultant AC signal of Ij(τ) and of f(τ) , namely Cov[AC
(

Ij(τ), f(τ)
)

] 
(see Fig. 1(4)). The Cov operation naturally selects AC functions that have a similar decay to the model, 
while efficiently rejecting AC functions that are very different (e.g. having a very fast or a very slow decay 
time; see SI, note 3 for further details). Performing the same process over the time trajectories of length τ, 
starting with t = 1 , for each pixel j, the algorithm yields a single image, corresponding to the RawData over 
time of 1 to τ. This image is used as a single frame in a newly reconstructed movie, as explained below.

(5)	 Similarly, the algorithm is used to extract frames for other time points, as follows: we shift the MW sequen-
tially one time step forward at a time, from 2 to τ+2 (i.e. time step here equals 1 frame, but note that each 
time step may larger). For each time step, we perform steps (3)–(4) again. Finally, after we obtain the last 
MW, we conclude a data structure which we refer to as the ’time-correlated Data’ ( tcData ; Fig. 1(5)). Thus, 
provided we shift MW one frame ahead, the length of tcData is N-τ. Notably, the movie embedded in 
tcData now encodes similarities between the AC of the fluorophores to the model, rather than in their raw 
intensities.

(6)	 The final step of reconstruction in our scheme employs detection of individual emitters in tcData, using an 
SMLM reconstruction algorithm of choice (Fig. 1(6)). Importantly, the SMLM algorithm can be any SMLM 
or super-resolution algorithm which does not rely already on time correlations for reconstruction, and can 
be chosen according to the user’s preferences. In our analyses, we mainly employed ThunderSTORM24. 
However, we verified the wide applicability of our approach to multiple SMLM reconstruction algorithms, 
and further demonstrate this in our study (in Fig. 7).

Examples of tcSMLM reconstruction of simulated and experimental data.  We first demonstrate 
the utility of our method using simulations and experimental data (Fig. 2). Specifically, we show the narrowing 
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of the PSF of individual fluorophores as reconstructed by tcData, in comparison to RawData. We present a com-
parison of distinctive details in the super-resolved images (Fig. 2A,C,E,G) and demonstrate a significant reduc-
tion in the localization uncertainty of the detected molecules (Fig. 2B,D,F,H) when using tcSMLM. We start with 
simulated data (Fig. 2A,B). For that, we generated simulated movie of single emitters using a published SOFI 
simulation tool25. Using the simulation, we generated 600 emitters, placed randomly within a Siemens star with 
10 wings, on a 100 × 100px matrix. The parameters we chose for the simulation are based mainly on our mathe-
matical analyses (see SI, note 3), and were as follows: frame rate of 1000 fps; density of ∼ 5

active fluorophores
µm2  , 

bleaching time 5 s, acquisition time 2 s and negligible background (see also Methods). TcSMLM shows a better 
resemblance to the ground truth (GT) compared to SMLM (Fig. 2A). Moreover, the uncertainty median is 9 nm 
for tcSMLM, compared to 22 nm for SMLM (Fig. 2C).

Next, we deposited antibodies labelled with Alexa Fluor 647 (Alexa647) on a coverslip, and imaged the sample 
via dSTORM imaging in TIRF mode (see Methods). We chose Alexa647 due to its long photobleaching time 
and its high signal-to-background ratio (SBR)26. The imaging was done with a standard frame rate ( 20 fps ) to 
demonstrate the performance of tcSMLM under regular conditions. The sum intensity (SumImg) of tcData shows 
molecular aggregates distinctly separated from the background, as compared to the sum intensity of RawData 
(Fig. 2C). The presented zoom images of two aggregates show significant narrowing of the PSF (Fig. 2C). The 
uncertainty median for tcSMLM is 13 nm , compared to 36 nm for SMLM (Fig. 2D).

Figure 1.   A schematic description of time-correlated single molecule localization microscopy (tcSMLM). A 
scheme that describes time-correlated single molecule localization microscopy (tcSMLM) is provided. See main 
text for a detailed description of the algorithmic steps.
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Finally, we show in Fig. 2E–H two open-source and published examples of Tubulin molecules in microtubule 
filaments, stained with Alexa64710,27. For simplicity, we used only the initial 3000 frames of the movies. We show 
that tcData summing distinguishes the microtubules from the background, as compared to RawData summing 

Figure 2.   Examples of tcSMLM reconstruction of simulated and experimental data. (A) Simulated data of 
fluorophores embedded in a Siemens star (top), and zoom images after reconstruction with either SMLM 
(middle) or tcSMLM (bottom). (B) Localization errors (σ) for SMLM and tcSMLM reconstruction of the data 
in A. (C) dSTORM imaging of Alexa Fluor647 labelled antibodies scattered on a coverslip coated with PLL 
(top), and zoom images after reconstruction with either SMLM (middle) or tcSMLM (bottom). (D) Localization 
errors (σ) for SMLM and tcSMLM reconstruction of the data in C. (E) Published data dSTORM imaging of 
tubulin immunostained with Alexa Fluor647 labelled antibodies scattered on a coverslip coated with PLL (top), 
and zoom images after reconstruction with either SMLM (middle) or tcSMLM (bottom). (F) Localization 
errors (σ) for SMLM and tcSMLM reconstruction of the data in (E). (G) Published data of dSTORM imaging 
of Alexa Fluor 647 labelled antibodies scattered on a coverslip coated with PLL (top), and zoom images after 
reconstruction with either SMLM (middle) or tcSMLM (bottom). (H) Localization errors (σ) for SMLM and 
tcSMLM reconstruction of the data in (G).
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(Fig. 2E,G). In the presented zoom images, the results for tcSMLM reconstruction confirm the narrowing of the 
PSF in comparison to SMLM. Also, in the first example (Fig. 2G), the median of the localization uncertainty for 
tcSMLM is 14 nm, compared to 37 nm for SMLM (Fig. 2F). For the second example of microtubule with a rela-
tively lower density of emitters (Fig. 2G,H), we obtain a localization uncertainty median of 18 nm for tcSMLM, 
compared to 23 nm for SMLM. We further analysed a wide range of simulations and experimental data, and 
found that results vary based on frame rate, SBR and density of emitters. Below, we quantify the implications of 
these parameters on tcSMLM reconstruction.

Quantitative comparison of tcSMLM and SMLM performance.  In order to quantify the reconstruc-
tion performance of tcSMLM relative to SMLM, we compared the resolution and fidelity of these approaches 
when applied to simulated data (Fig.  3). Specifically, we chose published analyses: Fourier Ring Correlation 
(FRC;9,28), Coordinate-Based Colocalization (CBC;29), Jaccard Index and a measure of precision11.

Starting with the comparison of resolution, we generally expect a resolution enhancement of tcSMLM relative 
to SMLM. The reason is that tcSMLM employs autocorrelation of intensity data. This autocorrelation is also used 
by 2nd order SOFI reconstruction, which effectively shrinks the PSF by a factor of 

√
2 relative to the intensity 

image (i.e. our RawData;30]. To evaluate the resolution enhancement by tcSMLM over SMLM reconstruction, we 
simulated multiple individual fluorophores on a field of view using a published simulation tool25. Our simulated 
conditions were chosen to demonstrate the pros of tcSMLM (See SI, Note 3.1), and included 250 emitters over a 
Siemens star with 10 narrow wings, 25 × 25 pixels (effective 165 nm per pixel), fast acquisition rate of 2000 fps, 
bleaching time of 5 s, acquisition time of 2 s, on state 180 ms and off state 120 ms. Thus, our simulation emulate 
a high density sample where for each diffraction limited area, there are ~ 5–50 active fluorophores (Here, ~ 5).

In our simulations we further modified multiple parameters, including fluorophore density, bleaching and 
blinking statistics, background conditions, imaging frame-rate and peak intensity. We evaluated the relative 
performance of tcSMLM under these varying conditions using Fourier ring correlation statistics (FRC) and 
precision. Typically, FRC provides a measure of the resolution of an image when compared to the ground-truth 
data. The resolution is considered as the inverse of the cutoff frequency at which the FRC curve drops to a value 
of 1/79. In the presented simulation (Fig. 3A), the FRC curve of dSTORM (Fig. 3B; orange curve) showed a faster 
drop in comparison to the FRC curve of tcSMLM (Fig. 3B; blue curve). Using the accepted FRC cutoff criterion, 
the FRC resolution of tcSMLM was 32 nm, in comparison to 85 nm for SMLM. Thus, tcSMLM outperforms 
SMLM reconstruction via ThunderSTORM in terms of spatial (FRC) resolution. Generally, the conditions for 
SMLM reconstruction result in some blurring of the emitters (as in Fig. 2A,C,E,G), as compared to tcSMLM, 
which showed more isolated emitters within the simulated patterns.

In order to quantify the fidelity of our approach we used coordinate based colocalization (CBC), Jaccard 
Index and precision. Coordinate based colocalization has been developed to quantitatively evaluate the fidelity 
of a reconstruction approach relative to the ground-truth (GT). It yields a comparative image in which the colo-
calization of the reconstructed image and GT is highlighted with values ranging from − 1 (anticorrelated) to 1 
(completely correlated). Here, the values of the test image are shown as a histogram (Fig. 3C). The histogram of 
the CBC analysis for tcSMLM has significantly higher correlation for tcSMLM compared to SMLM.

Jaccard Index (JI) is a common fidelity measure: the number of true positive (TP) detections divided by the 
sum of TP, false negative (FN) and false positive (FP) detections [i.e., (TP + FN + FP)]. The TP, FN, FP values 
were evaluated for a range of radii around each emitter’s location in the GT, and compared to the same matrix in 
the super resolved image. As shown in Fig. 3D, JI for tcSMLM was significantly higher for all 1–10 radii values 
(i.e. 13.5–135 nm).

Our measure of precision is the evaluation of the median of the localization uncertainty only for the TP detec-
tions. This measure of is used to quantitatively measure the fidelity of a reconstruction approach relative to the 
GT. Moreover, inaccurate results tend to have higher uncertainty values. Therefore, our measure also neglects 
artificial suspicions. Figure 3E shows higher counts for tcSMLM relative to SMLM (i.e. TPtcSMLM > TPSMLM ) 
as well as significantly lower uncertainty values. In conclusion, all three fidelity measures show higher fidelity 
values for the specific simulation shown in Fig. 3 for tcMLM reconstruction vs. SMLM reconstruction. Next, we 
scanned a wide range of conditions to evaluate the performance and robustness of our method.

TcSMLM resolution enhancement under varying signal‑to‑background and density condi‑
tions.  SMLM reconstruction is often sensitive to the SBR of the individual emitters. Background can origi-
nate from out-of-focus fluorescence and sample contaminations. Thus, we simulated the background by consid-
ering various levels of out-of-focus emission. Such a background is particularly hard to filter-out by methods 
relying on time-correlation of intensity fluctuations (see SI, note 3.1). To study the effect of SBR on tcSMLM 
reconstruction, we used simulated emitters, with a constant frame rate of 1000  fps and typical density of 
∼ 100emitters

µm2  (with ~ 5–10% active emitters per µm2 ) while varying the background levels, and thus, under a 
range of SBR conditions (Fig. 4A–D). Other temporal parameters as in Fig. 3. We noted that tcSMLM showed an 
improvement in (FRC) resolution at relatively high SBR values (7.3), but not at lower SBR of 4.4 (Fig. 4A,B). A 
detailed study showed a cutoff of resolution enhancement above SBR of ~ 5.7. Similar results were obtained using 
the test of reconstruction fidelity via JI. The JI test showed significant improvement by tcSMLM over SMLM 
reconstruction above SBR of ~ 5.7 (Fig. 4C,D), which matches our results for FRC resolution as a function of SBR 
(compare Fig. 4B,D).

Emitter density also affects strongly the performance of SMLM reconstruction. While initially demonstrated 
on very sparse images1,31, recently published algorithms have been devoted to improvements of SMLM perfor-
mance for reconstructing multiple, partially overlapping emitters16,23,32. To test this effect on tcSMLM 
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Figure 3.   Quantitative comparison of tcSMLM and SMLM performance. (A) Images of simulated emitters, showing 
tcSMLM (right), SMLM (middle) and ground-truth (GT; left). see Methods for further details on simulation. (B) 
Fourier-ring correlations (FRC) of data in panel (A), comparing either SMLM and GT (red) or tcSMLM and GT 
(blue). FRC resolution is determined at the frequency where FRC = 1/7. (C) Coordinate-based co-localization 
(CBC) of data in panel (A), comparing either SMLM and GT (red) or tcSMLM and GT (blue). (D) Jaccard Index 
of data in panel A, comparing either tcSMLM and GT (blue) or SMLM and GT (red), vs. 10 radii values (13.75 nm 
to 137.5 nm). (E) Precision histogram of data in panel (A), where blue columns represent TP counts of tcSMLM vs. 
their localization error and red columns represent TP counts of SMLM vs. their localization error.
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enhancement over SMLM reconstruction, we varied the density of emitters in the simulations 
( 50−500

fluorophores
µm2  of which ~ 5–10% active emitters per µm2 ) while keeping fixed parameters of SBR = 6 and 

frame rate of 1000 fps. Strikingly, tcSMLM outperformed SMLM reconstruction under the entire range of emitter 
densities, in terms of FRC resolution (Fig. 4E) and especially in terms of fidelity as determined by JI analyses for 
a fixed radius of 2 (Fig. 4G) and accuracy vs. SBR and density (Fig. 4F,H). We conclude that tcSMLM shows 
dramatic enhancement over SMLM reconstruction under high SBR conditions, and regardless of emitter 
density.

TcSMLM resolution enhancement dependence of the window size.  Since our algorithm uses tem-
poral correlations in the acquired raw data, it naturally depends on the size of our temporal moving window over 
which the tcSMLM is employed (see SI, notes 1, 3.1). To study this effect on tcSMLM performance (as compared 
to SMLM), we simulated emitters with the following parameters: a fixed density of 100emitters

µm2  , frame-rate of 
1000 fps, low SBR of 0.03 and other temporal values as in Fig. 3. Next, we scanned the size of the temporal mov-
ing window (MW) between 5 and 250 frames and recorded the Jaccard Index and FRC resolution for each MW.

We start by demonstrating visually the effect of the MW size. For that, we recorded the images for MW = 30, 
35, 55, 135 and 195. We superimposed these images with the GT data, where the results of tcSMLM are shown 
in green, SMLM in red and both are shown in relation to the GT in orange (Fig. 5A,B). We found that MW ≈ 30 
best matched the GT in terms of number and fidelity of localizations out of the tested MWs. Last, a merged (green 
and red) image of SMLM and tcSMLM is provided, showing the relative performance of these reconstruction 
algorithms. We also show that the fidelity of detection generally decreased with the size of the temporal window, 
above 35 frames (Fig. 5B).

We next show the FRC resolution and JI as a function of MW (Fig. 5C,D). We found that tcSMLM perfor-
mance was optimal using MW of ~ 20–30 frames. Importantly, the optimal MW matched in size the typical 
decay in the correlation time of the emitters. Here, we chose the following photophysical parameters for the 
fluorophores: on-time = 180 ms , off-time = 120 ms and an acquisition rate of 1000 fps. We chose here a time step 
of 2 frames for tcData, and therefore the optimal MW should be, according to theory: ≈ 180·120

2·(180+120) = 36 which 
is confirmed by our results.

Even though FRC resolution and reconstruction fidelity for tcSMLM (as determined by JI) showed the best 
performance using specific window sizes, they outperform SMLM reconstruction regardless of the window size 
across the MW range presented (Fig. 5C,D). These results can be explained as follows. Very short MW results 
in reconstruction close to standard SMLM (i.e. as reconstruction is only employed on tcData). Very long MW 
captures only the bleaching decay process, and therefore results either in less emitters reconstructed or in false-
positive data emerging from out-of-focus noise. In the simulation presented, the bleaching process was signifi-
cantly longer than the acquisition time, and therefore we found more false-positive results as we increased the 
MW. We conclude that given high frame rate, stable fluorophore and in conditions of low SBR, tcSMLM shows 
better resolution and fidelity than SMLM, regardless of the MW size. However careful choice of MW greatly 
improves the results.

Optimal MW for tcSMLM.  Even though tcSMLM outperform SMLM over a wide range of MWs, the 
results may vary significantly when the chosen MW is far from optimum (e.g. Fig. 5C,D). Therefore, we wanted 
to establish a robust way to determine the optimal size of the MW, given a fluorophore of interest (Fig. 6). For 
that, we consider two decay processes that characterize the intensity trajectory of the fluorophore:

(1)	 Process I (PI) is a decay process of fluorescence emission, either through emitters entering a prolonged 
dark state or photobleaching5,8.

(2)	 Process II (PII) is a longer decay of the intensity, comprising out-of-focus noise and overlapping trajectories 
at the same diffraction spot of the fluorophore of interest, thus overlapping its signal in space and time.

These two decaying parameters are typically revealed using the individual ACF curves of specific pixels 
(Fig. 6A,B;5,33). Considering a typical trajectory, PI depends on the frame-rate, fluorophore photophysics and 
imaging buffer. Since photons are emitted following a Poisson distribution, the decay of PI is exponential (Fig. 6B) 
with a homogenous, unique life-time based on the on- and off-times of the fluorophore of interest (Fig. 6C, graph 
regions surrounded by blue dotted rectangles). In contrast, PII has a wide spectrum of decay times, changing 
along with interferences to the intensity trajectory (Fig. 6C, regions surrounded by red dotted rectangles). Thus, 
we found the cut-off between PI and PII as follows:

We chose 4 representing locations (e.g. pixels) from the sum intensity image (’sumimg’) of the chosen simu-
lation / experimental data. The higher the intensity in the ’sumimg’, we expect to find more decay times fol-
lowing the PII process, represented as curve fluctuations in the ACF . Here, we chose 4 locations, of which 
one of them was expected to contain noise due to having a very low signal (Fig. 6A, green square), and the 
3 others representing different levels of intensity in the ’sumimg’ (Fig. 6A, orange, red and purple squares).
We performed ACF over the full intensity trajectory of each of the highlighted pixels. Here, we show only 
a minor part (first 100 frames) of the trajectory, to emphasize the difficulty in choosing the exact cut-off 
between PI and PII, and therefore the need for a robust method (Fig. 6C, blue vs. red surrounding rectangles 
of graph regions). The blue rectangles show a smooth exponential decay of the ACF , while the red rectangles 
show bumpier curves representing the changes in the decay times due to interferences in the trajectory. Note 
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that the colors of the ACF curves in Fig. 6B,C below) follow the colors of the highlighted pixels in the zoom 
image in Fig. 6A.
To automate the process of choosing the optimal MW size, we now focus on the log (ACF) curves. The smooth 
exponential part of the ACF curve transforms to a linear line (Fig. 6C, blue rectangles), while the rest of the 
curve emphasize the changes in the exponential decay (Fig. 6C, red rectangles). Moreover, we observe that 
the green line (Fig. 6C, green curve) significantly fluctuates from the beginning, which shows indeed that it 
does not arise from a process with a unique decay time throughout its trajectory; i.e. it does not represent a 
signal, but rather a decaying background, as we first assumed.
Finally, in order to find the exact cut-off between PI and PII, we used the Pearson correlation to find the level 
of linearity in the PI regions of the log(ACF) trajectories. The cutoff was chosen at Pearson correlation <0.9. 
The typical times for transition from PI to PII, namely PI_cutoff  , were 93, 68, 33 and 0 frames for the high-
lighted pixels in Fig. 6A (from left to right; respectively). A PI_cutoff  of 0 represents a trajectory that arises 
from background and does not contain a significant signal. In order to capture most emitters, we chose MW 
as MW = min(PI_cutoff(n)) , where n represents the number of locations chosen (e.g., 4 locations in this 
example). Based on this analysis for our simulated data, the appropriate MW we found was MW ≈ 33 frames , 
which corroborates the results found in Fig. 5C, D. See SI note 3.1 for further details and Figs. S1–S4 that 
show experimental results as well.

To conclude, we provide a systematic way to find the optimal MW size per fluorophore of choice and imaging 
conditions. However, variability in the experimental data may require further fine-tuning and consideration of 
this process. Further details regarding MW optimization are described in SI note 6 and in the Methods.

tcSMLM enhancement of super resolved DNA‑origami nanoruler.  So far, we have studied the 
validity, performance and benefit of our approach using simulations, for which ground-truth is readily available. 
Still, for experimental data, ground truth is rarely available. To validate our reconstruction approach, we have 
imaged particles of known structure, as follows. We purchased nano-rulers made of DNA origami (STORM 
50R GATTAquant), labelled with Alexa647 at its ends (i.e. at a 50 nm distance between the markers)34. We con-
ducted dSTORM imaging of such nano-rulers as they were tightly adhered to coverslips through biotin interac-
tions of both of the nano-ruler ends with neutravidin-coated coverslips (see Methods). Importantly, to test the 
useful range of imaging conditions for tcSMLM, we conducted the imaging under a wide range of frame rates 
(10–252 fps). We chose ROIs of 90 × 90 pixels in our iXon+ Ultra EMCCD camera (Andor) with ~ 20 nano-ruler 
particles in each ROI (following manufacturer recommendations).

We show results from experimental data where the RawData was obtained with following frame rates: 14 fps 
(Fig. 7A), 20 fps (Fig. 7B), 32 fps (Fig. 7C), 133 fps (Fig. 7D), 180 fps (Fig. 7E) and 252 fps (Fig. 7F). The RawData 
was then reconstructed using either SMLM or tcSMLM. After reconstruction in either way, we could readily 
identify the locations of individual nano-ruler particles. To such single nano-rulers, we fitted an ellipse around 
their corresponding intensity peaks. We then added two points (red points) along the major axis of the ellipse 
with 25 nm separation of each from the center of the fitted ellipse. These points became representations of the 
ground truth, as determined by each of the reconstruction methods (namely, GTSMLM and GTtcSMLM).

The left panel for each of the representative images in Fig. 7A–F is a zoom image of one tcSMLM nano-ruler, 
and next to it (to the right) the SMLM zoom image of the same area. Often, after tcSMLM reconstruction we 
could readily identify two separate peaks ~ 50 nm apart (matching the two ends of the nano-rulers). In contrast, 
such peaks could not be resolved after SMLM reconstruction, which tended to show a single (effectively merged) 
peak (Fig. 7A–C middle panels), or a diffused and noisy pattern at relatively high acquisition rates (Fig. 7D–F, 
middle panels).

We also conducted FRC analysis for each of the identified nano-rulers, throughout our imaging. The right-
most panel shows the FRC of the tcSMLM vs. the GTtcSMLM (Fig. 7A–F, blue line), SMLM vs. the GTSMLM repre-
sentation for the SMLM (red line) and the FRC of SMLM vs. the GTtcSMLM (yellow line; see Methods for further 
details). The FRC cut-off was chosen as a default at 1/7. We found that tcSMLM resolution was generally higher 
than SMLM resolution under all imaging conditions. In the fast frame rates, the poor performance of SMLM in 
resolving the nano-rulers tends to critically compromise its FRC resolution relative to tcSMLM.

Next, we present the mean FRC resolution as a function of acquisition rate for > 10 nano-rulers at each of the 
following frame rates: 10, 11, 12, 14, 16, 20, 24, 32, 48, 95, 118, 133, 180 and 152 fps (Fig. 7G). The same locations 

Figure 4.   tcSMLM resolution enhancement under varying signal-to-background and density conditions. 
(A) FRC of simulated emitters at SNR levels of 4.4 (left) and 7.3 (right). Results are shown for SMLM (red) 
and tcSMLM (blue) reconstructions. (B) FRC resolution (as defined by the frequency where FRC = 1/7), as a 
function of SBR. (C) CBC of simulated emitters at SBR levels of 4.4 (left) and 7.3 (right). Results are shown for 
SMLM (red) and tcSMLM (blue) reconstructions. (D) Jaccard Index as a function of SBR. Results are shown 
for tcSMLM (blue) and SMLM (red). (E) FRC resolution (as defined by the frequency where FRC = 1/7) of 
simulated emitters at densities between 50 and 100 emitters/μm2 where ~ 5–10% are active in each frame. 
Results are shown for SMLM (red) and tcSMLM (blue) reconstructions. (F) Precision (as defined by the mean 
of localization errors for TP values) of simulated emitters vs. density (as in E). Results are shown for SMLM 
(red) and tcSMLM (blue) reconstructions. (G) Jaccard index of simulated emitters vs. density (as in E). Results 
are shown for SMLM (red) and tcSMLM (blue) reconstructions. (H) Precision (as defined by the mean of 
localization errors for TP values) of simulated emitters vs. SBR. Results are shown for SMLM (red) and tcSMLM 
(blue) reconstructions.

◂
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Figure 5.   The dependence of tcSMLM resolution enhancement on reconstruction window-size. (A) Simulated 
data of fluorophores embedded in a Siemens star (left column; top), and zoom images (left column; bottom). 
Shown are also comparisons of ground-truth (GT) and SMLM (second column), GT and tcSMLM (third 
column) and tcSMLM and SMLM (right column). (B) A comparison of GT and tcSMLM-reconstruction 
of the data in (A) (zoom image) using moving windows of 35, 55, 135 and 195 frames. (C) FRC resolution 
dependence on the size of the moving window. FRC resolution of SMLM is independent of the window size and 
shown in red. (D) Jaccard index dependence on the size of the moving window. The Jaccard Index of SMLM is 
independent of the window size and shown in red.
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were chosen for tcSMLM and SMLM (Error bars are SEM). We show that at relatively low frame rates (< 32 fps) 
tcSMLM shows ~ 20% improvement in FRC resolution, as compared to SMLM (Fig. 7G, compare blue line with 
orange and yellow lines). Strikingly, for frame rates above 32 fps tcSMLM has an FRC resolution of between two 
and threefold higher than SMLM.

We conclude that tcSMLM provides significantly better results on experimental data with frame rates above 
32 fps, and is most useful when applied to high density samples, in which more than one PSF is acquired at each 
diffraction-limited area.

Figure 6.   An algorithm for finding the optimal moving window. (A) Simulated data of fluorophores embedded 
in a Siemens star (left) and zoom image (right). Multiple representative pixels are highlighted in the zoom image 
for further analysis and comparison below. (B) The auto-correlation of the pixels highlighted in zoom image in 
(A). PI and PII in B,C,D, (C) The absolute value of the log (auto-correlation) of the pixels highlighted in zoom 
image in A. blue and red dotted areas, stand for the ACF decay of one emitter vs. total trajectory decay (see main 
text). Cutoff titles represent the ~ frame where PII starts.
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We also quantified the performance of tcSMLM reconstruction vs. SMLM reconstruction using simulations 
of imaged fluorophores at a wide range of acquisition rates (5–2000 fps; Fig. S10). The higher acquisition rates 
(> 500 fps) may become more applicable and common using state-of-the-art and future sCMOS cameras. We 
note that the simulations considered relatively negligible noise to allow for useful imaging at such high frame 
rates. The simulative and experimental results show a similar trend by which tcSMLM shows a superior FRC 
resolution that becomes more pronounced with acquisition rate, esp. above 50fps (compare Fig. 7G with S10C).

Discussion
Here we introduce an approach to employ information embedded in temporal correlations of single emitters 
to enhance SMLM reconstruction. We demonstrate the application of this approach, which we call tcSMLM, 
to simulations and experimental data. Specifically, we tested a wide range of cases and conditions that included 

Figure 7.   DNA ruler analysis using tcSMLM and SMLM. (A) Frame rate = 14fps, zoom image of a 
representative DNA ruler resolved using tcSMLM (left) and zoom image of the same DNA ruler in SMLM 
(right). Multiple representative pixels are highlighted in the zoom image for further analysis and comparison 
below. (B–F) Same as (A), with the respective frame rates: 20 fps, 32 fps, 133 fps, 180 fps and 252 fps. (G) Mean 
FRC resolution dependence on the frame rate (fps). FRC resolution of tcSMLM is shown in blue; FRC resolution 
of SMLM is shown in red; FRC resolution of SMLM vs. GTtcSMLM is shown in yellow.
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multiple samples, fluorophore types, and publically available datasets. We find that this approach significantly 
enhances the resolution and the fidelity of SMLM reconstruction when acquiring information at high frame rates. 
This approach is especially helpful under stringent imaging conditions, such as high density of fluorophores and 
low SBR, but it is also significantly better under more common imaging conditions for SMLM. The enhanced 
performance of tcSMLM vs. SMLM reconstruction was demonstrated both experimentally, using DNA nano-
rulers, and through extensive simulations. Importantly, we provide guidelines for the optimization of tcSMLM 
reconstruction for various fluorophores and under the various imaging conditions.

Multiple SMLM reconstruction algorithms have been published11. Most of these algorithms rely on the detec-
tion of individual emitters in each and every frame separately (or by comparing changes only between two con-
secutive frames). This approach disregards the information that is embedded in the whole time trajectory of each 
fluorophore. Other approaches use temporal information of emitters, but do not provide their explicit localization 
and are limited in resolution in comparison to SMLM. The temporal information has been shown to assist in 
identifying and localizing individual emitters8,19,35. In our approach, we embed the temporal information in the 
time trajectory of the single molecules in a new dataset, called tcData, thus utilizing the advantages of temporal 
statistics. This temporal information is provided prior to SMLM reconstruction and thus inherently increases the 
localization precision. Importantly, while differing from published SMLM algorithms, our approach can serve in 
tandem to these algorithms for improvement of their performance. For that, one first employs the first steps of 
tcSMLM reconstruction by building tcData (Fig. 1, items (1)–(5)). Subsequently, our use of thunderSTORM for 
SMLM reconstruction (as applied to tcData; Fig. 1, generating item (6)) is replaced with an SMLM algorithm of 
choice (as long as it does not already consider temporal information by itself). Specifically, we demonstrate the 
performance enhancement of RapidSTORM, RadialSymmetry, DeconSTORM and SRRF.

In our approach, we aimed to allow its wide utility and democratized application. As such, tcSMLM does 
not require any additional expensive hardware or changes in the SMLM experimental setup. We operated our 
code in MatlabR2016b on a standard PC (i7 processor, quad core; parallel threading of CPUs was employed with 
linear acceleration with the number of cores). We also verified its proper operation on multiple other comput-
ers and Matlab versions. The code is accessible through Github [https​://githu​b.com/Sherm​anLab​/tcSML​M]. 
Labs proficient in SMLM can simply use tcSMLM with their current system and their choice of reconstruction 
algorithms. TcSMLM reconstruction takes longer relative to standard SMLM and we have not demonstrated its 
use for real-time processing of acquired data, as done by others23,36. Still, our algorithm can be easily optimized 
for accelerated operation, esp. by using GPUs37.

We have shown the performance of tcSMLM vs. SMLM using both experimental data (Fig. 7) and simula-
tions (Fig. S8; see also Table S1 and SI note 6). We observed that tcSMLM performance becomes esp. better at 
acquisition rates > 30–50 fps. Still, SMLM acquisition is often performed at lower rates, of 10–20 fps, depending 
on the fluorophore of choice, the acquisition speed of the camera and additional experimental requirements38. 
Acquisition at high frame rates reduces the number of photons per pixel while increasing read-out noise, and 
hence often reduces the overall signal to noise ratio (SNR)21,22. It may also require limiting the FOV, e.g. by bin-
ning of the camera’s pixels (Table S2). Hence, on one hand, the faster the rate, the more temporal information 
can be extracted from intensity trajectories. This is primarily useful for live-cell imaging. On the other hand, 
raising the acquisition rate also means that the spatial information may be compromised due to the poorer SNR. 
Practically, capturing RawData with high frame rates can be achieved using common photoswitchable dyes41 and 
fast detectors such as sCMOS cameras38–40,42. Thus, tcSMLM may become a useful tool esp. when such means 
are employed for live cell imaging.

We note a specific limitation to our approach if imaging frame rate is significantly slower than the typical 
bleaching time of the emitters under study. Such imaging would result in no added information in the time 
trajectory of the emitters and in more overlapping emitters in the diffraction limited area. In such a case, the 
performance of tcSMLM would either be comparable to the performance of standard SMLM reconstruction or 
result in under-counting and artifacts. In contrast, tcSMLM reconstruction naturally benefits from accelerated 
imaging. Such imaging becomes increasingly accessible through the use of sCMOS detectors38–40,42. Also, our 
study has considered relatively constant or gradually changing densities of fluorophores in the acquired field. 
Sudden changes in such densities, e.g. due to sudden raising the photoactivation intensity of the fluorophores, 
may require dynamic changes in the tcSMLM reconstruction parameters. Since this feature has not been included 
in our algorithm, such abrupt changes may lead to a compromise in the performance of our algorithm. To con-
clude, we provide here an easy and widely accessible approach for enhancing SMLM reconstruction by employing 
temporal information of individual emitters. We expect that our approach will be widely adopted for SMLM 
reconstruction of experimental data.

Materials and methods
Cell lines and cloning.  Jurkat E6.1 (CD4+) T cells were a kind gift from the Samelson lab at the NIH. For 
the expression of proteins tagged with photoactivatable fluorescent proteins, cells were transfected with the 
desired DNA plasmid by using NEON electroporator (Invitrogen). Jurkat E6.1 stably expressing TCRζ-Dronpa 
cell lines were available for this study from previous work43. Briefly, cell lines were created by selection with 
Geneticin at 1.5  mg/ml (G418, Invitrogen). Two–three weeks later, cells were sorted and single clones were 
grown in 96 well plates. Cells were finally evaluated by flow cytometry, biochemistry assays, confocal microscopy 
and epifluorescence.

Sample preparation.  Staining with Alexa Fluor 647 (anti mouse IgG1).  Standard glass chambers (Ibidi) 
were coated with 500µl of 0.01% poly-l-lysine (diluted in DDW) and left at room temperature for 15 min. The 
liquid was drained and then dried at 37 °C for 2 h. A reagent of 6µl αCD3/600µl PBS was poured into one 

https://github.com/ShermanLab/tcSMLM
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chamber. The chambers were inserted in the oven at 37 °C for 2 h. The chambers were then washed with PBS five 
times. Next, a solution of 1.5µl Alexa647/1.5 ml was inserted into the chamber and was left there for an hour in 
room temperature. Finally, we washed the chamber 5 times with PBS and 620µl Buffer B with 70µl MEA and 
7µl glucose oxidase (GO) were used as the microscopy buffer suitable for dSTORM imaging.

Samples with GP41‑PAmCherry and TCRζ‑Dronpa.  Jurkat T cells transfected with TCRζ-Dronpa and GP41-
PAmCherry were suspended in imaging buffer (RPMI without phenol red, 10% FBS, 25 mM Hepes) at a con-
centration of ∼ 106

150 µl and 105−5× 105 cells were dropped into chambers coated as described above for the 
experiment with Alexa647, incubated at 37 °C for 3–5 min, and fixed with 2.4% PFA for 30 min at 37 °C. The 
chambers were then washed three times with PBS.

Samples with LFA–Alexa647.  LFA1 proteins were labelled in fixed Jurkat E6.1cells. Here, 5× 105 cells were 
incubated for 60  min at RT suspended in a 0.5  µg primary antibody of mouse anti-human CD11a (LFA-1; 
BD Pharmingen, 555378), diluted in 2% normal goat serum in PFN. This was followed by washing with PFN. 
Alexa647 was added using a labelled secondary antibody conjugated to Goat anti-Mouse IgG2a (A21241, Life 
Technologies) diluted (1/3000) in 2% normal goat serum in PFN. Cells were then incubated for 45 min at RT 
and washed 3 times with PFN.

DNA nano‑ruler—dSTORM.  We purchased STORM 50R DNA nano-rulers from GATTAquant GmbH. We 
prepared the DNA nano-rulers following the vendor’s instructions: Ibidi chambers were washed three times 
with 500µl PBS, and then incubated with 200µl of BSA-biotin solution for 5min . Next, we washed the chambers 
with PBS, and incubated them with 200µl of neutravidin solution for 5 min. We then washed the chambers with 
PBS supplemented with 10 mM magnesium chloride ( 1x IB: immobilization buffer). For creating the sample, we 
diluted 1 µ l of the DNA origami solution with 200 µ l 1×IB. The chambers were incubated for another 5 min and 
then washed three times with 500 µl of 1×IB. Finally, we used 620µl Buffer B with 70µl MEA and 7µl glucose 
oxidase (GO) as the microscopy buffer, which is suitable for dSTORM imaging. According to the vendor, each 
end of the nano-ruler may carry 3–4 Alex647 fluorophores. Thus, some variability in the intensity at the nano-
ruler ends is expected.

The microscopy system.  We performed dSTORM Imaging using a TIRF microscope (Nikon). The excitation of 
Alexa 647 was done with 647 nm laser. We excited Dronpa with 488 nm laser line. The excitation of PAmCherry 
was achieved using 561 nm laser line with constant, 3% activation of 405 nm laser. The emission was acquired 
using iXon+ Ultra EMCCD camera (Andor). We used a range of frame rates for acquisition of 32-201fps. Detec-
tor pixel size was 16 µm2 and using an × 100 microscope objective for magnification resulted in de facto pixel 
size of 160 nm.

Data processing.  We used thunderSTORM as our reconstruction algorithm of choice. Through this soft-
ware, there are multiple parameters and different PSF models that may be applied. The default parameters were 
shown to provide the fastest and best results24. We tested this set of parameters with the same conclusion. Thus, 
we used the following general parameters throughout the work: Image filtering wavelet filter (B-Spline) with 
B-Spline order 3 and scale 2. Approximate localization method of Local maximum with 8-neighbourhood con-
nectivity. For the sub-pixel localization of molecules, we used the Gaussian method, also based on our math-
ematical background (see SI, note 2). We changed the fitting radius and initial sigma based on the specification 
of the simulation and experimental data. Multi-emitter fitting analysis was used for the high density simulations 
in Fig. 4 and Fig. S9 with default parameters.

In Figs. 2, 3, 7, S5, S6 and S9 we presented the reconstructed SMLM images and compared them to the cor-
responding tcSMLM images. In these cases, we used Gaussian rendering with lateral uncertainty of 1–2 nm, 
depending on the datasets. We checked other rendering reconstructions and found insignificant changes in the 
results.

Merging conditions and camera parameters were changed according to the analysed data. For example, the 
pixel-size was mostly 160 nm as we preferred to use the simulation with conditions similar to our microscopy 
setup. We chose the gain and camera base-level based on similar considerations. Importantly, we meticulously 
chose specific grouping conditions for each different dataset, either simulated or experimental. For our simula-
tions, we chose the merged conditions such that we reach the closest possible localization table to the original 
GT (note that we also used FRC and CBC to find that). Only then, we ran the simulations over the range of 
parameters, with relevant change to the grouping for each iteration. Also, for our experimental data we used 
specific parameters, as follows. We changed gradually the off-frames and density parameters, and at the same 
time examined the super resolved image contours compared to the wide field contours. We chose the parameters 
that minimally affected these contours. For reconstructing samples with Dronpa, Alexa647 and PamCherry we 
used the following parameters: off-frames 20, 65 and 25, and grouping distances of 60 nm, 80 nm and 85 nm 
respectively. Unless explicitly mentioned otherwise in the main text, all results presented in this work were 
reconstructed after grouping.

Notably, for reasons of consistency, we used the same reconstruction parameters for SMLM and tcSMLM 
alike, in each of our analyses. We acknowledge that modification of merge parameters (i.e. grouping over space 
and time) may yield more optimal results for SMLM and tcSMLM reconstructions under the various conditions. 
Optimal merge parameters for tcSMLM relative to SMLM are provided in the tcData guide (see SI, note 6).

For obtaining the data in Fig. 7, we initially chose peak locations in the final reconstructed super-resolved 
image (i.e. after either tcSMLM or SMLM reconstruction). These peaks corresponded to the positions of 
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individual nano-rulers. Next, we cut 20 × 20 pixels from the original reconstructed image, roughly around the 
center of mass (266.6 × 266.9 nm2 ). We then used the Matlab function ’regionprops’ to fit an ellipse around the 
peaks in the image (Fig. 7A–F). We chose fitting to an ellipse shape since the nano-rulers tend to generally form 
elongated PSFs that cannot always be separated into 2 point-like PSFs, separated by 50 nm. Next, we defined 
two points, with 50 nm separation along the major axis of the ellipse and with symmetric placement around the 
ellipse center (chosen as the axis origin). Those two points were chosen to represent the ground-truth (GTs) for 
the individual nano-ruler markers. Notably, this GT is not absolute since it only relates to the distance between 
the two ends of the nano-rulers, but it does not determine the center position of the nano-rulers or their ori-
entation in 2D. Thus, we could define two prospective GTs: GTSMLM and GTtcSMLM by fitting the ellipse to either 
the SMLM-reconstructed image or to the tcSMLM-reconstructed image, respectively. These GT’s (GTSMLM and 
GTtcSMLM) were generally not in agreement and thus, both served for resolution estimation via FRC.

For each acquisition frame rate, we randomly chose 10 nano-ruler locations, and did the same analysis for 
each location. Then, we calculated an FRC curve for each of these nano-ruler locations vs. their respective GT’s 
(GTSMLM and GTtcSMLM).

We observed that tcSMLM reconstruction could detect more accurately the (50 nm-separated) two-ends 
of the nano-rulers, while these were often merged after SMLM reconstruction; e.g. Fig. 7A,B). If the two ends 
were essentially unresolved (as often occurred for SMLM at high acquisition rates, and rarely for tcSMLM; e.g. 
Fig. 7E,F), we set the FRC resolution limit artificially to 100 nm. Therefore, this limit is conservative for the 
resolution enhancement of tcSMLM, as compared to SMLM reconstruction.

For the SMLM location, we also calculated the FRC vs. the GTtcSMLM. This latter curves of SMLM vs. GTtcSMLM 
(Fig. 7, all curves in yellow) can be regarded as relatively favorable estimations for tcSMLM resolution enhance-
ment over SMLM. Likewise, the curves of SMLM vs. GTSMLM (Fig. 7, all curves in orange) represent the least 
favorable possible resolution enhancement by tcSMLM over SMLM.

Finally, we chose the mean of the FRC resolution for the 10 points as the reported resolution. Error-bars are 
SEM.

In Fig.  S9 we also present the performance of tcSMLM, combined with the following algorithms: 
RapidSTORM44, RadialSymmetry45, DeconSTORM16 and SRRF23. Each of these published algorithms includes 
various fitting parameters. Thus, we do not provide their detailed presentation here. Briefly, we entered the basic 
parameters such as pixel-size, sigma, FWHM and camera parameters according to the specific datasets. As we 
used a specific simulation in the figure (see main text and Fig. S9), we tried to fine-tune the algorithm parameters 
toward reconstructing the closest results to the GT. We recognize that optimal parameters of these algorithms 
should provide better agreement with the GT. However, in tuning the parameters of these algorithms, we realized 
that as we get better results, the difference between the FRC resolution of tcData localization and of RawData 
widens. For example, for RapidSTORM, we started with FRC resolution of 92 nm and 105 nm, for tcSMLM and 
SMLM respectively. However, a better tuning of the algorithm parameters provided 63 nm vs. 84 nm, respectively 
(or percentage wise: ∼ 12% vs. ∼ 25% ). A similar outcome was observed for the other presented algorithms.

Finally, experimental data contains interferences in their intensity trajectories from various sources of noise 
and background. In order to find a clear cut-off between PI and PII (see Fig. 6), we smoothed the decay curves 
using a moving average with a moving-window of size 5–15, depending on the level of noise in the data. We 
acknowledge that other RawData sets and different averaging moving-windows might optimize the results fur-
ther. A detailed description along with additional examples is found in our tcData guide (see SI, note 6).

Simulations.  We used the SOFI simulation tool25 for the simulations in this study. We also employed addi-
tional simulations, either provided by thunderSTORM tools or open-source11 with similar results.

Throughout this research we used the following simulation parameters: (1) camera parameters. Readout 
noise = 1.6 rms, dark current = 0.06 electrons/pixel/s, quantum efficiency = 0.7, gain = 6, pixel size = 16.5×16.5 
µm2 ; (2) optical parameters. Numerical aperture = 1.3, wavelength = 600 nm and magnification = 100. Other 
parameters were changed in accordance with the specific analysis. Changes in the default parameters typi-
cally require changes in the parameters of analyses, either in the reconstruction algorithm or in the FRC/CBC 
parameters; but the results remained the same under such changes. We used the Siemens star pattern to avoid 
anisotropic interferences in the spatial frequencies that could affect the FRC results.

In Figs. 4A–H, 5C,D and 7C,D, each point in the graph is made of 5 simulations. Each of these individual 
simulation had identical set of parameters, except for the locations of the emitters, as they were randomly scat-
tered across the same Siemens star. Thus, each point represents the mean of the results for those simulations, 
and the error is the standard error of the mean (SEM). We chose 5 simulations for simplicity, and further found 
that a higher number of simulations did not change the error significantly.

Data availability
The authors declare that the data supporting the findings of this study are available within the article and its sup-
plementary information files, or are available upon reasonable requests to the authors. In addition, we provide 
a GitHub link to the scripts, examples and guide: https​://githu​b.com/Sherm​anLab​/tcSML​M.
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