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Optimization for maximum specific 
energy density of a lithium‑ion 
battery using progressive 
quadratic response surface method 
and design of experiments
Ji‑San Kim1, Dong‑Chan Lee2, Jeong‑Joo Lee1 & Chang‑Wan Kim2*

The demand for high-capacity lithium-ion batteries (LIB) in electric vehicles has increased. In 
this study, optimization to maximize the specific energy density of a cell is conducted using the 
LIB electrochemical model and sequential approximate optimization (SAO). First, the design of 
experiments is performed to analyze the sensitivity of design factors important to the specific 
energy density, such as electrode and separator thicknesses, porosity, and particle size. Then, the 
design variables of the cell are optimized for maximum specific energy density using the progressive 
quadratic response surface method (PQRSM), which is one of the SAO techniques. As a result of 
optimization, the thickness ratio of the electrode was optimized and the porosity was reduced to 
keep the specific energy density high, while still maintaining the specific power density performance. 
This led to an increase in the specific energy density of 56.8% and a reduction in the polarization 
phenomenon of 11.5%. The specific energy density effectively improved through minimum 
computation despite the nonlinearity of the electrochemical model in PQRSM optimization.

List of symbols
a	� Ion number
ϕ	� Electrical potential (V)
η	� Local surface overpotential (V)
ρ	� Density (kg/m3)
ε	� Porosity
α	� Significance level
Acell	� Cross-sectional area of cell
c	� Li concentration (mol/m3)
D	� Diffusivity (m2/s)
Ecell	� Specific energy density (Wh/kg)
Pcell	� Specific power density (W/kg)
f±	� Average molar activity coefficient
F	� Faraday’s constant, 96,487 (C/mol)
i	� Current density (A/m2)
jn	� Local current density (A/m2)
k	� Electronic conductivity (S/m)
Mcell	� Mass of cell (kg)
N0	� Li+ flux (mol/m2s)
r	� Radial distance from the center of electrode’s active particle (μm)
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Rc	� Gas constant, 8.314 (J/(mol K))
t	� Thickness (m)
t+	� Transport number of Li+

T	� Absolute temperature (K)
Vcell	� Electric potential of cell

Subscripts and superscripts
app	� Applied
eff	� Effective value
el	� Electrolyte
neg	� Negative electrode
pos	� Positive electrode
sep	� Separator
1	� Solid phase
2	� Liquid phase

Due to their high theoretical energy density and long life, lithium-ion batteries (LIB) are widely used as recharge-
able batteries. The demand for high-power, high-capacity LIB has witnessed a surge due to the increasing demand 
for electric vehicles and energy storage devices1–3. To cater to this trend, the energy density of LIB must be 
improved. For this, new electrode materials are being researched and developed. However, the development of 
new electrode materials requires significant time and effort; as such, many researchers are currently conducting 
studies on the same.

Therefore, one way to reduce the cost of research and development is to optimize the design variables of exist-
ing electrode materials, such as porosity and thickness, for enhanced power and capacity of LIB4–15. It is crucial 
to optimize the design variables to reach the target performance because power and capacity share a tradeoff 
relationship. However, the relationship between design variables and the performance of lithium-ion batteries 
is highly nonlinear; therefore, it is difficult to design them through experiments. To overcome these difficulties, 
optimization using numerical models that consider electrochemical reactions is employed, which is an effective 
method. Recent studies have been conducted to optimize cell design variables using numerical models for the 
design of high-power/high-capacity batteries4.

Previously, Newman conducted a parametric study using a Ragone plot to maximize the specific energy 
density of the battery5–11. A Ragone plot is a simple graph that shows the relationship between the specific energy 
and the specific power of a cell. Doyle et al. developed an electrochemical model for predicting the charge and 
discharge performance of a battery using the porous electrode theory and the concentrated solution theory. This 
formed the basis for later research on LIB optimization5. Through a parametric study, Doyle and Newman com-
pared the specific energy density of cells consisting of various electrode thicknesses, porosities, and electrolytes, 
and proposed an optimized cell using a Ragone plot6–8. Srinivasan and Newman optimized the porosity and 
thickness of a positive electrode for various C-rates while maintaining the capacity ratio of the two electrodes, the 
thickness and porosity of the separator, and the porosity of the negative electrode9. Christensen et al. optimized 
the thickness and porosity of lithium titanate (LTO) negative electrodes for electric vehicles and used a Ragone 
plot to predict the power performance10. Stewart et al. improved a Ragone plot considering the pulse performance 
of a hybrid electric vehicle (HEV) and optimized the specific power-to-energy ratio of the HEV’s battery cell11. 
Appiah et al. optimized the thickness and porositiy of LiNi0.6Co0.2Mn0.2O2 cathode through a parametric study 
using Ragone plot12. However, derivation of the optimal variables using a Ragone plot and parametric study can 
be computationally expensive; as such, research using numerical optimization techniques is needed.

For example, Xue et al. selected 12 design variables, including electrode porosity, diffusion coefficient, and 
various C-rates and calculated the gradient through the complex-step approximation method. They then opti-
mized the specific energy density using sequential quadratic programming methods13. Golmon et al. developed 
a multiscale battery model that additionally considered the microscale, used an adjoint sensitivity analysis 
to calculate the gradient, and optimized capacity of the battery14. Changhong Liu and Lin Liu optimized the 
capacity loss of the battery using a gradient-based algorithm called multiple starting point search and improved 
the capacity loss of the cell by 22%15. However, gradient-based optimization is a complex process that requires 
various steps of computation and time. Moreover, it is sensitive to numerical noise, and the optimization results 
converge on a local optimum16.

To avoid the disadvantages of gradient-based optimization, researchers have studied many algorithms that do 
not require gradient calculation17–19. Among them, the progressive quadratic response surface method (PQRSM) 
is one of the sequential approximate optimization (SAO) techniques that can be effectively applied to nonlinear 
problems without gradient calculations20. Furthermore, PQRSM applies a trust region algorithm that guarantees 
weak global convergence and has a low probability of convergence on a local optimum21–23. In addition, unlike 
the parametric study using a Ragone plot, which requires hundreds of simulations to analyze a single cell, the 
PQRSM requires fewer calculations for optimal results. For these advantages, PQRSM has used in various engi-
neering fields; however, it has never been applied to the optimization of a LIB24,25.

In this study, optimization for the maximum specific energy density of a LIB cell is performed using design of 
experiments, the PQRSM, and an electrochemical model of the LIB that is used to calculate the specific energy 
density and the specific power density. First, design of experiments (DOE) was conducted to analyze the sensitiv-
ity of eight cell design factors, including anode thickness, cathode thickness, separator thickness, anode porosity, 
cathode porosity, separator porosity, anode particle size, and cathode particle size. Design factors sensitive to 
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specific energy density and specific power density were selected as design variables through a sensitivity analysis 
of DOE. The PQRSM, which guarantees the weak global convergence and does not require gradient calculation, 
was used as the optimization algorithm to maximize the specific energy density of LIB. After optimization, the 
differences in the specific energy density and specific power density of the initial and optimized cell were com-
pared through constant current discharge. It verified the superiority of the optimized design result.

Electrochemical lithium‑ion battery model
The LIB model uses the pseudo-two-dimensional (P2D) model developed by Doyle et al., which applies the 
porous electrode theory and the concentrated solution theory5,6. The LIB cell consisted of 5 layers, including 
collector, electrode, and separator, and used graphite/LMO-type cells. Figure 1 shows the structure of the LIB 
model and a schematic of the charge and discharge cycle.

Equations (1)–(5) are the governing equations of the Li-ion cell electrochemical reaction. Equation (1) is the 
electronic charge balance equation and Eq. (2) is the ionic charge balance in the electrolyte. Equation (3) is a form 
of Fick’s second law in spherical coordinates; it shows the diffusion of Li in the active particles. Equation (4) is 
the Li-ion ionic charge transport in the electrolyte. Equation (5) is the Li+ flux and Butler–Volmer equation on 
the active particle surface; it shows the defined reaction kinetics.

The LIB electrochemical model was validated through comparisons with the discharge curves of Newman’s 
experiment. Figure 2 shows the experiment with 0.1C–2C discharge of the LIB cell and the discharge curves 
from the numerical model analysis. For the cell parameters, we referred to the LIB model by Newman and Doyle. 
Table 1 shows the cell parameters6,8. Collector parameters were referenced from a published paper26.

To confirm the initial specific energy density and specific energy density of the cell, constant current discharge 
was performed from 1 to 10C. The cell was discharged from the initial voltage of 4.2 V to the cut off voltage of 3 V. 
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Figure 1.   Schematic of (a) LIB pouch cell and (b) LIB electrochemical model.
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The 1C-rate current density was 25 A/m2 and the cell temperature is 298 K. The initial Li-ion concentration of the 
negative electrode was 22,055 mol/m3, and that of the positive electrode was 4,000 mol/m3. The initial concentra-
tion of the electrolyte was 1,000 mol/m3, and the rapid reduction in Li-ion concentration of the electrolyte could 
be prevented even at high current densities. In Eq. (6), the specific energy density was calculated by dividing the 
energy discharged up to the cut-off voltage by the cell mass. The specific power density was calculated through 
Eq. (7) by dividing the average power up to the cut-off voltage by cell mass. The mass of the cell was calculated 
by the sum of the weights of the anode, cathode, separator, electrolyte, and collector through Eq. (8).

Figure 3 shows the results of constant current discharge from 1 to 10C. The cell exhibited a specific energy 
density of 135.8 Wh/kg and a specific power density of 137.0 W/kg at the rate of 1C. At 4C, it maintained a 
specific energy density of above 100 Wh/kg.
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Figure 2.   Comparison of discharge curves of the LIB cell between experiment8 and analysis.

Table 1.   Material properties and dimensions of the LIB cell8,26.

Parameter LixC6 LiMn2O4 Separator Electrolyte Al foil Cu foil

Thickness (μm) 100 174 52 – 15 10

Porosity 0.357 0.444 0.46 – – –

Particle size (μm) 12.5 8.5 – – – –

Density (kg/m3) 2,270 4,140 900 1,210 2,700 8,700

Diffusivity (m2/s) 3.9 × 10−14 1.0 × 10−13 – 7.5 × 10−11 – –

Reaction rate constant 2.0 × 10−11 2.0 × 10−11 – – –

Electrical conductivity (S/m) 100 3.8 – – –

Max. concentration (mol/m3) 26,390 22,860 – – – –

Initial concentration (mol/m3) 22,055 4,000 – 1,000 – –

Open circuit potential (V)
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Sensitivity analysis using design of experiments
A DOE was conducted to analyze the sensitivity of the cell design factors that influence the specific power 
density and specific energy density. The selection of key design variables through sensitivity analysis of DOE is 
an effective method to reduce unnecessary computational costs and achieve better results in the optimization 
stage. Eight design factors were selected for the initial cell, including thickness and porosity, and particle size of 
the anode, cathode, and separator. Diffusivity and conductivity were excluded from the design factors since they 
are determined during the development of battery materials itself. Table 2 shows the design space of the design 
factors; they were based on previously reported values13. Considering the nonlinearity between the cell’s design 
factors, specific energy density, and specific power density, sampling points were derived through the 4-level 
orthogonal array in this design space. Figure 4 shows the relationship of the specific energy density with the 
thickness and porosity of the anode and cathode for 96 sampling points. This relationship indicates that a high 
specific energy density can be obtained at a certain thickness ratio of the anode and the cathode. The thickness of 
the electrode is related to the amount of electrochemically active material inside the cell, indicating that the ratio 
of the active material of the anode and the cathode must be maintained13. As with electrode thickness, porosity 
is also a factor related to the amount of active material inside the cell. Figure 4b shows that the higher specific 
energy density is predicted in the electrode with a smaller porosity, and it also implies that the ratio of active 
material should be considered. This is because, even if the amount of active materials in the positive electrode is 
large, the entire amount will not react if the quantity of active materials in the negative electrode is small. Both 
the positive and negative electrodes must have a balanced amount of active material.

A correlation analysis was conducted to analyze the linear relationship between the cell design factors and 
specific energy density, and cell design factors and specific power density. A correlation analysis is a method of 
analyzing the linear relationship between factors and responses. The closer the correlation coefficient is to 1, the 
stronger the positive linear relationship, and the closer to − 1, the stronger the negative linear relationship. Fac-
tors with an apparent linear relationship can be excluded from the design variables because the optimal value is 
at the boundary of the design space. Table 3 shows the results of the correlation analysis. There were no factors 
with an apparent linear relationship between the cell’s design factors, specific energy density, and specific power 
density. However, the thicknesses of the anode and cathode displayed a moderate negative linear relationship 
with the specific power density, suggesting that the thinner the electrode, the higher the specific power density27. 
However, electrode thicknesses cannot be excluded from the design variables because they have a nonlinear 
relationship with the specific energy density.

Figure 3.   Discharge curves under various C rates for initial cell.

Table 2.   Design factors of DOE and the ranges.

Design factors Lower bound Upper bound

Anode thickness (μm) 40 250

Cathode thickness (μm) 40 250

Separator thickness (μm) 10 100

Anode porosity 0.2 0.6

Cathode porosity 0.2 0.6

Separator porosity 0.2 0.6

Anode particle size (μm) 5 20

Cathode particle size (μm) 2 20
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Analysis of variance (ANOVA) was conducted to determine the sensitivity of the design factors and accord-
ingly select the design variables for optimization. ANOVA is a method of estimating the impact of the factors on 
the responses by expressing the distribution of those responses as a sum of squares and separating it by factor28. A 
significance level(α) of 0.05 was used. If P-value was less than 0.05, then it was judged as a factor with statistically 
significant interaction with the response. Tables 4 and 5 show the ANOVA results. For specific energy density, 
thicknesses and porosities of the anode and the cathode were determined to be significant factors. For specific 
power density, thicknesses of the electrodes and the separator and porosity of the cathode were determined to be 
the significant factors. Through ANOVA, thicknesses of the anode, the cathode, and the separator, and porosities 
of the anode and the cathode were selected as the design variables.

Figure 4.   Specific energy density at sampling points of DOE for (a) electrode thickness (b) electrode porosity.

Table 3.   Correlation coefficients of specific energy and specific power for design factors.

Specific energy density Specific power density

Anode thickness 0.330  − 0.481

Cathode thickness 0.320  − 0.697

Separator thickness  − 0.108  − 0.162

Anode porosity  − 0.300 0.080

Cathode porosity  − 0.297 0.237

Separator porosity 0.023  − 0.013

Anode particle size  − 0.069  − 0.040

Cathode particle size  − 0.104  − 0.003

Table 4.   ANOVA results of specific energy density.

Factor DOF Sum of squares Mean square F-value P value

Anode particle size 3 1,529 510 0.419 0.740

Cathode particle size 3 2,308 769 0.633 0.596

Anode porosity 3 19,048 6,349 5.221 0.003

Cathode porosity 3 22,577 7,526 6.189 0.001

Separator porosity 3 963 321 0.264 0.851

Anode thickness 3 37,490 12,497 10.28  < 0.0001

Cathode thickness 3 29,218 9,739 8.009  < 0.0001

Separator thickness 3 3,594 1,198 0.985 0.405

Error 71 86,342 1,216

Total 95 203,069
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Specific energy density optimization of lithium‑ion battery cell
Formulation of optimization problem.  To improve the specific energy density while maintaining the 
initial power performance, ± 1% of the initial specific power density was used as a constraint. The design vari-
ables included anode thickness (x1), cathode thickness (x2), separator thickness (x3), anode porosity (x4), and 
cathode porosity (x5) that were selected through the sensitivity analysis of DOE. The upper and lower ranges 
of the design variables are shown in Table 2. At a rate of 1C, the battery cell was subjected to a constant current 
discharge and a cutoff voltage of 3.0 V.

PQRSM algorithm.  The PQRSM algorithm is one of the SAO techniques that uses a quadratic response 
surface model. Unlike gradient-based algorithms, the gradient is not needed, thus no complex computations are 
required. This can also be applied to problems with numerical noise and is effective for nonlinear problems20,21. 
Moreover, the trust region algorithm, which guarantees weak global convergence, is applied. Consequently, the 
probability of convergence on the local optimum is low22,23. The PQRSM algorithm generates a full quadratic 
response surface model which satisfies rotatability with each iteration with 2n + 1 sampling points and conducts 
an approximate optimization using this response surface model. Figure 5 shows the PQRSM optimization pro-

(9)

Find : xk , . . . . . . , k = 1, 2, 3, 4, 5

maximize: E =
1

Mcell

tend
∫
0
Vcell · iappdt

subject to : 135.6W/kg < P < 138.4W/kg

xlower,k ≤ xk ≤ xupper,k

Table 5.   ANOVA results of specific power density.

Factor DOF Sum of squares Mean square F-value P value

Anode particle size 3 426 142 0.355 0.786

Cathode particle size 3 314 105 0.261 0.853

Anode porosity 3 1,737 579 1.457 0.236

Cathode porosity 3 11,374 3,791 9.473  < 0.0001

Separator porosity 3 523 174 0.436 0.728

Anode thickness 3 48,482 16,161 40.38  < 0.0001

Cathode thickness 3 100,905 33,635 84.04  < 0.0001

Separator thickness 3 7,766 2,589 6.468 0.001

Error 71 28,416 400

Total 95 199,943

Figure 5.   Flowchart of the PQRSM optimization process.
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cedure. First, one center point and 2n axial points in the design space are selected as the sampling points. These 
points are then used to generate the quadratic response surface model and the approximate optimization is con-
ducted in the initial trust region. The actual function value is then calculated from this approximate optimum 
and the convergence criteria are evaluated. If the convergence criteria are not satisfied, this process of optimiza-
tion is repeated until a new trust region is created and converged.

Results and discussion
This study shows the potential of PQRSM based optimization to design cells with maximized energy density 
while maintaining specific power requirements. As a result of optimization, the specific energy density increased 
by 56.8% and the specific power density decreased by 1.02% while satisfying the constraints. Figure 6 shows the 
convergence history of optimization. Optimization converged after 15 iterations. Table 6 shows changes in the 
design variables, the objective function, and the constraints after optimization.

The thickness ratio of the anode and the cathode changed from the initial value of 1.74 to 1.09, which 
improved the negative/positive capacity ratio of the cell from the initial value of 0.86 to 1.09. An effective thick-
ness ratio between the anode and cathode is determined by the ratio of active materials of the two electrodes for 
a balanced electrochemical reaction. Figure 7 illustrates the changes in concentration of the cathode solid phase 
of the initial cell and the optimized cell during 1C discharge. The cathode of the initial cell was unsaturated at 
the cut-off voltage due to the lack of active material at the anode. But the optimized cell was improved to the 
extent that both electrodes have a balanced amount of active material, and the cathode became saturated at the 
end of the discharge, thus improving the specific energy density of the cell. In addition, reducing the cathode 
thickness also reduced the electrode resistance, thereby enhancing the specific energy density at higher power27. 
The separator thicknesses converged on the lower boundary. The separator is not involved in the electrochemical 
reaction; thick separators increase the distance of the ions and increase the mass, thus decreasing the specific 
energy density. Porosity is a design variable that changes the amount of active material and electrolytes inside 
the electrode and influences the mass transfer capability of the ions. The porosity of the two electrodes decreased 
to the lower boundary. Reducing the porosity increased the amount of active material inside the electrode, 
thus increasing the theoretical energy. However, this reduces the amount of electrolyte, thereby decreasing the 
mass transfer capability of the ions at high powers29,30. The specific energy density of the cell was enhanced by 
effectively increasing the amount of active material while maintaining the mass transfer capability of the ions 
at the target power.

Figure 6.   Convergence history of optimization of (a) objective function: the specific energy density and (b) 
constraints: the specific power density.

Table 6.   Comparison of objective function, constraints and design variables between initial cell and optimized 
cell.

Objective function and constraints Initial cell Optimized cell Rate of change (%)

Specific energy density (Wh/kg) 135.8 212.9 56.8

Specific power density (W/kg) 137.0 135.6  − 1.02

Design variables

Anode thickness (μm) 100 118.9 18.9

Cathode thickness (μm) 174 130  − 25.3

Separator thickness (μm) 52 10  − 80.8

Anode porosity 0.357 0.2  − 44.0

Cathode porosity 0.444 0.2  − 55.0
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Figure 8 is a graph of specific energy density vs. specific power density of the initial and optimized cells. At a 
specific power density of 600 W/kg and below, the optimized cell showed a higher specific energy density per-
formance than the initial cell. An HPPC analysis was conducted to confirm the polarization phenomenon of the 
cell. The battery was discharged at 10C for 10 s and recharged at 10C after 10 s of relaxation. Figure 9 illustrates 
the results. As a result of optimization, the polarization phenomenon was reduced by 11.5% compared to the 
initial model. This result demonstrates that the theoretical energy effectively increased without increasing the 
polarization phenomenon despite a reduction in porosity. On the other hand, changes in LIB cell design variables 
affect cycling stability of electrodes and thus affect the life cycle of LIB. For more practical LIB optimization in 
the future, we should include degradation models that consider capacity fade mechanisms.

Conclusions
In this study, optimization was conducted to maximize the specific energy density of the LIB using DOE and 
PQRSM, which guarantees weak global convergence and does not need to calculate gradients. First, DOE was 
performed to select the design variables, the sampling points were derived through the 4-level orthogonal array, 
and the sensitivity was analyzed through correlation analysis and ANOVA. The correlation analysis confirmed 
that no factors had any apparent linear relationship and that the thickness of the electrode had a moderate 
negative linear relationship with specific power density. Through ANOVA, cathode thickness, anode thickness, 
separator thickness, cathode porosity, and anode porosity were selected as the design variables, which are factors 
influencing the specific energy density and specific power density.

Then, The LIB was optimized to maximize the specific energy density while maintaining the specific power 
density using PQRSM. The result of the optimization revealed that the specific energy density was improved by 
56.8% while satisfying the constraints. The improvement of the thickness ratio of the electrode improved the 
ratio of active material and the reduction of porosity increased the amount of active material without disturbing 
the mass transfer capability at the target power. An HPPC analysis was conducted on the initial and optimized 
cells, which demonstrated an 11.5% reduction in energy loss due to the polarization phenomenon. This study 
verified that PQRSM-based optimization is effective for designing high-capacity batteries.

Figure 7.   Variation of Li concentration in the solid phase of cathode for initial and optimized cells during 1C 
discharge.

Figure 8.   Specific energy density versus specific power density of initial cell and optimized cell.
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