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A novel method for achieving 
an optimal classification 
of the proteinogenic amino acids
Andre then1,4, Karel Mácha1,2,4, Bashar Ibrahim  1,3* & Stefan Schuster1*

The classification of proteinogenic amino acids is crucial for understanding their commonalities as 
well as their differences to provide a hint for why life settled on the usage of precisely those amino 
acids. It is also crucial for predicting electrostatic, hydrophobic, stacking and other interactions, for 
assessing conservation in multiple alignments and many other applications. While several methods 
have been proposed to find “the” optimal classification, they have several shortcomings, such as the 
lack of efficiency and interpretability or an unnecessarily high number of discriminating features. 
In this study, we propose a novel method involving a repeated binary separation via a minimum 
amount of five features (such as hydrophobicity or volume) expressed by numerical values for amino 
acid characteristics. The features are extracted from the AAindex database. By simple separation at 
the medians, we successfully derive the five properties volume, electron–ion-interaction potential, 
hydrophobicity, α-helix propensity, and π-helix propensity. We extend our analysis to separations 
other than by the median. We further score our combinations based on how natural the separations 
are.

The tendency to categorize and classify objects is crucial to human understanding of the surrounding world. 
Starting with archaic approaches such as the separation of plants into toxic and edible ones, scientific research 
involves classification such as in the taxonomy of organisms. We also know this from the prioritization of tasks 
we are confronted with in our daily work. A good classification of the fundamental elements of a system can 
often lead to an improved understanding of higher system behavior.

In this paper, we focus on the classification of the 20 proteinogenic amino acids, the building blocks of pro-
teins. This helps us understand why some amino acids show a preference for occurrence in certain secondary 
structures of  proteins1, develop electrostatic, hydrophobic, stacking and other interactions, or are more easily 
exchanged against each other in a coding sequence, which is the principle underlying substitution  matrices2,3. 
Classifying amino acids is also very useful in understanding early evolution. For example, it turned out that 
aminoacyl tRNA synthetases can be assigned to two distinct classes. Interestingly, each class transfers exactly 
10 amino acids  each4.

Ramsay  Taylor5 introduced a classification scheme of eight physicochemical measures to classify the 20 amino 
acids and organized this scheme into an Euler diagram based on the work of Dickerson and  Geis6 (Fig. 1). He 
aimed at an improved description of amino acid relatedness in protein sequence alignments. Taylor’s classifica-
tion has been particularly useful in its interpretability because he only used measures easy to understand as, for 
example, polarity and hydrophobicity. Furthermore, the Euler diagram overall allows for a better and visually 
appealing understanding of the classification scheme. In later extensions of Taylor’s classification, the number of 
features was extended to 11, by including “proline” (a feature only shown by proline), “glycine” and “negatively 
charged”7.

Taylor’s classification, however, has two major drawbacks. First, it is non-unique in that leucine and isoleucine 
are in the same group, and tryptophan and tyrosine are together in one of the other groups. Moreover, it uses 
more than the amount of 5 features required to characterize the 20 amino acids by binary separation into unique 
groups, i.e. groups only containing exactly one amino acid each. Five features are sufficient because this amount 
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can separate up to  25 = 32 elements in a binary fashion, whereas four features are insufficient since  24 = 16. The 
unnecessarily high number of features in Taylor’s classification is due to redundancy such as the features “small” 
and “tiny”, since every tiny amino acid is also small. To balance the mathematician’s strive for optimality and the 
biologist’s wish for interpretability of the features used, we aim at picking the minimum amount of five features 
from a list of easily interpretable features for achieving an unequivocal classification of the amino acids.

A classification fulfilling the above-mentioned criteria could also be considered as a scheme defining a unique 
biochemical niche for every amino acid. Thus, it serves as an approach to answering the question of whether the 
use of the set of proteinogenic amino acids is determined by adaptive properties or if an alternative set of amino 
acids might be used as well. Note that there is an enormous number of non-proteinogenic amino acids occur-
ring in living  organisms8, which could, alternatively, have been selected to be proteinogenic. For example, why 
were leucine and isoleucine selected rather than norleucine or tert-leucine, that is, the remaining two isomers of 
aliphatic amino acids involving four carbons in the side  chain8? Evolution would certainly have brought about 
pathways for the synthesis of these alternative amino acids, since even present-day enzymes with broad substrate 
specificity exist in living organisms allowing for the concomitant biosynthesis of  norleucine9 and the synthesis 
of tert-leucine is feasible in some bacteria living in mutualism with  sponges10 and in engineered  organisms11.

The question why those particular amino acids have been selected during evolution has been tackled from 
a multitude of different perspectives. Among them are the qualitative description of the unique functional role 
of every amino  acid12 and comparing the coverage of selected physicochemical properties with a random set of 
amino  acids13–15. Both of them have their limitations. The first approach can principally provide a unique role 
for any element as the description gets more and more detailed, while the results of the second approach depend 
heavily on the physicochemical properties chosen and the selection of the amino acid pool the elements of the 
random sets are selected from.

Importantly, on identifying a minimal set of features uniquely classifying each proteinogenic amino acid, the 
features can be identified in the process rather than beforehand. The result could also indicate as to which amino 
acids should have a high priority to artificially expand the genetic  code16,17. It should be those which occupy 
some of the 12 groups (32 groups formed by five features minus 20 occupied by the proteinogenic amino acids) 
left unoccupied so far.

In this work, we propose a novel method based on binary separation at the median of a multitude of easily 
interpretable features to identify an optimal classification in the sense outlined above. We recall that the median 
is the value separating the higher half from the lower half of a data sample. The required features were extracted 
from the AAindex  database18–20. That database consists of three lists: amino acid indices (used here), amino acid 
mutation matrices, and amino acid pair-wise contact patterns. As each entry of the latter two lists refers to two 
amino acids, these lists are less suitable for our purpose. Advantageously, the data in the AAindex is structured 
in a manner easily accessible through web-scraping, can be downloaded and is nearly complete in the sense that 
for every index there exist values for all the amino acids, though a few values are missing or not defined and were 
then arbitrarily set to zero in AAindex (see Table S2 for a list of the selected features containing missing values).

Methods
Overview of the optimal classification method.  From among the properties listed in AAindex, we 
only consider those features that are meaningful in a biological context. In the selection of features, two differ-
ent approaches are reasonable. In a first approach, we only consider those features that describe each particular 
amino acid per se (e.g. molecular mass or dipole moment) rather than propensities for certain secondary struc-

Figure 1.  Euler diagram illustrating Taylor’s classification of the 20 amino acids (modified and extended  from5). 
Amino acids are depicted by the one-letter code. Cysteine occurs twice, once in its reduced form  (CSH) and once 
forming a disulfide bond  (CS-S).
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tures, interaction strengths or the like, because the latter features are context-dependent. This approach also 
has the advantage that the features can be determined for non-canonical amino acids more easily than context-
dependent features because, for example, secondary structures are much less known for these.

However, by this first approach, we have not found any combination of five features classifying all 20 standard 
amino acids in the way described above. Only when we allow for the property of mutability, which is not purely 
a property of an amino acid itself, we find solutions. Four combinations of features have been determined, all 
of which involving mutability, bulkiness and pK-a. The latter is the experimentally determined pK value of the 
corresponding carboxylic acid, i. e. the amino acid without its α-amino group (FAUCHÈRE, Charton et al. 
1988). The remaining two features are the pK value of the carboxy group of the entire amino acid (where one 
can choose between two different ways of measurement) and either the radius of gyration of the side chain or 
the accessible surface area.

In spite of the puristic elegance of the first approach, it has the drawback that some of the obtained fea-
tures are not widely used in biochemistry and protein structure prediction. In a second approach, we allow for 
context-dependent features such as propensities for certain secondary structures. However, we exclude Liquid 
Chromatography Retention Factors as those are not of direct significance in biological systems. Although the 
initial classification according to  Taylor5 does not use properties corresponding to secondary structure data, we 
decided to include this data as it is strongly linked to the structural features of the amino acids themselves. It 
is widely known for example that β-branched alkyl side chains in amino acid destabilize α-helices21. Moreover, 
to guarantee the wide applicability of our classification we only included features representing basic concepts 
which are also graspable for undergraduate students in the life sciences. Based on these criteria, we manually 
selected 83 of the 566 features (Table S1).

Mathematically, the feature patterns determining the classification can be written as binary vectors. Since 
we want to classify the 20 canonical amino acids and five features are sufficient for that purpose, we search five 
vectors of length 20, with elements 0 or 1. The features should be as “independent” as possible. Sometimes, this 
requirement in classification tasks is expressed in that the features should be “orthogonal” to each other. However, 
this requirement is too strict; a sort of linear independence is sufficient. Moreover, both orthogonality and linear 
independence require a Euclidean space in which the vectors are embedded. However, for binary vectors, this 
type of space is unnecessary and inappropriate.

The relevant criterion is the following non-redundancy criterion: n features are mutually non-redundant, if 
and only if none of the resulting partition sets involves more than  2(5−n) elements. For example, the combination 
of “tiny” and “small” is inappropriate because the remaining 11 amino acids cannot be uniquely classified by 
three features  (23 = 8). Although the term non-redundancy might be questionable in the case of just one feature, 
the above criterion can be applied also in the case n = 1. For example, the feature “positively charged” in Tay-
lor’s classification is inappropriate because only three amino acids have this feature (Fig. 1). The remaining 17 
amino acids cannot be uniquely classified by four features  (24 = 16). Also, in Taylor’s classification, some features 
generate sets that are subsets of others, that is, an inclusion relation. For example, each tiny amino acid is also 
small. Intuitively, one might be tempted to avoid inclusion relations because they appear to imply redundancy. 
However, this is not necessarily the case. For example, the hypothetical feature patterns (11 11 11 00 00 00 00 
00 00 00) (e.g. “small”) and (11 11 11 11 11 11 11 00 00 00) (e.g. “moderate size”) form an inclusion relation. 
However, they separate the 20 elements in subsets of cardinalities 6 (small and moderate size), 8 (moderate size 
but not small) and 6 (neither small nor moderate size), so that another three features could separate them in a 
way that each subset involves one element only.

The aforementioned non-redundancy criterion can best be fulfilled if each vector involves about 10 ones and 
10 zeroes. Therefore, for our optimal classification, we started by dividing the amino acids into two sets based 
on the median of a starting feature. The first set contains all the amino acids that are smaller than or equal to 
the median; the second set contains all those that are greater than the median. The resulting sets were further 
divided by the median of the next feature, applied to all 20 amino acids. Thus, the two first steps of the algorithm 
generate four subsets partly overlapping each other.

To keep the runtime low, this procedure only continues until a set is formed which contains a higher number 
of elements than what can be separated by the remaining amount of features (e.g. a set of nine elements is formed 
with only three more features left). The separation by the previous feature is then revoked and the next feature 
on the list is chosen. Once five features have successfully been used to separate the amino acids into groups 
containing at most one amino acid, the corresponding list of features is retrieved (see Fig. 2 for the separation 
process leading to one of our median-based solutions depicted as a tree graph.).

Later we also included separations other than by the median by transferring either the amino acid(s) with the 
lowest value(s) above the median to the lower set or the amino acid(s) with the highest value(s) below the median 
to the upper set. To not let the number of possible combinations explode, we only included those separations of a 
particular feature which separate between adjacent amino acids which show a relatively large difference in their 
numerical values. For a given feature we only included the two separations with the largest difference between 
adjacent amino acids. Beforehand though, we excluded separations which separate into groups of < 4 and > 16, 
as those separations can never be part of an optimal classification (see explanation above).

pseudocode. The following function written in pseudocode comprises the main component of our approach 
towards identifying optimal classification by binary separation at the median.
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if setlist is empty:    
                for feature1 in dataframe:

for feature2 in next feature of dataframe:
      le�_intersec�on = intersec�on(le�set(feature1), le�set(feature2))

                                               le�_difference = difference(le�set(feature1), le�set(feature2))
     right_intersec�on = intersec�on(rightset(feature1), rightset(feature2))

                                               right_difference =difference(rightset(feature1),rightset(feature2))             
if length(le�_intersec�on) > max_groupsize or length(le�_difference) > max_groupsize:

con�nue with next feature
                                               IDlist = list(ID(feature1), ID(feature2))
                                               setlist=list(le�_intersec�on, le�_difference, right_intersec�on, right_difference)

     call func�on(dataframe from feature2 + 1 downwards, max_groupsize / 2,
                                                  setlist, ID_list)

else:
for feature in dataframe:

                               new_setlist = empty list
                               for set in setlist:
                                               suitable_sets = False

le�_intersec�on = intersec�on(group, le�set(feature))
        right_intersec�on = intersec�on(group, rightset(feature))

if length(le�_intersec�on) > max_groupsize or
              length(right_intersec�on > max_groupsize:

break loop
                                               new_setlist.append(le�_intersec�on)

              new_setlist.append(right_intersec�on)
suitable_sets = True

if suitable_sets = True:
                                               ID_list = unite IDs with ID(feature)

if max_groupsize / 2 = 0.5:
print(ID_list)

else:
                                                              findsets(dataframe from feature + 1 downwards, max_groupsize / 2,
                                                                  new_setlist, ID_list)

Implementation and data analysis.  The code was implemented in Python 3.6.6. Additional packages 
used are pandas 0.23.4 for handling and analysis of data and PyBioMed-1.0  package22 for accessing the AAindex 
data. The figures were created with Inkscape whereas the charts have been drawn with Excel 2013. The code is 
publicly available at https ://githu b.com/Athen -Proje cts/AA_optim al_class ifica tion.

Results and discussion
Combinations by median based separation.  By the median-based approach explained above, we were 
successful in finding combinations of five features each to classify the 20 standard amino acids (see Fig. 2). Each 
of these combinations includes the features electron–ion-interaction-potential, α-helix propensity and π-helix 
propensity (Fig. 3, explanation see below). Moreover, each solution required one out of six volume-related alter-
natives (the simplest being the amino acid volume) and one out of three hydrophobicity-related alternatives (the 
simplest being amino acid hydrophobicity). Thus, 18 combinations of indices through binary separation by the 
median were obtained. The obtained classification is also shown in an Euler diagram in Fig. 4.

Considering the solution with the simplest alternatives chosen, the first two of the indices are the  volume23 
and the  hydrophobicity24 of the amino acids. The third is the electron–ion-interaction-potential of an amino 
 acid25, which is a calculated pseudopotential based on the power of electrostatic interactions. The electron–ion-
interaction-potential has been shown to be of significance for biological interactions as it correlates with car-
cinogenicity and similar  measures26. The last two indices are the α-helix  propensity24 and π-helix  propensity27. 
Propensity refers to the abundance of the amino acid within the secondary structure divided by the general 
sequence abundance in organisms. The amino acid is therefore enriched in the corresponding secondary struc-
ture if the propensity is higher than 1.

Hydrophobicity is a very important feature in protein biochemistry. It is essential when amino acids serve to 
bind hydrophobic ligands or protein domains are embedded in membranes. Moreover, determining the sequence 
period of hydrophobic amino acids is instrumental in predicting coiled-coil structures, due to the hydrophobic 
core formed by these amino  acids28. The most wide-spread period is 7 (heptad motif), like in α-keratin. Other 
periods can also be observed, such as 10 (dekad) or 11 (undekad). Dedicated software for this prediction has 
been developed, sich as  TWISTER29 and  COILS30.

https://github.com/Athen-Projects/AA_optimal_classification
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It is well known that also electrostatic interaction is a very important feature for protein structure and func-
tion. Aspartate, for example, is often involved in the catalytic triad of active centres in enzymes. Positively and 
negatively charged amino acids can form salt bridges and, for example, stabilize a-helices when located at a 
distance of four positions in the chain.

Taylor5 proposed adjectives like ‘small’ and ‘hydrophobic’ to describe the features used. Each amino acid is 
then considered to be either small or not small, hydrophobic or non-hydrophobic, etc. Here, we suggest using the 
following adjectives. For volume and hydrophobicity, again, the terms ‘small’ and ‘hydrophobic’ are the obvious 
choice. Further, we propose ‘electrostatically interactive’ for amino acids with an Electron–Ion-Interaction-
Potential higher than 0.044, ‘α-helix abundant’ when the α-helix propensity is higher than 1.01, ‘π-Helix abun-
dant’ when the π-helix propensity is higher than 0.95.

It can be seen immediately that most of those features are very dissimilar to each other. There is no obvi-
ous connection between the volume of a substance and its hydrophobicity. Further, the propensities should be 
influenced by many indices, both physicochemical and biological and are therefore not expected to be strongly 
connected to just one of the other mentioned indices. The lack of correlation between α-helix propensity and 
π-helix-propensity is not as obvious, however.

For the vertical structure of the tree graph (Fig. 2) corresponding to a given set of five features, there are 
5! = 120 arrangements (permutations of five features). Figure 2 shows only one out of these permutations. How-
ever, for a representation in terms of sets, i.e. the Euler diagram, these permutations do not matter.

While the two hydrophobic amino acids leucine and isoleucine are only separated in the fourth step (isoleu-
cine has the lower α-helix propensity as it is branched closer towards the beginning of the side chain and therefore 
leads to detrimental sterical interactions in the α-helix), it might be surprising that the very similar amino acids 
glutamine and asparagine are separated in the first step already, and that arginine and tyrosine stay together up 
to the last step. The main result of the classification is the separation as represented by the Euler diagram rather 
than the tree graph. Nevertheless, one may try to find an optimal arrangement of the tree graph that fits better 
to the traditional classification, in which, for example, glutamine and asparagine or leucine and isoleucine stay 
together “as long as possible”. We leave this question to further studies.

In respect of our goal to develop suggestions which non-canonical amino acids to incorporate in experimen-
tal expansions of the genetic code within synthetic biology it is detrimental that neither α-helix propensity nor 
π-helix-propensity can be directly determined for non-canonical amino acids. On the other hand, for classifica-
tion, it is sufficient to know whether the value is above or below the median. For some non-canonical amino acids 
such as butyrine, norvaline, and norleucine it is clear that they have a high α-helix propensity because they have 
unbranched side  chains31. The method becomes more and more applicable in this direction as the knowledge 
about secondary structures of synthetic proteins increases. Moreover, this issue does not reduce the value of our 
method in comparison to Taylor’s method because that was not originally devised for non-canonical amino acids.

Figure 2.  Overview of the presented classification approach. Amino acids are depicted by the one-letter code. 
Through repeated binary separation at the corresponding median of five features F(i) the amino acids are 
separated into unique groups. As five features are able to separate 32 elements, exactly 12 groups visible at the 
bottom of the chart remain empty. F1 = Volume, F2 = Electron–ion-interaction potential, F3 = Hydrophobicity, 
F4 = α-helix propensity, F5 = π-helix propensity.
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Moreover, we investigated if any of the other features showing a high degree of correlation with the two pro-
pensities allow an identical separation of the proteinogenic amino acids (Tables S3–S7). A list of highly correlated 
features can be directly retrieved from each feature entry at AAindex. Our hope was to identify features which 
might replace the propensities and can be easily determined for non-canonical amino acids. Unfortunately, for 
the π-helix-propensity there is only one highly correlated (|Correlation coefficient|> 0.8) feature (TANS770104—
Normalized frequency of chain reversal R) which neither shows the same numerical ordering of the amino acids 
nor identical separation. There are 21 features that are mathematically highly correlated with α-helix propensity. 
However, most of them are just slight variations of the α-helix propensity and the only one of those features which 
exhibits identical separation (LEVM780101—Normalized frequency of alpha-helix, with weights) is completely 
identical to the α-helix propensity of our result.

We next searched the literature for experimental methods which are able to approximate the helix propensi-
ties based on protein evolution, for example by thermodynamic destabilization of short α-helical peptides upon 
incorporation of the respective amino acid. Such methods in principle also work for non-canonical amino acids. 
They are available for α-helix  propensity32 but to our knowledge not for π-helix-propensity. Even if such methods 
are not perfectly accurate in predicting the propensities, as they only have to assign the non-canonical amino 
acid to one of the sides left or right of the median in our method for binary vector assignment, they should be 
sufficient in most cases.

Finally, we checked if upon replacement of the interpretability criterion with the criterion that the feature 
is predictable for non-canonical amino acids we are able to identify a solution with the minimum number of 
features. We retained 199 features of the database for search and retrieved 26,547 solutions. How to prioritize 
those solutions we leave for further research.

Identification of more combinations by non-median based separation.  Allowing for separations 
not necessarily based on the median allows for identification of new combinations with interesting proper-
ties, e.g. more meaningful separation points or features with higher immediate biological significance. One way 
of identifying more solutions is to increase the number of features used for classification. For example, one 
could allow for six features to increase the amount of solutions tremendously. Doing so, one may pick solutions 
containing only features which are relevant for the biological context at hand. However, as we want to use the 

Figure 3.  Eighteen combinations of features were found to fulfill our criteria for an optimal classification. In 
each box the AAindex code and a descriptive name are included. Three features occur in every of the discovered 
combinations (boxes with solid lines). Features in boxes with dotted lines can be substituted by one of the 
alternatives to their right.
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minimum number of features for optimal classification, we aim for binary separation not only at the median but 
at any point between the 20 amino acids except for those resulting in an unresolvable group with more than 16 
amino acids. Because allowing for multiple separation points for each feature might very quickly lead to a steeply 
increasing computational effort, one needs criteria for what particular separations to include in the search. Those 
criteria can be varied depending on the context of study at hand. This adds to the flexibility of our approach. For 
demonstration purposes we stick to the simple rule of including only the 3 separations of each feature which 
separate at the largest gaps after excluding separations which can not be part of a solution composed of the 
minimum amount of five features. Additionally, if two or more separations classify the amino acids identically, 
we only keep the separation with the highest score. The score of a particular separation is equal to the number 
of other separations for the same feature which separate between amino acids with a lower difference in the 
numerical value for the feature at hand. Therefore, the highest score a separation can obtain is 18, namely if it is 
the separation separating between adjacent amino acids farthest apart from each other.

Figure 5 shows the highest scoring solution we identified. The cumulative score equals 76, which is quite close 
to the maximum score of 5 * 18 = 90. Interestingly, of the features included into the solution, there is again one 
volume-related (apparent partial specific volume,), one hydrophobicity-related (percentage of exposed residues,), 
one concerning electrostatic interactions (the same as in our previous solution, the electron–ion interaction 
potential.), and another one about abundance in secondary structures (relative frequency in beta-sheets.). But 
instead of another secondary structure related feature, this time the last feature is based on a concept from ther-
modynamics, namely the entropy of formation.

Application and validation. Advancements in genetics have made it possible to introduce new pairs of 
tRNA/aminoacyl-tRNA synthetase into organisms to expand the genetic code with non-canonical amino acids, 
e.g. by changing the meaning of stop  codons33. This opened up the question of what non-canonical amino acids 
to choose for genetic code expansion. In some contexts, this question is narrowed down by the purpose of the 
experiment itself. For example, if one wants to incorporate an amino acid for bio-orthogonal labeling, one has 
to choose from a narrow pool of amino acids containing alkyne or analogous moieties as a bio-orthogonal 
 handle34,35. There exist other contexts, however, where incorporating and therefore identifying beforehand an 

Figure 4.  Euler diagram for the optimal classification. Glycin (G) is always separated left of the median, 
therefore it does not occur in the Euler diagram. The euler diagram was created with the publicly available 
python code from https ://githu b.com/tctia nchi/pyven n.

https://github.com/tctianchi/pyvenn
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Figure 5.  Highest scoring solution identified with the emphasis on how natural the separations of the 
composing features are. The x–y Separation in brackets means, that the particular feature separates into x amino 
acids in the group with small numerical values and y amino acids in the group with large numerical values for 
the particular feature. The numerical values have been normalized to depict all separations on a single diagram.

Figure 6.  Diagram showing the contribution of each amino acid to redundancy, assessed by identifying how 
many optimal classifications can be achieved additionally if one amino acid is left out during the search.
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amino acid that is functionally and structurally as different as possible from the canonical set of amino acids 
is the main challenge, all the more as the specificity of aminoacyl tRNA synthetases needs to be changed. This 
diversity can be assessed by counting how often the non-canonical amino acid occupies empty vectors in our 
solutions.

Another interesting question is how much the number of solutions for median-based classification increases 
if we consider only a set of 19 out of the 20 proteinogenic amino acids. The amino acid which leads to the larg-
est increase in identified combinations should be the most redundant one as it most often occupies a common 
vector with another amino acid whereas all the other vectors are occupied by one single amino acid at most. 
The results of the corresponding calculations are shown in Fig. 6. One can immediately see, that there are huge 
differences between the amino acid redundancy scores. It appears that amino acids with a lower number of 
functional groups in general score higher, which makes sense as they lack the means to deviate in their char-
acteristics from other hydrophobic amino acids and are therefore more redundant. Also, serine and threonine 
rank relatively high, probably due to their structural similarity. Though this reasoning seems not to apply to the 
very similar amino acids, glutamine, asparagine, glutamate, and aspartate. This could be due to the coherence 
of the remaining three amino acids which prevent the identification of new combinations as far as only one of 
them is not considered during the search.

conclusion
We proposed a novel method for selecting groups of five features that enable an optimal classification of the 
20 proteinogenic amino acids based on binary separation. To discover meaningful combinations of features, 
we manually selected 83 features out of the 566 features occurring in the AAindex  database18–20. Solely using 
median-based separation, we were able to discover 18 combinations, although three features were present in 
every single combination. By plausible additional criteria, we came up with the following five properties: small, 
hydrophobic, electrostatically interactive, α-Helix abundant, π-Helix abundant. Thus, an easily understandable 
and interpretable classification scheme with a minimum number of features has been found. For example, it can 
help biochemistry students to become familiar with the properties of amino acids.

We additionally discovered a high-ranking combination by allowing for separation other than by the median 
and selecting only those separations with natural points of separation. Our method can predict how distinct a 
non-canonical amino acid is compared to the set of 20 proteinogenic amino acids by counting how often that 
amino acid occupies empty vectors in the identified combinations and therefore assumes a niche unoccupied by 
any of the proteinogenic amino acids. The prerequisite for this procedure is that the values of the non-canonical 
amino acid are known for the features that the solution consists of. It is worth noting that using five features, we 
can classify 32 amino acids, at least 12 of which then could be non-canonical. By using six features, we could 
even classify 64 amino acids.

Choosing which features to be included from the AAindex database can adjust the method to specific con-
texts. As genetic methods enable the introduction of non-canonical amino acids into the genetic code, this 
method may assist in deciding which of these amino acids to choose if the task is to improve overall diversity. 
Each amino acid fulfills one or several biological functions and can often (but not under all circumstances) be 
replaced by amino acids with similar  properties36. Our classification system could prove helpful in predicting 
such replacements.

A drawback of our suggested classification is that some of the adjectives we assign to the amino acids in 
specific groups are not as intuitive as those used by  Taylor5. While in Taylor’s classification, adjectives like 
“small”, “charged” are easy to grasp, there are some adjectives in our classification like α-Helix abundant which 
need further clarification to be understood. However, it is also an interesting insight, that despite of volume-, 
hydrophobicity-, and electrostatics-related features the solution contains also more complex features related to 
secondary structure abundance or thermodynamics. Especially as the same general composition of features can 
also be seen in our solution focused on the natural group separation by scoring non-median based separations. 
The amount of solutions found improves tremendously upon including non-median based separations. This 
allows for the flexibility to develop own criteria to identify solutions ultimately suited for the description of 
amino acids in the particular context of research.
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