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Universal inherent fluctuations 
in statistical counting of large 
particles in slurry used 
for semiconductor manufacturing
Manhee Lee1*, Dongwon Kim1, Tae‑Young Heo2, Taewon Park3, Wonjung Kim3, Daejin Choi4, 
Hyunwoo Kim4 & Jaehyun Kim4,5

In the chemical mechanical polishing process of semiconductor manufacturing, the concentration of 
‘large’ particles ( ≥0.5 μm) in the slurry, which is considerably larger in size than the main abrasives ( ≈ 
0.1 μm), is a critical parameter that strongly influences manufacturing defects, yields, and reliabilities 
of large-scale-integrated circuits. Various instruments, so-called particle counters, based on light 
scattering, light extinction, and holography techniques have been developed to measure and monitor 
the large particle concentration in semiconductor fabs in real time. However, sizeable fluctuation in 
the measured particle concentration complicates the statistical process control in the fabs worldwide. 
Here, we show that an inherent fluctuation exists in the counting of large particles, which is universal, 
independent of instrument type, and quantitatively determined by the instrument’s operation 
parameters. We analytically derive a statistical theory of the fluctuation based on Poisson statistics 
and validate the theory through experiments and Monte-Carlo simulation. Furthermore, we provide a 
strategy to enhance the measurement accuracy by statistically adjusting the instrumental parameters 
commonly involved in the particle counters. The present results and analyses could be useful for 
statistical process control in semiconductor fabs to prevent large particle-induced defects such as 
micro-scratches and pits on wafers.

Recent semiconductor manufacturing shows that the quality of materials used in each process strongly influences 
manufacturing defects, yields, and reliabilities of the final products. Although numerous material parameters 
determine material quality, a common critical parameter is the concentration of undesirable particulate matter in 
materials1. As the particulates act as sources of severe manufacturing defects such as micro-scratches2, pits3, and 
voids4, the concentration of nanoscale to microscale particulates should be accurately measured, controlled, and 
monitored to prevent such material-induced defects5. Various types of particle-sizing and counting instruments 
have been developed and used, based on light scattering6,7, light extinction8–10, and hologram techniques11–13, 
which commonly measure the minute volume of liquid samples on the micro- to milli-liter scales.

For slurry solutions, which are used for chemical mechanical polishing (CMP), a Large Particle Counter 
(LPC) is used to measure “large” particles that are much larger in size than the main abrasives (~ 0.1 μm)14. In 
our study, we define the large particle as the particles with diameter greater than 0.5 μm. Owing to the limited 
optical resolution of the LPC, the turbid slurry sample is first diluted a few ten times using deionized water. 
Moreover, the diluted slurry flows into the detection module of the LPC at a specific flow rate, about tens of mil-
liliters per minute, wherein the number of large particles is counted for a given period, typically a few minutes. 
Finally, the concentration of large particles, i.e., the particle number per 1 ml, is calculated from the measured 
experimental data. Consequently, the net volume of the slurry used is typically about tens of microliters for a 
single measurement.
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Although the experimental and instrumental details including dilution ratio, flow rate, and optical detec-
tion are precisely made in the LPC or relevant techniques, an intrinsic Poisson fluctuation always exists in the 
number of particles counted15. In Poisson statistics, because the number variation relative to the average number 
is inversely proportional to the average number, the measurement of samples having minute volumes severely 
deteriorates statistical accuracy, increasing the relative error. To achieve a desired accuracy, one should statisti-
cally adjust the diluent ratio, measurement volume, and the number of measurements, in addition to the precisely 
controlled experimental details.

Here, we analytically derive the probability density function for the number of large particles measured via 
LPC, taking into account the measurement parameters that are commonly involved in LPC. We show that the 
intrinsic relative error or the fluctuation, defined by the half width of 95 % confidence interval of the expected 
average number divided by the average number itself, is inversely proportional to the square root of the average 
number of large particles in a given volume. Therefore, for a given dilution factor associated with the techni-
cal limitation of optical detection, the number of measurements or measurement volume could be statistically 
adjusted to obtain the concentration of large particles with a desired accuracy.

Experiment of “Large” particle counts in slurry
Large particles in a slurry, either formed by particle aggregation or brought by contamination, induce severe 
manufacturing defects such as micro-scratches16 and pits17, and thus the particle concentration is measured and 
monitored in real time during semiconductor manufacturing through LPC. Although various types of LPCs6,8,11 
are available, they mostly follow the experimental procedure described in Fig. 1. The slurry is first diluted using 
deionized water to reduce the particle concentration to be relevant to optical detection resolution, and then a 
specific volume of diluted slurry is introduced into the optical detection module to measure the size of the par-
ticles and count their numbers therein. Finally, the instrument provides the particle concentration, the number 
of particles per ml, calculated from the measured counts. This procedure is repeated several times to obtain the 
mean value of the particle concentration. Here, we notice that relative fluctuation, fluctuation divided by mean, 
of the diluted sample is relatively higher than that of the original concentrated sample (Fig. 1, bottom).

Figure 2a shows the particle concentration measured by a commercial LPC (Accusizer 780 APS, Particle Sizing 
Systems), which follows the procedure described in Fig. 1 and provides the concentration of particles larger than 
0.5 μm. We have used four slurries of silica colloids: an original fresh slurry (black symbols), two slurries filtered 
through two depth filters of different sized pores (green and red symbols), and the original slurry after 3 weeks of 
aging in a bottle at ambient condition (grey symbols). We have performed three consecutive measurements for 
each slurry (rectangles, triangles, and circles). While the three measurements are continuously made through the 
instrument used, fully stirring between each measurement would suppress unintended changes in the solution 
condition, such as the increase of large particles by the aggregation of small particles. As expected, the two filtered 
slurries (green and red symbols) have smaller size distributions than the original fresh one (black symbols). We 
obtained a smaller number of particles with smaller pore filters (green → red symbols) for the particle diameter 

Figure 1.   Experimental procedure for measuring “large” particle concentration in a slurry. First, a silica slurry 
solution is extracted into the measurement equipment through an installed syringe pump. Second, the slurry is 
diluted with deionized water, such that the particle concentration decreases to less than the maximum detectable 
concentration (9000 ea/ml for the equipment used herein). Finally, a light scattering technique is used to 
measure the size of individual particles flowing through the detection channel, from which the particle number 
by size is obtained. By considering the dilution factor and the measured volume of the diluted solution, the 
number of particles per 1 ml is calculated. We have used a commercial “Particle Counter (AccuSizer 780 APS, 
Particle Sizing Systems)” and a commercial slurry of silica particles.
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Figure 2.   Experimentally obtained particle concentrations for four silica slurries with different size 
distributions. (a) We used one freshly prepared slurry (black symbols), two filtered slurries of the original one 
through two different sized pores (green and red symbols), and the original slurry after three weeks of aging 
in a bottle at ambient condition (grey symbols); we performed three successive measurements for each slurry 
(rectangles, triangles, circles). Inset: a closer look at the particle concentration of the original fresh sample (black 
symbols) in linear scales at a particle diameter ranging between 3 and 9 μm. (b) The mean values with 95 % 
confidence interval of the three successive measurements of the four slurries shown in (a). (c) The relative error 
E, defined by Eq. (1), for the four slurries. In the experiments, a dilution factor of α=60 was used, where α is 
defined as the total volume of the mixed solution of the slurry and deionized water divided by the pure slurry 
volume. The measured volume of the diluted slurry is βml ; here, the volume factor β=15.
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ranging between 0.5 μm and 1.1 μm, whereas the distribution did not change much for particles greater than 1.1 
μm. This size-dependent efficiency is typical for depth-type filtration, as used herein18,19. In addition, the aging 
process reduced the number of particles greater than about 1.1 μm in diameter (grey symbols), and the particles 
less than 1.1 μm mostly remained because heavier particles are likely to deposit at the bottom of the sampling 
bottle over time20 and they are not introduced into the dilution and detection modules (Fig. 1).

Interestingly, a closer look at the concentration data shows a noticeable fluctuation from measurement to 
measurement (rectangles, triangles, and circles of same-colored symbols in Fig. 2a) relative to the overall average 
value, as the particle size increases. In particular, the inset of Fig. 2a shows that, for the original fresh slurry, the 
overall average concentration rapidly decreases from about 100/ml to 25/ml, whereas the fluctuation decreases 
slowly from about 100/ml to 50/ml with particle diameters ranging between 3 and 13 μm. This feature is com-
monly observed in the whole range of particle sizes for all slurries. To quantify this fluctuation in the measured 
data, we define the fluctuation as the relative error E, the ratio of the margin of error for 95% confidence interval 
(CI) to the mean m, i.e.,

where the margin of error is half the width of 95% CI. Although the measurement of bigger particles can be 
technically made more accurate than that of smaller particles, the relative error E of the three measurements 
(rectangles, triangles, and circles of same-colored symbols in Fig. 2a) increased and highly fluctuated with par-
ticle size, as shown in Fig. 2b.

This seemingly counterintuitive result is a direct consequence of Poisson statistics15 in particle counting. 
Poisson distribution describes the probability of a given number of random events that occur in a constant 
observation space or time with a fixed average rate of events. Thus, the count of randomly distributed particles 
in space inherently exhibits Poisson fluctuation, despite all experimental details being precise. In slurry meas-
urement, the dilution process, comprising mixing slurry with deionized water, randomly distributes the large 
particles across the sample volume; therefore, the measurement of the particle concentration is governed by 
Poisson statistics. Note that Poisson distribution with an average � has the standard deviation of 

√
�15, and thus 

the standard deviation over average increases with decreasing the average. Therefore, the observed fluctuation, 
i.e., the relative error E defined as the margin of error over the mean concentration (Eq. (1)), increases with 
decreasing particle number count, and seemingly increases with particle diameter (Fig. 2c) because the number 
of particles decreases with the diameter (Fig. 2a).

Statistical analysis of inherent fluctuation in the number of large particles
To quantitatively understand the measurement fluctuation, we derive the probability density function (PDF) 
for the number of particles in 1 ml. Consider that the average number of large particles in 1 ml of the original 
slurry is �0 ; then, the particle number follows Poisson distribution with average �0 and standard deviation √
�0 , as schematically described in Fig. 3a. When diluting the slurry by a factor of α and measuring the particle 

number in β ml, the PDF for the particle number x′ again follows Poisson distribution with average (β/α)�0 and 
standard deviation 

√

(β/α)�0 (Fig. 3b). Further, a Poisson distribution approaches a normal distribution if the 
average exceeds 1015; hence, we approximate the PDF for x′ by a normal distribution with the same average and 
standard deviation. Then, the particle count x′ in β ml is converted to predict the number of particles x′′ in 1 ml 
of the original slurry, by multiplying by α/β . By transforming the random variable x′ , such as x′′ = (α/β)x′ , we 
obtain the PDF for x′′ as a normal distribution with average �0 and standard deviation 

√

(α/β)�0 , as described 
in Fig. 3c. Experimentally, the measurement is repeated several times, and the mean for the expectation value 
of the particle number in 1 ml is calculated. Let x′′ = (1/n)

∑

n

i=1 x
′′
i
 denote the mean of a random sample x′′

i
 of 

size n from the normal distribution for x′′ . Then, the PDF of x′′ is given by a normal distribution with the mean 
�0 and standard deviation 

√

(α/(βn))�0 , as schematically shown in Fig. 3d.
The PDF for the final mean value x′′ (Fig. 3d) predicts intrinsic fluctuations, in the order of 

√

(α/(βn))�0 , in 
counting the particles in the slurry. Let us consider the 95 % CI, [x′′ − d, x′′ + d] that includes the actual aver-
age value �0 , i.e., Pr(x′′ − d ≤ �0 ≤ x′′ + d ) = 0.95, where d is the margin of error to be determined. Note that 
Pr(x′′ − d ≤ �0 ≤ x′′ + d ) = Pr(−d/(s/

√
n) ≤ (x′′ − �0)/(s/

√
n) ≤ d/(s/

√
n) ), where s is the standard devia-

tion of a random sample of size n, i.e., s = (1/(n− 1))
∑

n

i=1(x
′′
i
− x′′) . As the variable (x′′ − �0)/(s/

√
n) has a 

t-distribution with degrees of freedom n− 1 , we obtain d = t(0.05/2;n−1)s/
√
n . Therefore, the relative error E is 

given by (t(0.05/2;n−1)s/
√
n)/m . As a first approximation, we use s ≈ σ =

√

(α/(βn))�0 and �0 ≈ m , which gives

Equation (3) shows the inherent fluctuation in the measured value of the mean, which approximately scales with 
m

−0.5 with a prefactor accounting for the dilution ratio α , measured volume βml , and the number of measure-
ments n in the experiments.

The range of the standard deviation of n-measurements, s, provides the upper and lower bounds for E (Eq. 
(2)). Let [ s1, s2 ] be an interval where s lies with 95% confidence, i.e., Pr(s1 ≤ s ≤ s2)=0.95. Because Pr(s1 ≤ s ≤ s2 ) 
= Pr((n− 1)s21/σ

2 ≤ (n− 1)s2/σ 2 ≤ (n− 1)s22/σ
2 ) and the random variable (n− 1)s2/σ 2 has a χ2-distribution, 

(1)E ≡ (margin of error for 95%CI)/m,

(2)E =
t(0.05/2;n−1)

s√
n

m

(3)≈ t(0.05/2;n−1)

√

α

βn
m

−0.5.
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we obtain s1 =
√

χ2
(0.975;n−1)α/(β(n− 1)) �+0.5

0  and s2 =
√

χ2
(0.025;n−1)α/(β(n− 1)) �+0.5

0  . The interval [ s1, s2 ] 
determines the 95% CI for E, as follows.

where we have used �0 ≈ m . One may derive the exact distribution function for the relative error E based on 
the probability density function of the coefficient of variation21,22. However, the empirical approximation, Eqs. 
(4,5), provide good estimates for the upper and lower bounds of experimentally measured E defined by Eq. (1), 
respectively, and both Eqs. (4,5) converge to Eq. (3) as n → ∞.

The experimentally measured relative error E is in good agreement with the theoretical prediction, Eqs. (4,5) 
as well as the Monte Carlo simulation, as shown in Fig. 4. Each colored, filled dot (black, green, red, and gray) 
in Fig. 4 corresponds to the E shown in Fig. 2c and is plotted as a function of the measured mean m. Overall, 
the experimentally obtained relative errors excellently scale with m−0.5 , following the blue solid curve (Eq. (3)), 
and they mostly lie between the lower and upper bounds indicated by the blue dashed curves (Eqs. (4,5)). A 
Monte Carlo simulation was performed to simulate particle counts in a given sample volume with different mean 
numbers, which results in the relative errors, denoted by the blue empty circles in Fig. 4. Remarkably, the upper 
and lower bounds (Eqs. (4,5)) quantitatively predicts highly fluctuating data at a low mean number, as observed 
in the experiments (inset of Fig. 4). As the particle number decreases with increasing particle diameter for the 
slurry investigated herein (Fig. 2a), the seemingly higher E at bigger particles (Fig. 2b) is due to the fact that the 
number of bigger particles is lower than that of smaller particles.

(4)Elow = t(0.05/2;n−1)

√

χ2
(0.975;n−1)

α

(n− 1)nβ
m

−0.5,

(5)Ehigh = t(0.05/2;n−1)

√

χ2
(0.025;n−1)

α

(n− 1)nβ
m

−0.5,

Figure 3.   Probability density functions for the number of large particles in the slurry. (a) Schematically drawn 
probability density function for the particle number x in 1 ml of the original slurry, where the average number of 
large particles in the original slurry is �0 . (b) The probability density function for the particle number x′ in β ml 
of the diluted slurry by a factor of α . (c) The probability density function for the number of particles x′′ in 1 ml, 
obtained by multiplying α/β by the measured number x′ . (d) The probability for the mean x′′ = (1/n)

∑

n

i=1
x
′′
i
 , 

where x′′
i
 is a random sample from the distribution shown in (c). (e) The probability density for the standard 

deviation of n-measurements of x′′
i
.
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Statistical control of measurement accuracy
The measurement accuracy can be enhanced, based on Eqs. (4,5). Practically, one can control the relative error 
E by varying the measurement volume βml and the number of measurements n, whereas the dilution ratio α is 
optimized as a specific value and typically fixed owing to the limited resolution in the detection module (Fig. 1). 
As shown in Fig. 5, the error decreases either by increasing β for a given value of n = 3 (Fig. 5a) or n for a given 
β = 15 (Fig. 5b). Interestingly, the error E rapidly decreases with increasing n rather than β , for the same “effec-
tive” measured volume of sample nβml (see the x-axis in Fig. 5c). When measuring a high volume of the sample, 
one can count the high number of particles in the sample and thus lower the relative error E by scaling with β−0.5 
(Eq. (3)). However, one can much efficiently lower the error by increasing n rather than β , where the additional 
two factors of t− and χ2−distributions associated with the measurement number n (Eqs. (4,5) contribute to 
reducing the error E. Thus, for reducing measurement fluctuation, the increase in measurement number n is 
more effective than the increase in the measurement volume factor β.

The observed fluctuation in the LPC result originates from the statistics of the Poisson distribution associated 
with instrumental parameters. As the operation parameters of equipment, herein the LPC, often include statisti-
cal variables such as the sample volume and the number of measurements, the accuracy of measurement results 
could depend on the instrumental operation parameters besides the operational accuracy of the instrument. 
Therefore, one should carefully adjust instrumental parameters to obtain the desired accuracy, particularly when 
measuring minute volume samples such as a slurry with large particles.

Conclusion
Our results have practical implications on measuring large particles in slurry solutions. In industry, large particle 
concentrations must be measured and reported within limited time, and the measurement time is proportional 
to the measurement volume. Our results (Fig. 5c, Eqs. (4,5)) show that the error E can be efficiently reduced by 
increasing the measurement number n, as discussed. Notably, the solution to be measured must be homogene-
ous. This can be achieved by diluting and mixing the slurry thoroughly (Fig. 1) to ensure that the particles are 
randomly distributed throughout the sample volume. The randomly distributed particles realize the Poisson 
distribution of the particle number in a given volume, which is assumed in our theory and simulation. The theo-
retical and simulation results are in good agreement with the experimental results (Fig. 4), and thus we assume 
the homogeneity of solutions holds in our system. Still, possible inhomogeneity of the measured solution would 
lead to the results deviated from our theory.

Our statistics provides the upper and lower bounds of the relative error E in the large particle counts. Since 
the theoretical bounds are based on the 95% confidence interval of the measurements (Fig. 3e), the bounds are 
expected to include 95% of the data plots in Fig. 4. However, the bounds are shown to include only 87 % of the 
data. The difference of 8% (= 95% − 87%) originates from both the theoretical limitation and the experimental 
imperfection. First, the upper and lower bounds of E were theoretically derived through the approximation, 
mean ≈ �0 (see Eqs. (4,5) and the text below). Notice that the mean value converges to �0 if the number of meas-
urements n → ∞ , whereas we have used n = 3 in experiments. This approximation could be partially responsible 
for the difference of 8% and further can be improved by employing the PDF of the coefficient of variation21,22. 
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Figure 4.   Universal inherent fluctuation in statistical measurement of large particle concentration. Each set of 
colored dots represents the error defined by Eq. (1), half width of 95% confidence interval divided by the mean, 
which is obtained from the dataset with the same color shown in Fig. 2. The blue solid curve indicates inherent 
error, as given in Eq. (3). The dashed blue curves denote the upper and lower bounds of the error, as given in 
Eqs. (4,5), respectively. The blue empty circles show a Monte Carlo simulation result (see the text for details, 
section III). The experimental parameters, α=60, β=15, and n=3, were used for plotting Eqs. (3) and (4,5). The 
inset shows the same data plots in log scale on the x-axis.
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Second, the instrumental noise and experimental imperfection also attribute the discrepancy 8%. The measur-
ing instrument generally shows technological errors such as electrical and optical noise23. Even worse, possible 
particle aggregation due to the pH-shock during the dilution process (Fig. 1) could alter particle concentration24. 
Also, possible partial inhomogeneity, despite thoroughly mixing and stirring the measured solution, would result 
in an inaccurate result. This imperfection of experiments, instrumental noise, and unintended chemical reaction 
could increase the measurement error above the inherent error E (Eqs. (4,5)). This indicates that the inherent 
fluctuation E offers the minimum of the error, and we could use the upper and lower bounds of E, Eqs. (4,5), 
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Figure 5.   Control of measurement accuracy by varying instrumental parameters, β and n. (a) The mean 
value of the particle number in 1 ml with 95% CI, simulated using a Monte Carlo technique. The particle 
concentration was obtained with increasing measurement volume βml , while the number of measurements n 
was maintained constant n = 3 . (b) The mean of the particle number in 1 ml with 95% CI, which was obtained 
by increasing n for a fixed β = 15  ml. (c) The relative error, E, calculated from the results of (a) and (b) as a 
function of the “effective” measurement volume nβ ml. For a given nβ (x-axis), one can obtain the lower value 
of E by increasing n rather than by increasing β . In the simulation, the original undiluted slurry concentration 
�0 = 100 in 1ml and dilution factor α = 1 were used.
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with about 87% confidence level under our experimental conditions. Our results not only provide a fundamen-
tal understanding of the inherent fluctuation in counting particles but are also of significance for the practical 
control of particulate matter in semiconductor manufacturing and related industries.

Methods
Sample preparation.  We used four slurries for measuring the “large” particle concentration; one original 
fresh slurry, two filtered slurries, and one slurry obtained by the aging process of the original slurry. The original 
slurry (black symbol in Fig. 2) is a colloidal silica with a mean particle diameter of 75 nm. The slurry after the 
aging of three weeks (gray symbol in Fig. 2) shows slightly low large particle counts, compared to the original 
fresh slurry. Two slurries of different large particle distributions (green and red symbols in Fig. 2) were prepared 
by filtering the original slurry through two depth-type filters with nominal pore sizes of 0.7 and 0.1 μm, respec-
tively (green symbols by 0.7 μm, red by 0.1 μm).

Measurement of “Large” particles in the slurry.  We used AccuSizer 780 APS (Particle Sizing Systems, 
Santa Barbara, California, USA) to measure the large particles, which employs the light scattering technique 
and detects particles of diameter ≥ 0.5 μm. The dilution factor of α = 60 and the measurement volume factor of 
β = 15 , i.e., 15 ml were used for all experiments. The flow rate was 15 ml/min.

Monte‑Carlo simulation.  A Monte-Carlo simulation was performed to investigate the statistics of particle 
counting in the slurry. We first randomly distributed the particles in a given volume of slurry, and counted the 
particles that reside within an observation volume. We used a software “Mathematica” for the simulation with 
parameters relevant to the experiments. For example, the snapshot below represents a solution diluted by a fac-
tor of α = 60 , the resulting concentration of 2/ml, and the observation volume of 30 ml, indicated by red box 
(Fig. 6).
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