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High‑throughput GPU layered 
decoder of quasi‑cyclic multi‑edge 
type low density parity check codes 
in continuous‑variable quantum 
key distribution systems
Yang Li1, Xiaofang Zhang2, Yong Li3*, Bingjie Xu1*, Li Ma1, Jie Yang1 & Wei Huang1

The decoding throughput during post-processing is one of the major bottlenecks that occur in a 
continuous-variable quantum key distribution (CV-QKD) system. In this paper, we propose a layered 
decoder to decode quasi-cyclic multi-edge type LDPC (QC-MET-LDPC) codes using a graphics 
processing unit (GPU) in continuous-variable quantum key distribution (CV-QKD) systems. As 
described herein, we optimize the storage methods related to the parity check matrix, merge the 
sub-matrices which are unrelated, and decode multiple codewords in parallel on the GPU. Simulation 
results demonstrate that the average decoding speed of LDPC codes with three typical code rates, 
i.e., 0.1, 0.05 and 0.02, is up to 64.11 Mbits/s, 48.65 Mbits/s and 39.51 Mbits/s, respectively, when 
decoding 128 codewords of length 106 simultaneously without early termination.

Modern computer systems place a high importance on security when it comes to sharing and transmitting data 
between client devices (e.g., remote participants) over computing networks. Current methods of ensuring the 
secret communication between clients and/or servers include implementing encryption techniques. However, 
encryption techniques that use shared keys, which is established with algorithms based on the assumptions of 
computation complexity, may no longer guarantee data security, especially with the introduction and availability 
of large-scale universal quantum computers.

Quantum key distribution (QKD), which establishes a secret key between two remote participants based on 
quantum mechanics principles, can provide the guaranteed security between the two participants by using a 
one-time-pad encryption algorithm to encrypt and decrypt data1,2. QKD has been developing rapidly in both 
theory and experiment since the groundbreaking work of Bennett and Brassard1 and so far has become one of 
the most mature branches of quantum information technologies.

Currently, there exist two categories of QKD. One category is the discrete variable QKD (DV-QKD), where the 
key information is encoded on discrete Hilbert space, and the other is the continuous variable QKD (CV-QKD), 
where the key information is encoded on continuous Hilbert space, such as the quadratures of coherent states. 
Since CV-QKD can directly utilize the standard telecommunication technologies (such as coherent detection), 
it has more potential advantages in practice and much progress has been made recent years3–12.

Generally, the two participants in a CV-QKD system desire to establish a secret key for one another over a 
long distance with a very low signal-to-noise ratio. Then it naturally brings a problem on how to design codes 
with excellent error-correction capability, under such a stringent channel condition. In this case, only low-rate 
codes with very long block lengths can be exploited to achieve high efficiency key reconciliation.

Low density parity check (LDPC) codes have been shown to possess Shannon-limit approaching error-
correction performance13 and they have also been broadly applied in various communication systems, such as the 
DVB-S2 standard and the Enhanced Mobile Broadband (eMBB) data channels for 5G New Radio14,15. In Ref.16, 
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the authors designed an irregular LDPC code of length 107 which achieves within 0.04 dB of the Shannon limit. 
Consequently, LDPC codes with long block lengths have become one of the most promising candidates for a CV-
QKD system (actually, the performance of LDPC codes for a DV-QKD system was also investigated3). Herein, 
multi-edge-type (MET) LDPC codes have attracted much attention due to their excellent performance17–19.

As is well-known, the secret key rate is one of the most important performance indices for a QKD system 
and increasing the repetition rate is one of main methods to increase the secret key rate of a CV-QKD system. 
Recently, the repetition rate has grown steadily with the experimental progress in this field5–8,11,12,20, from MHz 
to GHz. Correspondingly, high-speed post-processing is required in order to match the high repetition rate. 
However, one of the bottlenecks that restrict the speed of post-processing for an LDPC-coded CV-QKD system is 
the throughput of the error correction decoder in the post-processing. To speed up the error correction decoder, 
several works have been proposed. For example, with the use of a graphics processing unit (GPU), the speed may 
increase from 7.1 Mb/s18, 9.17 Mb/s17 to 30.39 Mb/s19. However, the speed does not match the growing repetition 
rate of CV-QKD systems. The key limitation that causes slow decoding speed is due to the fact that successful 
decoding at very low SNR requires a large number of iterations. In this paper, a layered belief propagation (BP) 
algorithm21 is utilized to speed up the decoding convergence.

In Ref.22, the authors proposed a column layered (CL) min-sum decoder to decode the QC-LDPC codes 
for WiFi (802.11n) and WiMAX (802.16e) and achieved a maximum throughput of 710 Mbits/s. In Ref.23, the 
flooding-based decoder achieve 4.77 Gbits/s with SNR = 5.5 dB, which was implemented on GPU GeForce GTX 
1080 Ti by incorporating early termination. This decoder assigns threads to check nodes (CNs) sequentially in 
the two kernel functions corresponding to CN to variable node (VN) and VN to CN message-passing, and uses 
atomic operations to complete the synchronization.

In this work, when implementing the GPU-based layered BP decoder, we optimize the storage of the matrix 
message by merging bits into one number and combine two processes into one kernel to complete a whole itera-
tion. As a consequence, the computation amounts are reduced. We also merge the unrelated sub-matrices because 
they do not affect each other and can thus be computed simultaneously by threads. The speed of our layered 
decoder is up to 64.11 Mbits/s for a code of length 106 with a rate of 0.1 under the condition of SNR = 0.161, and 
50 iterations without early termination.

Results
Implementation of the layered BP decoding algorithm.  Given that the messages can be updated at 
variable/check nodes and can be performed in parallel, the layered BP decoding algorithm is deployed on GPU. 
This section optimizes the GPU implementation of the layered BP decoding algorithm.

The decoder implementation is optimized in such a way that the message is stored in global memory for 
coalesced access. For memory access in a warp, coalesced access means that the data address of a thread always 
keeps the same as the thread index, instead of the unordered access. Since the GPU kernel is executed by a warp 
consisting of 32 threads, the decoding latency can be hidden well for a code with length being a multiple of 32. 
The layered BP decoder has a coalesced global memory access and stores the parity-check matrix in one file for 
indexing the corresponding messages. Such a file denoted by H_compact1, will be applied in calculating the 
messages related to the check nodes. Each element in file H_compact1 contains three pieces of information: the 
amount of the shift, the position of the element after row rearrangement in the base matrix and the position of 
the column where the non-negative element located in the base matrix. For example, Fig. 1 displays a 4-by-8 
base matrix with an expansion factor of 100. Each non-negative element of the base matrix H in Fig. 1a indicates 
the amount of shift and ‘−1’ represents an all-zero matrix. The second information indicating the position of the 
element after row rearrangement is demonstrated in Fig. 1b. Then, one sub-matrices shown in Fig. 1c are used for 
indexing the needed messages. Accordingly, the one-dimensional matrix on the right side in Fig. 1c represent the 
degrees of the base matrix (i.e., each element of the one-dimensional matrix represents the number of elements 
that are not ‘-1’ in the corresponding column of the base matrix).

In our decoder, only one kernel is required to complete the iterative process. In this single kernel, one thread 
maps a kind of information in one codeword, and the same kind of information of all codewords is then stored 
sequentially. There are three kinds of information, which include: the log-likelihood ratios (LLRs) of variable 
nodes, the message of check nodes to variable nodes, and the message of variable nodes to check nodes. We store 
the same kind of information of different codewords sequentially, e.g., L0v0 , L

1
v0

,…, LKv0 ; L
0
v1

 , L1v1,…, LKv1 where Lkvi 
represents the LLR of the VN vi of the k-th codeword denoted by CWk . The coalesced access to the message of 
variable nodes is illustrated in Fig. 2. Therein, the threads (th0, th1, ..., thK ) first map the LLR of v0 in codewords 
(CW0,CW1, ...,CWK ) one by one. Once the LLR of v0 is stored, then the thread group maps the LLR of v1 in 
codewords (CW0,CW1, ...,CWK ) until the LLRs of all variable nodes are stored. The message of check nodes to 
variable nodes or variable nodes to check nodes is also stored in this manner.

The GPU-based layered BP decoder updates the messages of variable nodes and check nodes simultaneously, 
while enabling multiple codewords to be decoded in parallel. For each individual codeword, the required number 
of GPU threads is the same as the number of check nodes in a sub-matrix. Each thread computes the messages 
received from the neighboring variable nodes while also calculating the LLR messages for each adjacent variable 
node. This procedure is illustrated in Fig. 3 by taking an LDPC code with 4 check nodes and 6 variable nodes as an 
example. Note that, at each iteration, one thread corresponds to a check node. If the expansion factor Z is equal to 
100, 1× 100 threads corresponding to check nodes of a sub-matrix send messages to neighboring variable nodes 
and also calculate the messages from variable nodes. Next the 1× 100 threads are reused to update messages at 
the second group of check nodes and their neighboring variable nodes. The number of threads that are reused 
is equal to that of rows of the base matrix. Nonetheless, the layered BP decoder consumes less thread resources 
and the number of threads assigned to each sub-matrix is only 1× 64× Z (recall that Z is the expansion factor) 
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Figure 1.   A 4× 8 base matrix and the corresponding file.

Figure 2.   The coalesced access to the message of variable node. Therein, CW0...CWK represent different 
codewords, K + 1 is the number of codewords decoded at the same time, N0...Ne represent e + 1 check nodes, 
Lkvi is the message of the i-th variable node in the k-th codeword, 0 ≤ i ≤ g , g + 1 is the total number of variable 
nodes, and thk is the k-th thread, 0 ≤ k ≤ K.
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when decoding 64 codewords simultaneously. The greater the values of Z and the number of codewords are, the 
higher the utilization rate of the thread is.

The layered BP decoder only involves one file H_compact1 for indexing. This leads to one GPU kernel imple-
mentation of the layered BP decoder for each decoding iteration, whose structure is demonstrated in Fig. 4 (This 
figure is derived from Fig. 4.8 of the thesis24). In the unique kernel, the amount of computation in one thread to 
calculate the message from a variable node to a check node or from a check node to a variable node, defined by 
the number of edges on which messages are computed, is equal to the degree of the corresponding check node. 
The message L(t,l)qnm is updated through L(t−1,l)

rmn  and L(t,l−1)
qn  , which represents the message from the n-th variable 

node to the m-th check node in the t-th iteration and the l-th layer. Then each thread calculates the intermediate 
values L(t,l)rm  . In the remaining part of the kernel, each thread computes the message from the m-th check node 
to the n-th variable node, denoted by L(t,l)rmn  , through L(t,l)rm  and L(t,l)qnm . Afterwards the LLR L(t,l)qn  is updated through 
L
(t,l)
rmn  and L(t,l)qnm . There are Z threads in total that are performed at the same time. The decoder accesses message 

readily by using H_compact1 and the LLRs of variable nodes are delivered to the next layer, i.e., the (l + 1)-th 
layer. The above process is a complete iteration.

The original layered decoder decomposes the H matrix into multiple sub-matrices on the basis of layers, 
which is equivalent to treating each layer as a sub-code. Each sub-matrix utilizes 1 × Z threads and the serial 
calculation is conducted among the sub-matrices. In order to increase the layered decoder’s thread utilization, 
we merge the unrelated sub-matrices into a new sub-matrix. For example, a 3-by-3 base matrix shown in Eq. (1) 
with the expansion factor Z can be divided into three sub-matrices and the degree of any variable node in each 
sub-matrix is equal to one or zero. Herein, a non-negative integer a in Eq. (1) such as ‘1’, ‘0’ and ‘2’ corresponds 
to a matrix obtained by cyclically shifting the Z × Z identity matrix to the right by a bits and ‘-1′ indicates the 
all-zero matrix of Z × Z.

If a base matrix is of the form given in Eq. (2), we can combine its first two rows into one layer. In other 
words, the first two rows form a sub-matrix in which the degree of any variable node is equal to one or zero and 
the third row separately forms a sub-matrix. Two sub-matrices wok in a serial manner by using 2× Z and 1× Z 
threads, respectively.

Given a base matrix of the form shown in Eq. (3), the first and the third rows of this matrix can be combined 
into one sub-matrix and the second row forms a sub-matrix.

The thread utilization rate η is computed by

where T1 is the number of layers in each sub-matrix, T2 is the number of codewords, and T3 is the total number 
of threads.

There will be much time needed for the system to call external functions as it is done frequently in a kernel 
function when using CUDA. Moreover, there will also be some additional waiting time as the warp divergence 
increases the waiting time when warp threads encounter control flow statements and enter different branches, 
which means that the remaining branches are currently blocked except for the branch being executed. In this 

(1)H =

[

1 0 −1

2 1 1

0 2 0

]

(2)H =

[

1 −1 −1

−1 2 1

2 0 0

]

(3)H =

[

1 −1 −1

2 0 0

−1 2 1

]

(4)η =
T1 × T2 × Z

T3

Figure 3.   A node parallel decoding scheme in the layered BP decoder.
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work, the kernel function distinguishes the sign of the input data by calling the application programming inter-
face (API) provided by CUDA, thereby avoiding warp divergence and reducing the calls of external functions. 
An infinite value or invalid value may appear because of the iterative running of the kernel function. To avoid 
this, a clipping function included in the CUDA Math API, i.e., device float fminf(), is utilized. With the aid of 
clipping, the decoding throughput is increased from 60.29 to 64.11 Mbit/s. Another optimization that is being 
performed is directed to reducing the branches since the branch structure has great drawbacks, especially when 
different threads utilize different branches with a high probability. For instance, each thread has different cal-
culation amounts and computation time and thus the finished threads need to wait for other unfinished ones. 
Based on this, we can transform the branch structure to an arithmetic operation when parity checks are used 
and thereby reduce the decoding time.

Figure 4.   The GPU implementation of the layered decoder showing one multithreaded computation kernel and 
data flow from top to bottom for one decoding iteration.
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Performance of the proposed GPU‑based decoder.  The performance of the GPU-based layered BP 
decoders is investigated for QC-MET-LDPC codes with rates 0.1,0.05 and 0.02 on an NVIDIA TITAN Xp GPU, 
where the expansion factor is 2,500. The codeword constructed by a cycle elimination algorithm is applied in 
our work25. Figure 5 demonstrates the error correction speed, when different number of codewords are decoded 
simultaneously. The speed grows steadily from 1 to 128 codewords and it does not converge even if the num-
ber of codewords reaches 128. Note that, due to the shortage of storage space, the decoding speed is not con-
sidered when the number of codewords decoded simultaneously exceeds 128. Thus, the proposed layered BP 
decoder in this paper decodes 128 codewords simultaneously and its thread utilization rate is computed by 
1× 128× 2500÷ 67108864 = 0.00477 , where each sub-matrix consists of one layer of the base matrix and the 
maximum number of threads for NVIDIA TITIAN Xp GPU is 67,108,864.

Table 1 compares the performance of the layered BP decoder with two types of sub-matrices. One type 
consists of a single layer and the other consists of multiple layers. When decoding 128 codewords of length 106 
simultaneously, the layered BP decoder with sub-matrices formed by multiple layers performs better than its 
counterpart in terms of decoding throughput. The improvement is 3.2 Mbits/s, 1.9 Mbits/s and 1.6 Mbits/s, 
respectively, when three code rates 0.1, 0.05 and 0.02 are considered. Based on this, it appears that combining 
uncorrelated sub-matrices could be further improved that would then speed up the decoding while also promot-
ing thread utilization.

Discussion
As described in Ref.17, the early termination scheme can be used as an efficient way to reduce the complexity of 
LDPC decoder, which avoids unnecessary iterations at high SNR. However, this scheme may not be efficient at 
low SNR since the decoding often fails after multiple iterations. Table 2 illustrates the performance comparison 
between the flooding and the layered BP decoders without early termination, when three code rates 0.1 0.05 and 
0.02 are considered, respectively. The former, as illustrated in Table 1, can simultaneously decode 64 codewords 
of length 106 while the latter, as illustrated in Table, can simultaneously decode 128 codewords. In the decoding 
process, the flooding decoder uses the whole matrix whereas the layered BP decoder uses the sub-matrices which 
consists of unrelated layers of the base matrix. In Table 2, the first row represents code rates and the second row 
represents is SNR under the BIAWGNC. The third row β indicates the reconciliation efficiency related to the code 
rate and the number of discarded parity bits, which has an influence on the reconciliation distance and the secret 
key rate. The sixth row represents the number of edges of Tanner graph involved in the decoding and the ninth 
row represents the average latency of one decoding iteration. The raw throughput Kraw in the last row is given by

Figure 5.   Error correction speed comparison among the different number of decoded codewords in the layered 
decoder.

Table 1.   Performance comparison of the layered BP decoder when decoding different forms of sub-matrices.

Code rate 0.1 0.1 0.05 0.05 0.02 0.02

SNR 0.161 0.161 0.076 0.076 0.03 0.03

Number of iterations 50 50 75 75 100 100

Form of sub-matrix Single Multiple Single Multiple Single Multiple

Latency per iteration (ms) 42.029 39.931 36.530 35.081 33.720 32.397

Error correction speed (Mbits/s) 60.91 64.11 46.72 48.65 37.96 39.51
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where

Herein, Nc is the number of codewords that are decoded simultaneously, Lc is the code length, Tp is the 
latency per iteration, and T is the number of iterations. The total decoding latency Tall consists of the latency of 
initialization, iterative decoding, hard decision and memory copy between CPU and GPU. It can be observed 
that the required number of decoding iterations for the layered decoder is half of that for the flooding decoder. 
Accordingly, the decoding speed of the layered BP decoder is more than twice that of the flooding decoder and 
the values for three tested codes is 64.11 Mbits/s, 48.65 Mbits/s and 39.51 Mbits/s, respectively.

Table 3 demonstrates the performance comparison of the layered BP decoders with or without early termina-
tion at different SNRs, where the code length is 106 and the code rate is 0.1, respectively. When SNR = 0.161 and 
0.171, the layered BP decoder without early termination performs a little faster than that with early termination 
since less calculations are required to determine whether a valid codeword is obtained in the former. Neverthe-
less, when SNR = 0.181, the layered BP decoder with early termination is better and the corresponding decoding 
speed is up to 93.49 Mbits/s. This improvement is attributed to the fact that the introduction of the early termina-
tion condition reduces the number of iterations significantly at high SNR.

As we know, the total secret key rate Kt of a CV-QKD system is given by

where f is the repetition rate, γ is a constant representing the ratio that the part of the repetition rate is utilized 
to generate secret key (the remaining part of the repetition rate is used for parameter estimation, signal synchro-
nization, parameter monitoring, etc.), Kr is the secret key rate per pulse, β =

R
C(s) is the reconciliation efficiency, 

I is the mutual information between two participants, χ is the Holevo bound, R is the code rate and C(s) is the 
channel’s capacity. Therefore, a better code, which achieves a lower FER for a given SNR or requires a lower SNR 
(corresponding to a higher β) to achieve a given FER, will bring a higher secret key rate under the condition of 
the same repetition rate. Moreover, supporting a higher repetition rate by improving the decoding throughput 
may also lead to a higher secret key rate despite a little higher FER.

In our work, we use a large expansion factor since it often brings a large decoding throughput while the FER 
performance is not necessarily degraded. Figure 6 shows the FER vs SNR curves of the layered and the flooding 
decoders for three code rates when different expansion factors are considered. From observations of Fig. 6, it 
can be noted that the codes with Z = 2,500 have the best FER performance among four expansion factors for 

(5)Kraw =
Nc × Lc

Tp × T
(bits/s),

(6)Tp =
Tall

T
(s).

(7)Kt = f · γ · Kr = f · γ · (1− FER)(βI − χ),

Table 2.   Performance comparison between the flooding and the layered BP decoders with GPU 
implementation.

Code rate 0.1 0.1 0.05 0.05 0.02 0.02

SNR 0.161 0.161 0.076 0.076 0.03 0.03

β 92.86% 92.86% 94.63% 94.63% 93.80% 93.80%

Number of iterations 100 50 150 75 200 100

Decoding method flooding layered flooding layered flooding layered

Total number of edges 3,767,500 3,767,500 3,480,000 3,480,000 3,337,500 3,337,500

FER 0.173 0.179688 0.253906 0.25 0.324219 0.328125

Latency per iteration (ms) 42.216 39.931 37.708 35.081 35.635 32.397

Error correction speed (Mbits/s) 30.32 64.11 22.63 48.65 17.96 39.51

Table 3.   Performance comparison of the layered BP decoder when decoding 128 codewords with/without 
early termination.

SNR 0.161 0.161 0.171 0.171 0.181 0.181

Early termination No Yes No Yes No Yes

FER 0.1797 0.1797 0.0273 0.0273 0 0

Max iterations 50 50 50 50 50 50

Average iterations 50 50 50 50 50 30

Latency per iteration(ms) 39.931 41.463 39.931 41.364 39.931 45.638

Error correction speed (Mbits/s) 64.11 61.74 64.11 61.89 64.11 93.49
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rates 0.05 and 0.02. Moreover, the layered decoders always have the comparable performance as the flooding 
decoders for given rates and expansion factors.

We also compare the performance of the layered BP decoder with other decoders described in previous works. 
As can be seen from Table 4, the author of Ref.18 reported a random MET-LDPC code with rate 0.1, where the 
decoding speed was up to 7.1Mbits/s using a GPU implementation at SNR = 0.161. The decoder was implemented 
by the flooding BP algorithm without early termination while using internal parallelism and external parallelism. 
Internal parallelism means several messages are propagated concurrently for a single BP execution corresponding 
to one message being decoded and external parallelism indicates several vectors are decoded at the same time. 
In Ref.17, the GPU-based decoder decodes a QC-MET-LDPC code with an expansion factor of 512 and achieves 
9.17Mbits/s under an early termination condition. Such a decoder consists of four kernels. In the VN to CN 
message passing kernel, the edge messages are stored in terms of the indices of VNs sequentially, and in the CN 
to VN message passing kernel, they are stored in terms of the indices of CNs sequentially. Moreover, the authors 
of Ref.17 re-ordered the messages in order to avoid the access to unordered memory.

Note that if the messages of the degree-1 variable nodes are updated only once at the end of the iterative 
decoding procedure, the computational complexity and the consumption of the thread will be reduced. As a 
consequence, the decoding speed of the MET-LDPC code of length 106 in Ref.19 is up to 30.39 Mbits/s, where 
the parity check matrix is divided into two files that can then be stored. One stores the CNs adjacent to VNs 
sequentially in terms of the indices of VNs, the other stores the mapping relations of VNs to CNs. In our work, 
the proposed layered BP decoder maps the threads to check nodes in each sub-matrix which consists of unrelated 
rows, and the amount of computation for each thread is in proportion to the degree of a check node. Moreover, 
the decoder combines three kinds of information related to each nonnegative element of the base matrix into 
one integer and stores all such integers in a file, which reduces the consumption of GPU memory and the copy 
time thereby obtaining a high decoding throughput up to 64.11 Mbits/s with no performance degradation.

Figure 7 investigates how the FER relates to the total secret key rate since the key rate is a core index of a QKD 
system (we assume that the maximum supportable repetition rate is equal to the decoding throughput since 

Figure 6.   The FER vs SNR curves of the layered (solid lines) and the flooding (dot-dashed lines) decoders.

Table 4.   Performance comparison with prior works using different types of codes.

Refs.
(published year)

Ref.18

(2014)
Ref.17

(2018)
Ref.19

(2018) Our work

Code type MET QC-MET MET QC-MET

Code rate 0.1 0.1 0.1 0.1

SNR 0.161 0.161 0.160 0.161

β 93.10% 92.86% 93.40% 92.86%

Block length 220 220 106 106

Z 512 2,500

Average number of iterations 100 78 100 50

Latency per iteration (ms) 1.477 1.466 21.060 39.931

FER 0.04 0.0243 0.055 0.1797

GPU AMD Tahiti Graphics 
Processor NVIDIA GeForce GTX 1,080 NVIDIA TITAN Xp NVIDIA TITAN Xp

Error correction speed 
(Mbits/s) 7.10 9.17 30.39 64.11
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the error-correction is usually the most complicated step). Together with the increase of SNR, both FER and β 
decrease. As a consequence, the total secret key rate is not monotonically increasing over the whole FER ranges. 
One observes that our GPU-based layered decoder outperforms those given in Ref.17–19 from the total secret 
key rate point of view. According to Eq. (7), although our GPU decoder has a higher FER, the improvement on 
the supportable repetition rate due to the higher decoding throughput is sufficient to compensate the resultant 
loss of the total secret key rate.

Despite the high throughput of the GPU-based layered BP decoder, there are some shortcomings. For exam-
ple, most of threads are not used and thus, there exists much space to increase the number of codewords that are 
decoded simultaneously. In addition, memory shortage may limit the number of parallel decoding. Our future 
work will focus on reducing memory consumption when decoding one codeword. As a result, thread utilization 
will then be increased by decoding more codewords simultaneously.

Methods
In this paper, the three-edge-type QC-LDPC codes are always used26. The degree distribution of a MET-LDPC 
code is specified by a pair of multivariate polynomials ν(r,x) and μ(x), where ν(r,x) is related to variable nodes 
and μ(x) is related to check nodes. The multivariate polynomial pair (ν(r,x), μ(x)) is defined as follows:

where b represents different types of channels (Typically, b only has two values, i.e., 0 or 1, corresponding to 
two channels which transmit bits and puncture bits, respectively), d denotes the degrees of different edge types, 
r represents variables corresponding to the different types of channels, and x denotes variables related to edge 
types. Moreover, νb,d and μd denote the probabilities of variable nodes of type (b, d) and check nodes of type d, 
and the code rate is computed by

The construction of MET-QC-LDPC codes used in our simulations is described as follows.
Step 1: Generating the degree distribution of a MET-LDPC code for a given code rate. In this paper, three 

degree distribution functions corresponding to three rates 0.1, 0.05 and 0.02, respectively, is given below27:

R   =   0 . 1 :  ν(r,x) = 0.0775r1x
2
1x

20
2 + 0.0475r1x

3
1x

22
2 + 0.875r1x3  ,  µ(x) = 0.0025x111 + 0.0225x121 + 

0.03x22x3 + 0.845x32x3
R = 0.05: ν(r,x) = 0.04r1x

2
1x

34
2 + 0.03r1x

3
1x

34
2 + 0.93r1x3 , µ(x) = 0.01x81 + 0.01x91 + 0.41x22x3+ 0.52x32x3

R  =  0 . 0 2 :  ν(r,x) = 0.0225r1x
2
1x

57
2 + 0.0175r1x

3
1x

57
2 + 0.96r1x3  ,  µ(x) = 0.010625x31 + 0.009375x71 

+0.6x22x3 + 0.36x32x3

Step 2: According to the degree distribution, construct the base matrices by using the progressive-edge-growth 
(PEG) algorithm28 and make its girth as large as possible.

(8)ν(r,x) =
∑

νb,dr
b
x
d
,

(9)µ(x) =
∑

µdx
d
,

(10)R=
∑

νb,d−
∑

µd

Figure 7.   The maximum total secret key rate vs FER curves of the proposed layered decoder with different 
repetition rates (Four points correspond to FERs and throughputs listed in Table 4).
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Step 3: Extend the base matrix with circulant permutation matrices, where ‘0’ elements are replaced by q × q 
zero matrices and ‘1’ elements are replaced by q × q cyclically-shifted identity matrices with randomly generated 
cyclic shifts.
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