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on the evolutionary features

for protein fold recognition using
support vector machines
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Protein fold recognition plays a crucial role in discovering three-dimensional structure of proteins and
protein functions. Several approaches have been employed for the prediction of protein folds. Some
of these approaches are based on extracting features from protein sequences and using a strong
classifier. Feature extraction techniques generally utilize syntactical-based information, evolutionary-
based information and physicochemical-based information to extract features. In recent years, finding
an efficient technique for integrating discriminate features have been received advancing attention.

In this study, we integrate Auto-Cross-Covariance and Separated dimer evolutionary feature
extraction methods. The results’ features are scored by Information gain to define and select several
discriminated features. According to three benchmark datasets, DD, RDD ,and EDD, the results of the
support vector machine show more than 6% improvement in accuracy on these benchmark datasets.

Proteins are Jack of all trades biological macromolecules. They are involved in almost every biological reaction;
Protein plays a critical role in many different areas such as building muscle, hormone production, enzyme,
immune function, and energy. Typically more than 20,000 proteins exist in human cells', to acquire knowledge
about the protein function and interactions, the prediction of protein structural classes is extremely useful®. Fold
recognition is one of the fundamental methods in protein structure and function prediction.

Each type of protein has a particular three-dimensional structure, which is determined by the order of the
amino acids in its polypeptide chain. A protein’ s structure begins with its amino acid sequence, which is thus
considered its primary structure. The next level of the organization includes the « helix and g sheets that forms
with certain segments of the polypeptide chain; these folds are elements of secondary structure. The full, three-
dimensional conformation formed by an entire polypeptide chain is referred to as tertiary structure®. One of the
main steps which can be assumed as a vital stage for predicting protein fold(secondary structure) is feature extrac-
tion. Computational feature extraction methods are divided into syntactical, physicochemical and evolutionary
methods. Syntactical methods pay attention only to the protein sequence, like composition and occurrence*-°.
physicochemical methods consider some physical and chemical properties of protein sequences. Evolutionary
methods extract features from Basic Local Alignment Search Tool(BLAST).

When attempting to solve many biological problems, it is obvious that a single data source might not be
informative, and combining several complementary biological data sources will lead to a more accurate result.
When we studied methods of protein fold recognition, we found that less attention has been paid to the fusion
of features to get more comprehensive features. In recent studies, researchers attempted to find new feature
extraction methods’'? or train different classifiers to achieve high accuracy'*~*%, even though some problems
like incomplete data sources, false positive information, multiple aspect problem, and so on encourage us to
combine data sources.

Hence, to prepare more informative and discriminative features, we use Auto-Cross-Covariance(ACC)°
and Separated dimer(SD)° methods. Because SD explores some amino acid dimers that may be non-adjacent
in sequence’ and ACC method measures the correlation between the same and different properties of amino
acids'®. One of the main advantages of ACC and SD is to find a fixed length vector from a variable protein length.
The performance of the proposed method is evaluated using three benchmark datasets DD*, RDD'® and EDD'.
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In this paper, we focus on fusing ACC and SD feature extraction methods based on Position Specific Scoring
Matrix(PSSM) generated by using the Position-Specific Iterated BLAST(PSI-BLAST) profile to predict protein
fold. The 1600 ACC features and the 400 SD features are extracted based on the PSSM. Finally, we construct a
reduced-dimensional feature vector for the Support Vector Machine (SVM) classifier by using the Information
Gain(IG).

Background

In 1997, Dubchak et al. studied syntactical and physicochemical method?’. In which they assumed five proper-
ties of amino acid such as hydrophobicity (H), frequency of « helix (X), polarity (P), polarizability (Z) and van
der Waals volume (V). Recently a novel fusion approach called Forward Consecutive Search (FCS)?! scheme
that combined physicochemical-based by syntactical-based features. Then Enhanced Artificial Neural Network
trained on benchmark datasets for obtaining high accuracy in protein fold recognition. In 2009, pairwise fre-
quencies of amino acids separated by one residue (PF1) and pairwise frequencies of adjacent amino acid residues
(PF2) were proposed by Ghatny and Pal’. Taguchi and Gromiha® have proposed features that are based on the
amino acid occurrence.

Another solution to find similarity between protein sequences is based on the BLAST. Many feature extraction
methods utilize BLAST alignments to extract the possibility of amino acid in specific positions called PSSM.The
bigram feature extraction method was introduced by Sharma et al.® that the related feature vector was computed
by counting the bigram frequencies of occurrence from PSSM. This represented the transitional probabilities from
one amino acid to another and also produces 400 features. Lyons et al.*> employed the HMMAa€“HMM alignments
of protein sequence from HHblits to extract the profile HMM (PHMM) matrix. They computed the distances
between several PHMM matrices to find the alignment path using dynamic programming. If the distance matrix
between two proteins was low, they belonged to the same fold otherwise they did not. An innovative predictor
called PFPA containing an ensemble learning classifier and a novel feature set that combined the information
from PSI-BLAST?. In 2011, the AAC-PSSM-AC method was proposed by Liu et al.*. This method combined
PSSM with Auto Covariance (AC)transformation to extract features, and the prediction accuracy reached about
74% in both datasets 25PDB and 1189. The different technique recommended as a feature extraction method was
separated dimers(SD)? which were used the probabilistic expressions of amino acid dimer occurrence that had
varying degrees of spatial separation in protein sequences. Dong et al.'’ proposed autocross-covariance (ACC)
transformation for protein fold recognition. ACC could measure the correlation of two properties along the
protein sequence and transform the matrix into a fixed-length vector. A novel TSVM-fold employed a group of
pairwise sequence similarity scores created by HHblits, SPARKS-X, and DeepFR template-based methods. The
results’ features of the attributes of the sequences were applied to the SVM for the protein fold recognition®. A
big data feature selection method based on the Map-Reduce framework and Vortex Search Algorithm (VSA)
was introduced by Jazayeri et al.?® , which had considerable prediction accuracy in protein fold recognition.
Moreover, Pailwal et al.!* proposed the ability of trigram to extract features from the neighborhood information
of amino acid.

In addition to the feature extraction methods, some researchers have paid attention to classification meth-
ods for protein fold recognition. In'* Kohonen’s selfa€“organization neural network was used and showed the
structural class of protein was considerably correlated with its amino acid composition features. Baldi et al.?’
employed Recurrent and Recursive Artificial Neural Networks (RNNs) and mixed it by directed acyclic
graphs (DAGs) to predict protein structure. In">, classwise optimized feature sets were used and SVM classi-
fiers were coupled with probability estimates to make the final prediction. Linear discriminant analysis(LDA)
was employed to evaluate the contribution of sequence parameters in determining the protein structural class.
Parameters were used as inputs of the artificial neural networks?. The composition entropy was proposed to
represent apoptosis protein sequences, and an ensemble classifier FKNN (fuzzy K-nearest neighbor) was used
as a predictor'®. TAXFOLD*method extracted sequence evolution features from PSI-BLAST profiles and also
the secondary structure features from PSIPRED profiles, finally a set of 137 features is constructed to predict
protein folds. Sequence-Based Prediction of Proteind€“Peptide(SPRINT) method was used to the prediction
of Proteina€“peptide Residue-level Interactions by SVM'. SVM implements the structural risk minimization
(SRM) that minimized the upper bound of generation error***'. Jones et al.** suggested the DeepCov method
which employed convolutional neural networks to operate on amino acid pair frequency and covariance data
that extract from sequence alignments. DeepSFa€”a deep learning method of classifying protein sequences
into folds was also employed to identify templates for the target®*. In** was attempted to show Artificial Neural
Network (ANN) with different feature extraction method was more accurate than other classifier methods. In
another study, Gosh et al.*® proposed a two-stage framework for feature extraction and classification. They utilized
sequence-based and structure-based features in their framework which removed redundant features by, mutual
information (MI) feature selection method. At the final, a boosting classifier based on Random Forest, K-nearest
neighbor (KNN), and multi-layer perceptron (MLP) show the considerable result in prediction accuracies.

Methods

This section illustrates the step-by-step of the proposed method for protein fold recognition. In the first step,
sequence alignments are found for each protein using BLAST. To show improvements in protein fold recognition
using evolutionary information that are presented in PSSM(Preprocessing), therefore ACC!® and SD? features
are extracted from PSSM(Feature extraction). In the next step, the features are combined and then selected by
the IG. In the last step, the SVM algorithm is trained to classify proteins. A comprehensive view of this approach
can be found in Fig. 1.
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Figure 1. Illustrates the framework of proposed protein fold recognition method. (a) Using protein sequences
of three benchmark datasets. (b) Sequence alignments are found for each protein sequence by BLAST. (c) PSSM
is calculated for each protein. (d) ACC and SD methods are used to extract features from PSSM. (e) The features
are selected by IG. (f) SVM algorithm is trained to classify proteins.

Preprocessing. BLAST. Similarity is used here to mention the resemblance or percentage of identity
between two protein sequences®. The similarity search depends on the bioinformatics algorithm. Basic Local
Alignment Search Tool(BLAST) is a tool that helps researchers to compare a query sequence with a database of
sequences and identify specific sequences that resemble the query sequence above a certain threshold. BLAST
is a local alignment algorithm that means to find the region (or regions) of the highest similarity between two
sequences and build the alignment outward from there®.

PSSM.  Position Specific Scoring Matrix(PSSM) is applied to express motif in a protein sequence. P-BLAST
searches in which amino acid substitution scores are given separately for each position in a protein multiple
sequence alignment. In this paper, PSSM is used to extract features by ACC and SD methods.

Feature extraction. ACC. ACC fold" utilizes autocross-covariance transformation that convert the
PSSMs of different lengths into fixed-length vectors. The ACC is separated into two kinds of features: AC be-
tween the same properties, cross-covariance (CC) between two different properties. The AC variable measures
the correlation of the same property between two properties separated by LG, distance along the sequence:

L-LG
AC(,LG) = Z (Pji — Pi)(Pi116,; — Pi) \ (L — LG)
j=1

(1)

where Pj; is the PSSM score of amino acid i at position j,and P; = Z].LZI P;;i \ L, the average score of an amino
acid i in the total protein sequence. The number of features which are calculated from AC is 20 x LG. The CC
measures the correlation of two different properties between the distances of LG along the sequence:

L-LG
CC(ir, i, LG) = > (Piiy — Py)(Pjs1Gi — Piy) \ (L — LG)
j=1

2
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Figure 2. The AC features of the ACC, is measured by the correlation of the same property between two
properties separated by a distance of LG along the sequence.

where i, i, are two different amino acids and P;; (P)is the average score for amino acid i1 (i2) along the sequence.
The CC variables are not symmetric. The total number of CC variables is 380 x LG.The combination of AC and
CC features make 400 x LG feature vectors.

SD. Separated Dimer(SD) method was introduced by Saini et al.’. It is employed to extract features from amino
acids that may or may not be adjacent in the protein sequence. The SD demonstrates the probabilities of the
occurrence of amino acid. SD generates 400 features.

F(k) = [F1,1(k), F12(k), . . ., F20,19(k), F20,20(k)] (3)

F(k) is computed as the feature sets for probabilistic occurrence of amino acid dimers with different values of k
which is a special distance between dimers. P represents the PSSM matrix for a protein sequences. It is L x 20
matrix where L is the length of the protein sequence:

L—k
Fun(k) =Y PimPitin (4)
i=0
in which m, n (1 < m,n < 20) are the scores of two selective amino acids in PSSM.

Fusion hypothesis. More attention needs to be paid to find an efficient technique for integrating distinct
data sources for the protein fold recognition problem?. Various techniques have been employed based on the
features which are extracted from protein sequences. These techniques investigate different aspects of a sequence
like the study of possible position of amino acids, protein chemical characteristics, syntactical features, and so
on. Hence, integrating them can model the folding problem more accurate. In this study, three hypotheses have
been considered for fusion data sources. The first, only evolutionary features are used since integrating differ-
ent types of features may have an undesirable effect on each other. According to our studies, the results of ACC
and SD methods are correlated. Recent papers showed that there are two behaviors for the recall and precision
of each fold. First, the recall (precision) of both methods can be high; second, if the recall(precision) of one
method(ACC) is less, then the recall(precision) of the other method(SD) is high. So, ACC and SD can be the
complement of each other and these behaviors can be seen in almost every fold. Hence, the next hypothesis is
the choice of ACC and SD. The last hypothesis is that ACC and SD features exhibit a relationship between amino
acids which may or may not be adjacent. In this approach, three different characters are defined which show each
amino acid in a specific position what relation has with others. These characters are shown in Figs. 2, 3 and 4.

Feature selection. Information gain. Feature selection is a common stage in classification problems. It
can improve the prediction accuracy of classifiers by identifying relevant features. Moreover, feature selection
often reduces the training time of a classifier by reducing the number of features which are going to be analyzed.
Information gain (IG) is a popular feature selection method. It ranks features by considering their presence and
absence in each class®. The IG method gives a high score to the features that occur frequently in a class and rarely
in other classes®. For any variable X from the features, its information entropy is determined:
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Figure 3. The CC features of the ACC,is measured by the correlation of two different properties between the
distances of LG along the sequence.

I(X) = — Z P(x;)logy(P(x;)) (5)

x; denotes a set of values of X, and P(x;) expresses the prior probability of x;. The conditional entropy of X under
the condition of Y'is defined as:

I(X]Y) ==Y POy Y P(xilynloga(P(xilys) ©)
j i

where P(x;|y;) is the posterior probability of x; given the value y; of Y. Then, information gain IG(X|Y) is cal-
culated by:

IG(X|Y) = I(X) — I(X|Y) %

Support vector machine. Support Vector Machine (SVM) was proposed by Vapnik and Cortes*!. It is a
powerful tool for binary classification. SVM is on the basis of Structural Risk Minimization (SRM) and Vapnik-
Chervonenkis (VC) dimension. The central idea of SVM is to find the optimal separating hyperplane with the
largest margin between the classes. Due to the SRM principle, SVM has great generalization ability. Moreover,
the parameters of the optimal separating hyperplane can be obtained by solving a convex quadratic program-
ming problem (QPP), which is defined as follows:

1 -
min - [l +C) &

i=1 (8)
st. yiwlxi+b) +& > 1,Vi

where & is the slack variable associated with x; sample and C is a penalty parameter. Note that the optimization
problem can be solved when the classification task is linearly separable. In the case of nonlinear problems, the
input data is transformed into a higher-dimensional feature space in order to make data linearly separable. It
makes possible to find a nonlinear decision boundary without computing the parameters of the optimal hyper-
plane in a high dimensional feature space®*.

SCIENTIFICREPORTS|  (2020)10:14368 | https://doi.org/10.1038/s41598-020-71172-x



www.nature.com/scientificreports/

A v
2 8
Pim 4 {/2\)
\“/
2 K 1
Pikn
1G] 1 8 Q|H| K
1/2|3]|3 3(3(3|o0
2 6 | 6 3/3|2 - 2
3 3|5 3/3|0
‘ P]m Pi+k,n ‘
i N,
100 3|6 3|30 )
L 8 3 33 0
w( I —— L=
‘\/\,‘_l/)T T
m m n n'

2

v /7\‘
3)

Figure 4. The SD consist of amino acid dimers with probabilistic expressions that have k separation.

As mentioned in this subsection, SVM is designed to solve binary classification problems. However, there
are multi-class approaches such as One-vs-One (OVO) and One-vs-All (OVA)*, which can be used for solving
multi-class classification problems. In this paper, we used OVO strategy.

Dataset. Three popular datasets are employed in this study, are DD dataset!, EDD dataset'’, and RDD
dataset!’. DD dataset contains 27 folds which represent four major structure classes: o, 8, %, « + B. The training
set and the testing set contain 311 and 383 sequences respectively, whose sequence similarity is less than 35%*.
The EDD dataset consists of 3418 proteins with less than 40% sequential similarity belonging to the 27 folds that
originally are adopted from the DD dataset. The RDD dataset consists of 311 protein sequences in the training
and 380 protein sequences in testing datasets with a similarity lower than 37%".

Performance measures. This research employs performance measures such as sensitivity, precision, and
F1 Score to produce various statistical results. The first of them is Sensitivity that measures the ratio of correctly
classified samples to the whole number of test samples for each class which is classified as correct samples and
calculated as follows:

TP
Sensitivity = ———— x 100 9
T TPYEN )
TP represents true positive and FN represents false negative samples. Precision represents, how relevant the
number of TP is to the whole number of positive prediction and is calculated as follows:

Precision = 100 (10)

P
— X
TP + FP
FP denotes false positive. F1 Score is the weighted average of Precision and Recall. F1 score, as other evaluation
criteria which are used in this study measures, is calculated as follows:
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Figure 5. Comparison of number of features and accuracy for DD, RDD and EDD datasets to evaluate the IG
method.

2TpP

Flscore = ——— X — X
2TP + FP + EN

100 (11)

Results

Classification and hyper-parameter tuning. The experiments are performed on the benchmark
datasets to evaluate the performance of the classification. we also utilize the 10-fold cross-validation in this
study, which has done by many researchers to examine predictive potency. In this study, LibSVM* with RBF
(Radial Basis Function) as the kernel functions has been used. The C parameter is optimized by search between
{2714 2-13 213 2 andalsoT parameter of RBF is considered between (2714 2=13 . 213214} The SVM
is originally designed for binary data classification. This study use OVO method to approach a multi-class clas-
sifier.

Feature engineering. The details of the feature extraction method are explained in methodology, but it
is important to know how far is assumed between aminoacids, for each ACC and SD methods. In developing
the algorithm to extract features from PSSM, LG and k parameters have been assumed like ACC and SD papers
values®!®. We consider both LG and k equals to 4. So the final number of features for ACC are 1600 features and
the number of features of SD are 400. The IG** makes our method safe from noisy features. In this approach, the
features which are ranked between [% maxjg, maxyg |, are determined for each dataset. The results of IG for each
dataset are exhibited in Table 1.

Discussion
Table 2 illustrates the total prediction accuracies of the existing approaches for classification of protein folds in
the DD,RDD and EDD datasets. Table 2 also shows the success rates of our proposed fusion approach. Accord-
ing to Table 2, classification results of the combined ACC and SD followed by selection of best features by IG
show considerable improvement compared to the state of art. Enhanced-SD has been exhibited quite promising
results on DD and EDD datasets. ACC, SD and PFPA feature sets are also giving quite promising results on the
three datasets in comparison with the other feature extraction methods. For the EDD dataset, the Enhanced-SD
features reach 93% recognition accuracy. Our proposed method gives the best recognition performance for the
other datasets. For the DD dataset, it is giving 91.31% recognition accuracy. For the RDD and EDD datasets, the
recognition accuracies are 91.64% and 91.2%. Our results are on average around 5%, 8% and 14% better than
the Enhanced-SD, SD, and ACC respectively. This is a significant improvement in terms of recognition accuracy
when compared with existing feature extraction techniques. Figure 6 has been shown to figure out the result
distribution of feature selection method. Even though the number of ACC in the three datasets are more, but all
of the SD features exist in the selected features. However, we study and compare SD and ACC methods separately,
we find out that the fusion of them can make more informative data which cover all characteristics of folds.

It is evident in Figs. 7, 8, and also Fig. 9, only “FAD-BINDING MOTIF” protein fold is not well recognized.
To further comparative analysis, we compare “THIOREDOXIN” with “FAD-BINDING MOTIF”. According to
confusion matrixes of DD, RDD and EDD, these folds are predicted false-positive in 0.33, 0.33 and 0 respectively.
The proteins of Thioredoxin fold for DD and RDD are similar in number and type but the Thioredoxins-proteins
for EDD are more in number and different in type. “1EGO” and “1ABA” proteins (RDD, DD) are Glutaredoxin.
Dobrovolska et al.#, in their studies, demonstrate that Thioredoxin Glutathione Reductase and Glutaredoxin
sequences have some similarity over the entire length. Thioredoxin Reductases are flavoproteins that function
as homodimers with each monomer possessing a FAD prosthetic group. So we guess that the “FAD-BINDING
MOTIF” has similar alignments with other folds which in turn is a result of false-positive predictions.Also, these
confusion matrices show the power of proposed method for predicting the other folds in these datasets.
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DD 0.98 0.92 0.93 1300
RDD 0.98 0.92 0.93 1416
EDD 0.96 091 0.93 900

Table 1. FI score, sensitivity and precision, measurement tools to evaluate the proposed method.

ACC + HXPZV 4 42.7 NA 40.9
Occurrence s 42 56.6 70.0
ACC 10 68.0 73.8 85.9
PF1 7 50.6 53.3 63.0
PF2 7 48.2 NA 49.9
TAXFOLD 2 71.5 83.2 NA
Bigram 8 79.3 59.6 79.9
PFPA = 73.6 NA 92.6
SD o 86.3 72.1 90.0
Trigram n 734 | 60.0 |80.0
PHMM-DP 2 82.7 NA 92.9
ME-SRC 7 78.6 NA 86.2
Enhanced-SD 3 90.0 |754 |93.0*
Proposed Method | — 91.31 |91.64 |91.2

Table 2. Comparison of the proposed method with the existing predictor and Meta-predictors for the DD,
RDD and EDD. *The evaluation method not defined in** approach.

The ACC and the SD features selected by IG
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B ACC
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Figure 6. Comparison of the ACC and the SD in DD, RDD and EDD datasets.

SCIENTIFICREPORTS|  (2020)10:14368 | https://doi.org/10.1038/s41598-020-71172-x



www.nature.com/scientificreports/

Confusion matrix

1.0
(TIM)-BARREL (ALPHA/BELTA) - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4-HELICAL CYTOKINES (ALPHA) | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4-HELICAL UP-AND-DOWN BUNDLE -{0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ALPHA: EF-HAND (ALPHA) -{0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BELTA-GRASP (ALPHA+BELTA) -{0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CONA-LIKE LECTINGS/GLUCANASES (BELTA) -{0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.8
CUPREDOXINS (BELTA) -{0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CYTOCHROME C (ALPHA) -{0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DNA-BINDING 3-HELICALBUNDLE (ALPHA) -{0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FAD (ALSO NAD) -BINDING MOTIF (ALPHA/BELTA) -{0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FERREDOXIN-LIKE (ALPHA+BELTA) | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.6
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Figure 7. Confusion matrix of DD dataset (91.31%).

Although the low-dimensional features can make the model more robust, an inadequate feature will make
the information provided by the features insufficient and the model can only obtain a low accuracy. When we
consider the features which are ranked between [0.85 maxg, maxjg], the accuracy of the proposed model after
10-fold cross-validation records 86.2%, 75.5%, and 72.5% for DD, RDD, and EDD respectively. So, we get almost
the optimal feature subset by testing multiple regions of ranking for each dataset. Figure 5 has been shown the
result of the IG method. The maximum accuracy of classification for each dataset has been achieved when we
consider ranking features higher than 1 max;g for these datasets. The number of selected features is related by
the rank of features for each dataset, so the number of features for DD, RDD, and EDD are 1300, 1416, and 900
respectively. The sensitivity, precision, and F1 score are computed for each class and then averaged over all the
classes which are calculated and published in Tablel.
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Figure 8. Confusion matrix of RDD dataset (91.64%).

Conclusion
This study aims to improve protein fold recognition accuracy by fusing information that are extracted from the
PSSM matrix. In this approach, we use ACC and SD feature extraction methods. It was observed that the pro-

posed technique eventuates to 6% improvement for the accuracy of these three benchmark datasets.
In the future, classification can be done by combining more syntactical,physiochemical or evolutionary
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features. To achieve more accuracy, future studies should be concentrate on “FAD-BINDING MOTIF” protein
fold that has less discriminative features in the SD and the ACC. Boosting classifier may be employed to find
better solutions for protein fold recognition.
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Figure 9. Confusion matrix of EDD dataset (91.2%).

Received: 14 December 2019; Accepted: 10 August 2020
Published online: 01 September 2020

d.58[)-JFerredoxin-like

9.30-0Knottins(smallinhibitors, toxins, lectins)

0.8

0.6

0.4

0.2

0.0

References
1. Baker, M. S. et al. Accelerating the search for the missing proteins in the human proteome. Nat. Commun. 8, 1-13 (2017).
2. Yang, J.-Y., Peng, Z.-L. & Chen, X. Prediction of protein structural classes for low-homology sequences based on predicted second-
ary structure. BMC Bioinform. 11, S9 (2010).
3. Alberts, B. et al.Essential cell Biology (Garland Science, 2013).
4. Ding, C. H. & Dubchak, I. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics
17, 349-358 (2001).
5. Taguchi, Y. & Gromiha, M. M. Application of amino acid occurrence for discriminating different folding types of globular proteins.
BMC Bioinform. 8, 404 (2007).
6. Dehzangi, A. & Phon-Amnuaisuk, S. Fold prediction problem: the application of new physical and physicochemical-based features.
Protein Pept. Lett. 18, 174-185 (2011).
7. Ghanty, P. & Pal, N. R. Prediction of protein folds: extraction of new features, dimensionality reduction, and fusion of heterogene-
ous classifiers. IEEE Trans. Nanobiosci. 8, 100-110 (2009).
8. Sharma, A., Lyons, J., Dehzangi, A. & Paliwal, K. K. A feature extraction technique using bi-gram probabilities of position specific
scoring matrix for protein fold recognition. J. Theor. Biol. 320, 41-46 (2013).
9. Saini, H. et al. Probabilistic expression of spatially varied amino acid dimers into general form of chou’s pseudo amino acid com-
position for protein fold recognition. J. Theor. Biol. 380, 291-298 (2015).
10. Dong, Q., Zhou, S. & Guan, J. A new taxonomy-based protein fold recognition approach based on autocross-covariance transfor-
mation. Bioinformatics 25, 2655-2662 (2009).
11. Paliwal, K. K., Sharma, A., Lyons, ]. & Dehzangi, A. A tri-gram based feature extraction technique using linear probabilities of
position specific scoring matrix for protein fold recognition. IEEE Trans. Nanobiosci. 13, 44-50 (2014).
12. Dehzangi, A., Paliwal, K., Lyons, J., Sharma, A. & Sattar, A. A segmentation-based method to extract structural and evolutionary
features for protein fold recognition. IEEE/ACM Trans. Comput. Biol. Bioinf. 11, 510-519 (2014).
13. Cai, Y.-D,, Liu, X.-J., Xu, X.-B. & Chou, K.-C. Prediction of protein structural classes by support vector machines. Comput. Chem.
26, 293-296 (2002).
14. Taherzadeh, G., Yang, Y., Zhang, T., Liew, A.W.-C. & Zhou, Y. Sequence-based prediction of protein-peptide binding sites using

support vector machine. J. Comput. Chem. 37, 1223-1229 (2016).

SCIENTIFIC REPORTS |

(2020) 10:14368 |

https://doi.org/10.1038/s41598-020-71172-x



www.nature.com/scientificreports/

15.
16.
17.

18.
19.

20.
21.

22.
. Wei, L., Liao, M., Gao, X. & Zou, Q. Enhanced protein fold prediction method through a novel feature extraction technique. IEEE

24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

37.
38.

39.
40.

41.
42.

43.

44.
45.

46.

47.

Anand, A., Pugalenthi, G. & Suganthan, P. Predicting protein structural class by svm with class-wise optimized features and deci-
sion probabilities. J. Theor. Biol. 253, 375-380 (2008).

Ding, Y.-S. & Zhang, T.-L. Using chou’s pseudo amino acid composition to predict subcellular localization of apoptosis proteins:
an approach with immune genetic algorithm-based ensemble classifier. Pattern Recognit. Lett. 29, 1887-1892 (2008).

Dehzangi, A., Phon-Amnuaisuk, S. & Dehzangi, O. Using random forest for protein fold prediction problem: an empirical study.
J. Inf. Sci. Eng. 26, 1941-1956 (2010).

Li, D., Ju, Y. & Zou, Q. Protein folds prediction with hierarchical structured svm. Curr. Proteom. 13, 79-85 (2016).

Xia, J., Peng, Z., Qi, D., Mu, H. & Yang, J. An ensemble approach to protein fold classification by integration of template-based
assignment and support vector machine classifier. Bioinformatics 33, 863-870 (2016).

Dubchak, I., Muchnik, I. B. & Kim, S.-H. Protein folding class predictor for scop: approach based on global descriptors. Ismb
104-107 (1997).

Raicar, G,, Saini, H., Dehzangi, A., Lal, S. & Sharma, A. Improving protein fold recognition and structural class prediction accura-
cies using physicochemical properties of amino acids. J. Theor. Biol. 402, 117-128 (2016).

Lyons, J. et al. Protein fold recognition using hmm-hmm alignment and dynamic programming. J. Theor. Biol. 393, 67-74 (2016).

Trans. Nanobiosci. 14, 649-659 (2015).

Liu, T,, Geng, X., Zheng, X., Li, R. & Wang, ]. Accurate prediction of protein structural class using auto covariance transformation
of psi-blast profiles. Amino Acids 42, 2243-2249 (2012).

Yan, K., Wen, J., Liu, J.-X., Xu, Y. & Liu, B. Protein fold recognition by combining support vector machines and pairwise sequence
similarity scores. In IEEE/ACM Transactions on Computational Biology and Bioinformatics (2020).

Jazayeri, N. & Sajedi, H. D. An algorithm based on dna-computing and vortex search algorithm for task scheduling problem. In
Evolutionary Intelligence, 1-11 (2020).

Baldi, P. & Pollastri, G. The principled design of large-scale recursive neural network architectures-dag-rnns and the protein
structure prediction problem. J. Mach. Learn. Res. 4, 575-602 (2003).

Jahandideh, S., Abdolmaleki, P, Jahandideh, M. & Asadabadi, E. B. Novel two-stage hybrid neural discriminant model for predict-
ing proteins structural classes. Biophys. Chem. 128, 87-93 (2007).

Yang, J.-Y. & Chen, X. Improving taxonomy-based protein fold recognition by using global and local features. Proteins: Struct.,
Funct., Bioinf. 79, 2053-2064 (2011).

Refahi, M. S., Nasiri, J. A. & Ahadi, S. Ecg arrhythmia classification using least squares twin support vector machines. In Iranian
Conference on Electrical Engineering (ICEE), 1619-1623 (IEEE, 2018).

Rahmanimanesh, M., Nasiri, J. A., Jalili, S. & Charkari, N. M. Adaptive three-phase support vector data description. Pattern Anal.
Appl. 22, 491-504 (2019).

Jones, D. T. & Kandathil, S. M. High precision in protein contact prediction using fully convolutional neural networks and minimal
sequence features. Bioinformatics 34, 3308-3315 (2018).

Hou, J., Adhikari, B. & Cheng, J. Deepsf: deep convolutional neural network for mapping protein sequences to folds. Bioinformatics
34, 1295-1303 (2018).

Sudha, P,, Ramyachitra, D. & Manikandan, P. Enhanced artificial neural network for protein fold recognition and structural class
prediction. Gene Reports 12, 261-275 (2018).

Ghosh, K. K., Ghosh, S., Sen, S., Sarkar, R. & Maulik, U. A two-stage approach towards protein secondary structure classification.
In Medical & Biological Engineering & Computing (2020).

Blast and multiple sequence alignment (msa) programs. https://viralzone.expasy.org/e_learning/alignments/description.html.
Accessed: 2019-01-17.

Altschul, S. E, Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403-410 (1990).
Zakeri, P,, Simm, J., Arany, A., EIShal, S. & Moreau, Y. Gene prioritization using bayesian matrix factorization with genomic and
phenotypic side information. Bioinformatics 34, i447-1456 (2018).

Zou, Q., Zeng, J., Cao, L. & Ji, R. A novel features ranking metric with application to scalable visual and bioinformatics data clas-
sification. Neurocomputing 173, 346-354 (2016).

Chen, K,, Jiang, Y., Du, L. & Kurgan, L. Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs.
J. Comput. Chem. 30, 163-172 (2009).

Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273-297 (1995).

Scholkopf, B., Smola, A. J., Bach, F. et al. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
(MIT press, 2002).

Hsu, C.-W. & Lin, C.-J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13, 415-425
(2002).

Chang, C.-C. & Lin, C.-]. Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2,27 (2011).
Dobrovolska, O., Shumilina, E., Gladyshev, V. N. & Dikiy, A. Structural analysis of glutaredoxin domain of mus musculus thiore-
doxin glutathione reductase. PloS ONE 7, €52914 (2012).

Hirt, R. P, Miiller, S., Embley, T. M. & Coombs, G. H. The diversity and evolution of thioredoxin reductase: new perspectives.
Trends Parasitol. 18, 302-308 (2002).

Yan, K., Xu, Y,, Fang, X., Zheng, C. & Liu, B. Protein fold recognition based on sparse representation based classification. Artif.
Intell. Med. 79, 1-8 (2017).

Author contributions
J.A.N. conceived and designed the study. M.S.R. and A.M performed the experiments. M.S.R. analyzed the results.
M.S.R. and A.M wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.A.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

SCIENTIFIC REPORTS |

(2020) 10:14368 | https://doi.org/10.1038/541598-020-71172-x


https://viralzone.expasy.org/e_learning/alignments/description.html
www.nature.com/reprints

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

SCIENTIFICREPORTS|  (2020)10:14368 | https://doi.org/10.1038/s41598-020-71172-x


http://creativecommons.org/licenses/by/4.0/

	A novel fusion based on the evolutionary features for protein fold recognition using support vector machines
	Anchor 2
	Anchor 3
	Background
	Methods
	Preprocessing. 
	BLAST. 
	PSSM. 

	Feature extraction. 
	ACC​. 
	SD. 

	Fusion hypothesis. 
	Feature selection. 
	Information gain. 

	Support vector machine. 
	Dataset. 
	Performance measures. 

	Results
	Classification and hyper-parameter tuning. 
	Feature engineering. 

	Discussion
	Conclusion
	References


