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Non‑linear changes in modelled 
terrestrial ecosystems subjected 
to perturbations
Tim Newbold1,2,7*, Derek P. Tittensor1,3,7, Michael B. J. Harfoot1,7, Jörn P. W. Scharlemann  1,4 &  
Drew W. Purves5,6

Perturbed ecosystems may undergo rapid and non-linear changes, resulting in ‘regime shifts’ to 
an entirely different ecological state. The need to understand the extent, nature, magnitude and 
reversibility of these changes is urgent given the profound effects that humans are having on the 
natural world. General ecosystem models, which simulate the dynamics of ecosystems based on a 
mechanistic representation of ecological processes, provide one novel way to project ecosystem 
changes across all scales and trophic levels, and to forecast impact thresholds beyond which 
irreversible changes may occur. We model ecosystem changes in four terrestrial biomes subjected to 
human removal of plant biomass, such as occurs through agricultural land-use change. We find that 
irreversible, non-linear responses commonly occur where removal of vegetation exceeds 80% (a level 
that occurs across nearly 10% of the Earth’s land surface), especially for organisms at higher trophic 
levels and in less productive ecosystems. Very large, irreversible changes to ecosystem structure 
are expected at levels of vegetation removal akin to those in the most intensively used real-world 
ecosystems. Our results suggest that the projected twenty-first century rapid increases in agricultural 
land conversion may lead to widespread trophic cascades and in some cases irreversible changes to 
ecosystem structure.

Human activities are impacting ecosystems across the globe, leading to impaired ecosystem function1, altered 
trophic structure2, trophic cascades3,4 and—with sufficient levels of impact—ecosystem collapse5. Such changes 
can have serious consequences for the human societies that rely on those ecosystems6. Because ecosystems are 
very complex, involving many interacting entities, it is likely that responses to change do not occur linearly, and 
ecosystems under increasing pressure may eventually undergo rapid regime shifts to fundamentally different 
states7,8. For example, coral reefs subject to human disturbance can shift rapidly to an algal-dominated state7,9, and 
loss of top predators can lead to marked shifts in vegetation structure8. However, in many cases these changes are 
not well understood, or predictable, particularly in terms of the threshold of impact beyond which a transition 
will occur. Ecosystems undergoing rapid non-linear changes or regime shifts can exhibit hysteresis, where the 
trajectory followed by the ecosystem subsequent to alleviation of a pressure differs from that during escalation 
of the pressure7. Changes may also be irreversible, with removal of the pressure not leading to a full recovery of 
the system, and possibly leading to the establishment of an alternative state7.

The search for empirical evidence of ecosystem responses to perturbations has tended to use simplified 
experimental systems, or to focus on particular ecosystems; and on incomplete subsets of the species in those 
ecosystems, often top predators, large herbivores or vegetation7,8. However, there are more complete empirical 
studies of a few well-studied systems3,10. An alternative way to explore perturbation responses is to simulate the 
effects of perturbations using ecological models of the structure of complex ecological communities. Widely used 
statistical models11,12 cannot generally capture or predict non-linear and dynamic responses of whole ecosystem 
structure to perturbations13, in part because they do not explicitly model the complex interplay of processes 
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underlying the functioning of ecosystems. However, a few hybrid statistical-mechanistic models do capture 
dynamical changes to some extent14. Alternatively, mechanistic models of specific subsets of the food web in 
particular ecosystems have been used to explore how human perturbations might impact particular species or 
groups of species, and ultimately cause the ecosystem subset to collapse15,16. However, these models do not come 
close to capturing the whole range of organisms within the ecosystem.

In contrast, mechanistic ecosystem models17–20 simulate the underlying biological interactions among individ-
ual organisms, and other processes structuring ecosystems. Therefore, these models can begin to capture complex 
and dynamic interactions, and so are, in principle, much better suited to predicting dynamical changes and novel 
configurations in whole ecosystems. Applications of mechanistic ecosystem models that capture more than just 
primary producers, to predict the impacts of human activities have mostly been focused on marine ecosystems21, 
although the ecosystem model that we use here has previously been applied to understand the impacts of habitat 
fragmentation22. Dynamic Global Vegetation Models are widely used for understanding human impacts on pri-
mary producers23, but do not capture organisms at higher trophic levels17. We use a general ecosystem model that 
represents all plants and non-microbial heterotrophic organisms within ecosystems (as ‘functional groups’, within 
which organisms are assumed to play a similar role in the ecosystem), the age- and size-structuring of ecosystems, 
processes such as metabolism and growth, predator–prey interactions, and spatial interactions between different 
locations. We ask whether collapses are likely to occur in more complex ecological systems. This approach also 
allows us to apply the same general ecosystem model to four very different ecosystems.

We use the Madingley Model20, a general ecosystem model, to simulate human impacts on the fundamental 
structure of a complex terrestrial ecosystem, including all autotrophs and all heterotrophs larger than 10 μg. 
In sample ecosystems within four terrestrial biomes, spanning the major global productivity and seasonality 
gradients (Table 1), we ask how ecosystem-level properties—including both total biomass and functional prop-
erties—respond to the imposition of human perturbations, and in a second set of simulations we explore how 
ecosystems respond to the subsequent removal of human perturbation. Specifically we ask: (1) whether responses 
to perturbations of broad-scale ecosystem properties (biomasses and abundance) are non-linear; (2) whether 
high-level functional properties of ecosystem also respond to perturbation; (3) whether ecosystems recover to 
pre-perturbation states, or whether impacts lead to alternative states after recovery.

Land use is one of the primary human perturbations to terrestrial biodiversity globally11, and removal of 
plant biomass is one of the main manifestations of human use of the land, both as a result of converting natural 
vegetation to human use, and subsequently harvesting plant biomass from agricultural areas24. We used removal 
of plant biomass, expressed as a fraction of net primary production (NPP), as a proxy for the impacts of land 
use on ecosystems. Analysis focuses on uniform perturbations to ecosystems across a 3 × 3 grid at 1° spatial 
resolution, and does not consider landscape-wide effects of habitat fragmentation that have been considered 
elsewhere22. Human land use has additional effects on ecosystems besides the simple removal of vegetation, such 
as loss of vegetation vertical structure25 and changes in local climatic conditions26. We are not able to capture 
these changes in the Madingley Model currently, and since these changes are likely to cause additional declines 
in biodiversity their omission likely means that our results are conservative. Obtaining a sufficient understanding 
of such changes to permit their inclusion in future modelling exercises will allow a more complete understanding 
of human impacts on ecosystems.

As expected, as levels of NPP removal increased, the biomass in all trophic levels and the abundance of herbi-
vores, omnivores and carnivores were all reduced (Figs. 1 and 2). The maximum level of NPP removal currently 
experienced by real-world ecosystems is 94%24. At this level of human pressure, changes to ecosystem structure 
in the modelled system were profound, with losses of biomass and abundance greater than 60% in all modelled 
ecosystems, and approaching 100% losses in many cases (Figs. 1 and 2). The functional properties of ecosystems 
also responded strongly to perturbation (Fig. 3). The ranges of both body masses and trophic levels present in 
the ecosystem declined substantially (Fig. 3), supporting suggestions that human impacts are simplifying the 
structure of ecosystems8. The trophic level reduction was driven entirely by the loss of organisms at high trophic 
levels, i.e. top predators, because plants and herbivores were never completely lost from ecosystems (Appendix 
1, Figure S2); for body mass range both the largest and smallest organisms were often lost, although the pattern 
varied across simulated ecosystems (Appendix 1, Figure S3). As suggested previously by empirical studies of 
subsets of organisms within ecosystems8,27, mean trophic level also declined (Fig. 3).  

In most cases responses to human pressure were non-linear (shown by departures from the dashed line at 
y = 100 − x in Figs. 1 and 2). The non-linearity was more pronounced: (1) for biomass than for abundance; (2) for 
organisms in the higher trophic levels; and (3) for the two locations with low seasonality, whether of high (Fig. 1a) 
or low overall productivity (Fig. 1d). The disproportionate non-linearity in the responses of high trophic levels 
is likely because of the dynamic nature of predator–prey interactions and because the resources for predators 
are scarcer and more patchily distributed in nature, making predators more sensitive to bottom-up resource 

Table 1.   Locations and characteristics of the ecosystems simulated.

Country Longitude Latitude Productivity Seasonality Panel letter in figures

Uganda 33 2 Very high Low a

France 4 48 Moderately high High b

China 91 38 Moderately low High c

Libya 13 30 Very low Low d
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limitation. In the high-productivity, low-seasonality system, non-linear responses to perturbation occurred 
because higher trophic levels persisted until a high proportion of plant biomass was removed. This system was 
characterized by a very low natural ratio (0.15%) of heterotrophs to autotrophs (Appendix 1, Figure S4), meaning 
that top-down forces are likely more important in structuring the system than bottom-up resource limitation, at 
least under conditions of low plant biomass removal. In the low-productivity, low-seasonality (desert) system, 
non-linear responses occurred because heterotrophs were lost very rapidly, even at low levels of perturbation. 
This system had a very high ratio (8.9%) of heterotrophs to autotrophs, and very low plant biomass, placing a 
high degree of resource limitation, and thus sensitivity to resource reduction, on higher trophic levels. The impact 
threshold at which the most rapid changes occurred (in terms of both level of human pressure and the intact-
ness of the ecosystem prior to the rapid changes) varied depending on location and on the property measured 
(compare panels a–d in Figs. 1, 2 and 3). For example, in the highly productive and aseasonal tropical-forest 
system, rapid changes in ecosystem structure occurred only for levels of vegetation removal greater than 50%, 
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Figure 1.   Impact, relative to an undisturbed state, of the removal of net primary production (NPP) on the 
biomass of organisms in different trophic levels—autotrophs (grey), herbivores (green), omnivores (purple) and 
carnivores (red)—in four ecosystems: (a) high productivity, aseasonal (Uganda); (b) relatively high productivity, 
highly seasonal (France); (c) relatively low productivity, seasonal (Gobi Desert, China); and (d) low productivity, 
aseasonal (Libyan Desert). Ecosystems were subjected to levels of NPP removal that increased by 1% per year for 
between 0 and 90 years, resulting in maximum levels of NPP removal ranging between 0 and 90%. Values shown 
here are the ecosystem properties after 100 years since the onset of impact. Error bars show ± 95% confidence 
intervals; open points show levels of impact for which at least one of the time series did not show a significant 
negative trend (according to a Mann–Kendall test, run using the ‘Kendall’ package Version 2.246 in R Version 
3.3.344, P < 0.05). The grey, horizontal dashed line indicates projected values for unimpacted ecosystems. The 
diagonal dashed line indicates the impact expected if that impact occurred in direct proportion to the amount of 
plant productivity removed (i.e. y = 100 − x).
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whereas for the lower-productivity systems, rapid changes occurred even at very low levels of vegetation removal 
(Figs. 1 and 2).

The non-linear behaviour of ecosystems predicted here is supported by empirical evidence suggesting that 
gradual increases in levels of impact can lead to abrupt shifts between alternative stable states7. However, our 
results go further in suggesting the existence of threshold levels of impact (varying here from less than 50% to 
greater than 90% removal of vegetation biomass, depending on the ecosystem simulated) beyond which eco-
systems undergo almost complete collapse to a state of greatly reduced complexity and diversity, and minimal 
biomass. Importantly, levels of removal of plant biomass currently experienced in the most intensively used 
ecosystems (94% of primary productivity removed by humans24) are on the edge of such thresholds.

Under the highest observed levels of human pressure, changes to ecosystem structure were substantial and 
often irreversible (Fig. 4). Gradually increasing vegetation removal to 95% and then gradually reducing it back 
to zero, led to temperate forest, temperate arid and desert ecosystems that were substantially altered compared 
to before perturbation. Irreversibility was more likely for higher trophic levels and in less productive ecosystems 
(Fig. 4). This is likely because landscape-wide biomasses were more likely to reach very low levels for high trophic 
levels and in less productive ecosystems (Fig. 1), with a corresponding reduction in functional diversity (Fig. 3), 
making rescue effects from immigration much less likely. Irreversibility was less pronounced, but still present, 
for lower levels of removal of plant biomass—up to 80%, or up to 90% (Appendix 1, Figures S5 and S6)—levels 
of plant-biomass removal already estimated to occur across 9.4% and 0.03% of the terrestrial area, respectively24.

The irreversibility of human impacts is relevant to ongoing discussions about ecosystem restoration28, sug-
gesting that without external interventions restored ecosystems may be unlikely to approach the structure or 
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Figure 2.   Impact, relative to an undisturbed state, of removal of net primary production (NPP) on the 
abundance of organisms in different trophic levels—herbivores (green), omnivores (purple) and carnivores 
(red)—in four ecosystems: (a) high productivity, aseasonal (Uganda); (b) relatively high productivity, highly 
seasonal (France); (c) relatively low productivity, seasonal (Gobi Desert, China); and (d) low productivity, 
aseasonal (Libyan Desert). Simulations and plotting conventions are as in Fig. 1.
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function of their natural state. The context-dependency of the irreversibility suggests that extrapolating effects 
observed for specific ecosystems and ecosystem components to other situations may give misleading results, and 
that further ecosystem-specific analysis is necessary to understand the full suite of idiosyncrasies and contingen-
cies associated with each biome that ultimately inform its susceptibility to irreversible regime shifts.

Ecosystem complexity, unprecedented simultaneous impacts upon them and limited empirical evidence for 
non-linear responses and regime shifts in real ecosystems has led to problems in identifying, at a global scale, 
important thresholds of ecosystem change beyond which increasingly rapid changes are expected. A recent 
attempt to find a ‘planetary boundary’ for biodiversity, beyond which the whole earth system might depart from 
the relatively stable state characteristic of the Holocene, suggested a threshold value of somewhere between 30 
and 90% of the total number of individuals remaining in ecosystems compared with the pre-perturbation state29. 
The very wide uncertainty range makes the proposed boundary of limited use for policy application. Statisti-
cal modelling has suggested that the precautionary upper limit to this planetary boundary has been surpassed 
across much of the Earth’s land surface30. This result, combined with the observation that most ecosystems have 
not ceased functioning, suggests either that lagged effects are likely to manifest in the future, or that the upper 
limit is overly conservative.

Our results suggest that NPP removal pushes ecosystems towards collapse, while fragmentation reduces the 
potential for rescue (as shown elsewhere22). As more of the Earth’s land surface becomes highly impacted by 
humans, it is possible that local or regional shifts will combine, and potentially cascade, to lead to global regime 
shifts in the Earth’s biosphere31. Our results point toward large spatial variation in the location of regime shifts, 
which will be important to predict potential global thresholds, and suggests that mapping such variation in 
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Figure 3.   Impact, relative to an undisturbed state, of removal of net primary production (NPP) on the 
functional structure—mean trophic level (dark blue), trophic range (light blue) and body-mass range (light 
green)—of four ecosystems: (a) high productivity, aseasonal (Uganda); (b) relatively high productivity, highly 
seasonal (France); (c) relatively low productivity, seasonal (Gobi Desert, China); and (d) low productivity, 
aseasonal (Libyan Desert). Simulations and plotting conventions are as in Fig. 1.
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thresholds should become an urgent concern. We also show similar variation in the degree of ecosystem trans-
formation, often irreversible, for a given level of NPP removal, which has profound implications for establishing 
‘safe operating spaces’, levels of perturbation below which the risk of destabilising ecosystems and the services 
they provide is likely to remain low. This variability suggests that defining a ‘planetary boundary’ for biodiversity 
in terms of the intactness of ecosystems29 will be subject to a high degree of contingency and uncertainty, or at 
the very least will need to be defined in terms of regional specifics and ecosystem-to-ecosystem and biome-to-
biome variation. There is mounting evidence that increasing biodiversity increases the stability of ecosystems. 
One prominent mechanism for this is related to the insurance hypothesis32, which results from redundancy in 
ecological functioning and from asynchrony of species responses to changing environments33. Further Mading-
ley Model experiments focusing on the role of diversity in the responses observed here could provide a fruitful 
exploration into these biodiversity-stability mechanisms. There is empirical evidence that the evenness of eco-
logical communities declines with increasing latitude and increasing climatic variability34. Reduced evenness 
could reduce the insurance capacity of these ecosystems. However, we note that there is also evidence that even-
ness alone does not impact the stability of a system, and that overall species richness may be more important35. 
Exploring the relationship between ecosystem stability and community richness in model ecosystems would be 
an interesting line of enquiry.

There are a number of caveats to the analyses. First, for computational tractability we focused on four ecosys-
tems. These ecosystems were selected to represent a set of the major terrestrial climatic gradients. Further work 
would have to be conducted to determine the applicability and transferability of the reported patterns to other 
systems. Second, comprehensive data on ecosystem structure with which to evaluate the predictions of general 
ecosystem models are generally lacking. However, tests against available data suggest that the Madingley Model 
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Figure 4.   Irreversibility of change in total ecosystem biomass during a gradual increase in human impact (solid 
lines), for 95 years by 1% of total primary production per annum to 95% removal; followed by a gradual release 
(dotted lines), by 1% per annum to zero impact. Lines show biomasses in different trophic levels—autotrophs 
(grey), herbivores (green), omnivores (purple) and carnivores (red) in four ecosystems: (a) high productivity, 
aseasonal (Uganda); (b) relatively high productivity, highly seasonal (France); (c) relatively low productivity, 
seasonal (Gobi Desert, China); and (d) low productivity, aseasonal (Libyan Desert). Shading shows 95% 
confidence intervals.
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captures many properties of ecosystems reasonably well20. Third, our ecosystems were simulated in isolation 
(though with a grid of 3 × 3 1° cells), and thus without the possibility for rescue by immigration from adjacent 
less-disturbed areas (although note that rescue from adjacent disturbed areas was possible). In many parts of 
the world there are few such areas from which rescue effects could occur, as they are undergoing a combination 
of increased removal of NPP at local scales36, and habitat fragmentation across the wider landscape, which can 
have important and deleterious effects on biodiversity37,38. Our simulations also excluded the possibility for long-
distance dispersal to rescue populations following human disturbance, which can be important39. Fourth, obligate 
carnivores were predicted to be absent from the simulated desert ecosystem even without human impacts. This 
erroneous prediction probably arises because the Madingley Model does not represent behavioural processes 
that allow predators to exploit scarce food resources, through long-distance migration or disproportionately large 
home range sizes, aggregation around patches of denser food supply, and dormancy. Fifth, we did not account 
for changes in local climatic conditions that are associated with removal of natural vegetation, which are known 
to impact the structure of ecological communities26. Since interactions between climate and land-use change 
are expected most often to be synergistic26, our focus on just land-use change likely makes our results conserva-
tive. Finally, model experiments to disentangle possible mechanisms for the patterns reported here will be an 
interesting avenue to explore in future, but were beyond the scope of the current study.

In conclusion, most attempts to predict the future of ecological communities have focused on species-centred 
measures of diversity40,41, and it has been suggested that loss of species could impair ecosystem function1. Here 
we provide a first-principles demonstration of how human impacts are expected to change the structure of whole 
ecosystems and their functioning, given the complexities that structure those ecosystems. We demonstrate a 
profound expected impact of the removal of net primary production (NPP)—one of the most important ways 
that humans influence the biosphere24—on the fundamental structure of ecosystems. We demonstrate that eco-
systems are expected to show non-linear responses to human perturbations, undergoing a rapid collapse at high 
but realistic levels of impact. Under more moderate levels of impact, ecosystems are not expected to collapse, 
but nonetheless undergo major shifts in functional structure. After release from impact, ecosystems cannot be 
expected to recover to their pre-perturbation state, at least in the absence of external rescue effects. Defining a 
safe operating space for biodiversity will therefore be difficult, as modelled ecosystems appear to be irreversibly 
transformed substantially before levels of perturbation that would cause collapse, and levels of impact leading 
to substantial ecosystem changes varied strongly among ecosystems. Fundamentally, our results suggest that the 
predicted increases in NPP appropriation by humans in the coming century36 will cause profound and potentially 
irreversible ecosystem changes, with unknown but almost certainly negative consequences for humanity. The 
complexity of real ecosystems is not necessarily sufficient to buffer them against collapse.

Methods
The Madingley Model.  We simulated ecosystems in the Madingley Model. The Madingley Model is a 
mechanistic General Ecosystem Model that simulates the dynamics of all photoautotrophs, and all heterotrophs 
with body masses above 10 μg that feed on living organisms20. Organisms are characterized by a combination of 
functional traits rather than by species identity. Categorical traits are used to group organisms into a set of func-
tional groups—for example, leaf strategy and mobility for autotrophic organisms; trophic level (herbivores, omni-
vores and carnivores), reproductive strategy (semelparity vs. iteroparity), thermoregulatory mode (endothermy 
vs. ecothermy) and mobility for heterotrophic organisms. Continuous traits—total biomass of autotrophs; and 
current body mass, juvenile body mass, adult body mass, and optimal prey size of heterotrophs—also determine 
the outcome of ecological processes. The full source code for the Madingley Model with all necessary input data 
can be downloaded freely at https​://githu​b.com/Madin​gley. Alternatively, a pre-compiled version—ready to run 
the simulations and with all input data—can be downloaded at https​://dx.doi.org/10.6084/m9.figsh​are.65311​94.

Autotrophic organisms are represented as stocks of plant biomass, and the temporal change of these stocks 
is modelled through the processes of primary productivity, growth and mortality (including from herbivory). 
Heterotrophic animals are represented in the model as cohorts, which are collections of individual organisms 
occurring in the same modelled grid cell with identical categorical and very similar continuous functional traits. 
We could not represent individual organisms for computational reasons17 but the cohort approach enabled the 
model to predict emergent properties of individuals20. Performance of animals and interactions among them are 
captured in the ecological processes of eating, metabolism, reproduction, mortality and dispersal. The ecological 
processes of autotrophs and heterotrophs occur within, and are influenced by, the environment. For the terres-
trial realm, which was the focus of this study, the environment is represented by air temperature, precipitation, 
soil water availability, number of frost days, and seasonality of primary productivity. The model can be run at 
varying spatial and temporal resolutions, but has been tested principally with 1° and 2° grid cells, and with time 
steps of one month20. Within each grid cell, the environment is assumed to be spatially homogeneous. This is an 
important limitation of the model in its current form.

Perturbation simulations.  At each of four locations (Table 1), we subjected a 3 × 3 grid of 1° × 1° grid 
cells to different levels of vegetation removal. Removal of vegetation was simulated by allowing a proportion of 
the primary production in a given cell to be appropriated for human uses: this was defined as a proportion of 
primary production rather than a proportion of total plant biomass, for comparability with global datasets24. 
Primary production was calculated as a function of climate20. Appropriated biomass was assumed to become 
entirely unavailable to organisms in the modelled ecosystems.

Vegetation removal was applied to the model following two protocols. Ten replicates of both protocols at each 
level of human impact were applied to each of ten simulated ecosystems, which had first been run for 1,000 years 
with no human impacts to allow dynamic steady-state ecosystems to emerge. All simulations were run with a 

https://github.com/Madingley
https://dx.doi.org/10.6084/m9.figshare.6531194
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time step of one month. At the end of the no-impact initialization simulations, the model states for each of the 
ten replicate ecosystems were saved and used as input to the human-impact simulations. Contemporary monthly 
climate data were used throughout all simulations. The same monthly climatic values were used in every simu-
lation year (i.e. we did not include inter-annual climatic variability). Temperature, precipitation, and diurnal 
temperature range data were derived from Microsoft Research’s FetchClimate tool42. Available soil water capac-
ity estimates were taken from a global dataset43. We did not account for the effect that vegetation removal may 
have on local climatic conditions within ecosystems26, which would be an interesting avenue for future study.

The first protocol (Appendix 1, Figure S1a), which was used for most of the results presented, involved 
gradually increasing the level of pressure (1% increase per year) until different specified levels of impact were 
reached, ranging from 0% removal to 90% removal of primary production. Once the specified level was reached, 
the ecosystem was subjected to this level of impact until a total of 100 years had elapsed (from the point at which 
the escalation of impact began).

The second protocol (Appendix 1, Figure S1b) was used only to test whether ecosystems recovered to the 
pre-perturbation state after gradual removal of human pressure (i.e. whether responses to human perturbations 
were reversible). This protocol involved gradually increasing the level of pressure (1% increase per year) until 
95% of primary production was removed (just above the maximum level currently experienced by any terrestrial 
ecosystem24). We also repeated these simulations with maximum rates of removal of 80% and 90% of primary 
production, to test the sensitivity of the results. Once these maximum levels were reached, the impact was gradu-
ally decreased (by 1% per year) back to zero impact. These simulations were used to test whether ecosystems 
showed irreversible responses to impact.

We simulated four locations with different natural environmental conditions (Table 1): (1) high productiv-
ity, aseasonal (tropical forest in Uganda); (2) relatively high productivity, seasonal (temperate forest in Cen-
tral France); (3) relatively low productivity, seasonal (Gobi Desert, China); and (4) low productivity, aseasonal 
(Libyan Desert). The same level of impact was applied to all nine grid cells in the simulated grid.

Output metrics.  All model outputs were processed using R Version 3.3.344. At each monthly time-step, we 
calculated the following measures of ecosystem structure and functional composition: biomass of autotrophs, 
herbivores, omnivores and carnivores; abundance of herbivores, omnivores and carnivores; the range of body 
masses and trophic levels, and the mean trophic level of organisms present.

We calculated the trophic index of each cohort (collections of organisms occurring in the same grid cell and 
with similar traits) as a continuous value based on its trophic interactions. Using an adaptation of the equation 
used by Christensen and Pauly45 we calculated the trophic index at time step t for a cohort i (Ti) based on the 
mean trophic index of all prey items weighted by the dietary fraction each represents for i:

where j is a prey cohort, from among all cohorts NC in the grid cell; Nj is the abundance, Mj the total mass (includ-
ing reproductive potential mass) and Tj the trophic index of prey cohort j; Ti,j is the fraction of cohort j eaten by 
predator cohort i; k is an autotroph stock eaten, from among all stocks NS in the grid cell; Bk is the biomass and 
Tk the trophic index of the stock (Tk = 1); Pi,k is the fraction of stock k eaten by cohort i. For the calculation of the 
fraction of prey cohorts and plant stocks eaten, and parameters for the relevant equations, see Ref.20.

The mean trophic level was calculated as the arithmetic mean trophic index across all cohorts weighted by 
the total biomass in each cohort:

Trophic-level range at time t was calculated as the difference between the maximum and minimum trophic 
indices across all cohorts i in a grid cell, standardized by dividing by the difference between a hypothetical 
maximum (Tmax = 40.0) and the minimum possible (Tmin = 1.0) trophic indices:

Body-mass range at time t was similarly calculated as the difference between the maximum and minimum 
body masses across all cohorts i in a grid cell, standardized by dividing by the difference between the maxi-
mum (Mmax) and minimum (Mmin) potential body masses allowed in the model (0.00001 g and 150,000,000 g, 
respectively):

There is a README file within both of the model downloads (links given above) that explains the practicali-
ties of running the simulations with the Madingley Model. This information is also given in Appendix 2.

Data availability
This paper is simulation based and so there is no raw data. All of the source code required to run the simulations 
is publicly available (see “Methods”).

(1)Ti = 1+
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)
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)

∑NC
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(

Nj .Mj .Pi,j
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+
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