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Association of self‑regulation 
with white matter correlates 
in boys with and without autism 
spectrum disorder
Hsing‑chang ni1,2, Hsiang‑Yuan Lin3,4,5, Wen‑Yih Isaac Tseng6,7* & Susan Shur‑fen Gau2,3,6*

previous studies demonstrated distinct neural correlates underpinning impaired self‑regulation 
(dysregulation) between individuals with autism spectrum disorder (ASD) and typically developing 
controls (TDC). However, the impacts of dysregulation on white matter (WM) microstructural property 
in ASD and TDC remain unclear. Diffusion spectrum imaging was acquired in 59 ASD and 62 TDC boys. 
We investigated the relationship between participants’ dysregulation levels and microstructural 
property of 76 WM tracts in a multivariate analysis (canonical correlation analysis), across diagnostic 
groups. A single mode of brain‑behavior co‑variation was identified: participants were spread 
along a single axis linking diagnosis, dysregulation, diagnosis‑by‑dysregulation interaction, 
and intelligence to a specific WM property pattern. This mode corresponds to diagnosis‑distinct 
correlates underpinning dysregulation, which showed higher generalized fractional anisotropy (GFA) 
associated with less dysregulation in ASD but greater dysregulation in TDC, in the tracts connecting 
limbic and emotion regulation systems. Moreover, higher GFA of the tracts implicated in memory, 
attention, sensorimotor processing, and perception associated with less dysregulation in TDC but 
worse dysregulation in ASD. No shared WM correlates of dysregulation between ASD and TDC were 
identified. Corresponding to previous studies, we demonstrated that ASD and TDC have broad distinct 
white matter microstructural property underpinning self‑regulation.

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that encompasses the impairments in social 
interaction and communication and restricted, repetitive patterns of  behaviors1. Besides the core symptoms, 
impaired self-regulation (namely dysregulation) in ASD is also  common2,3. Generally, individuals’ optimal self-
regulation can facilitate flexible modification of their interoceptive state and modulation of response to extero-
ceptive  stimuli4. Suboptimal self-regulation is associated with heightened risk for affective  psychopathology5 
and maladaptive  behaviors6–8. Dysregulation in ASD also links to higher use of psychiatric services, more social 
impairment, lower family quality of life, and more depressive and anxiety  symptoms9–13. Dysregulation associated 
with ASD may be explained by co-occurring psychiatric disorders, maladaptive strategies, less-frequent use of 
cognitive reappraisal, and inherent autistic  psychopathology2,14,15.

Self-regulation is a theoretically complex construct, which involves the affective, behavioral, and cognitive 
 control16. Specifically, emotion regulation involves dual processes, which initiate regulation contingent on explicit 
and implicit goals as supported by controlled and automatic processes,  repsectively17. Cognitive control interacts 
with motivation and may be treated as a domain of reward-based decision  making18. Behavioral regulation is 
theoretically associated with belief salience measures, past behavior/habit, perceived behavioral control, self-
efficacy, moral norms, self-identify, and affective  beliefs19. However, such essential elements of self-regulation 
tend to work synergistically and show ongoing and dynamic modulation of each  other16. Correspondingly and 
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similarly, neural correlates of affect regulation implicate the amygdala, insula, ventromedial prefrontal (vmPFC)/
orbitofrontal (OFC) cortex, ventrolateral (vlPFC), dorsolateral prefrontal cortex (dlPFC), and anterior cingulate 
 cortex17. These prefrontal and cingulate components of affect regulation encompass the key regions involved in 
 cognitive18 and behavioral  control20. Of note, different striatal and subcortical regions may distinctly contribute 
to  affect21,  cognitive22, and behavioral  control23.

To sum up, affect, behavioral, and cognitive control teams up with each other to facilitate self-regulation. 
Following this collective perspective, the level of dysregulation could potentially be measured by the Child Behav-
ioral Checklist-Dysregulation Profile (CBCL-DP)24, which characterizes co-occurring elevations on the Anxi-
ety-Depression (affect), Aggression (behavior), Attention (cognition) subscales on the CBCL in both  clinical24 
and non-clinical  populations25. Previous study demonstrated that the CBCL-DP is different from CBCL total 
scores and specific for distinct adult  outcomes26. The CBCL-DP profile has been shown to estimate the deficit 
emotional self-regulation and predict the functional impairment across several psychiatric  disorders27. We also 
have applied this CBCL-DP to investigate  structural28,29 and intrinsic functional  correlates30 of dysregulation 
associated with ASD.

Despite the increasing understanding of the importance of self-regulation in ASD, the neural correlates under-
lying self-regulation in ASD are far from  conclusive31. For example, using functional magnetic resonance image 
(fMRI), Richey et al.32 found children with ASD, relative to TDC, have less increase in the nucleus accumbens and 
amygdala and less change in the dlPFC activation during cognitive reappraisal of faces. Pitskel et al.33 found TDC 
show downregulation of bilateral insula and left amygdala while children with ASD show no modulation of insula 
and upregulation of the left amygdala on the decrease trials of emotional responses to disgusting images. Based 
on the CBCL-DP, our recent resting-state fMRI study demonstrated that ASD and TDC have distinct intrin-
sic functional connectivity in relation to  dysregulation30. Overall, these fMRI studies have demonstrated that 
ASD and TDC appear to have different regional brain activities and connectivity in processing self-regulation. 
However, investigations based on structural MRI suggest the hypothesis asserting distinct neural mechanisms 
underpinning self-regulation in ASD and TDC remains  contentious28,29.

As the development of white matter (WM) connectivity speaks to coordinated gray matter growth and func-
tional network organization, WM tracts interconnecting the preceding regions may also distinctly relate with 
dysregulation in ASD. Diffusion-weighted MRI (dMRI) is a powerful method to characterize the organization 
and architecture of WM  fibers34, by estimating the water diffusion profile in the brain. Although prior reports 
have applied dMRI to portray diagnosis-distinct WM microstructural properties in several psychiatric disorders 
with impaired self-regulation, such as major depressive  disorder35, and bipolar  disorders36, only one study has 
explored dimensional WM correlates of self-regulation in healthy  adults37. Vandekerckhove et al.37 demonstrated 
that groups using high and low bottom-up emotional regulation have different WM microstructural proper-
ties in the tracts supporting emotion regulation, cognitive and motor control, and sensory affective processing 
information. Earlier literature suggests that the most consistent alterations of WM microstructural properties 
and organization in ASD involve corpus callosum and superior longitudinal  fasciculus38,39, which might also be 
implicated in self-regulation given their respective roles in whole-brain information integration (corpus callo-
sum) and communication within frontoparietal and frontotemporal systems (superior longitudinal fasciculus)40. 
Nonetheless, to our best knowledge, no study has yet investigated WM correlates underpinning dysregulation 
in ASD, which hampers a better understanding of this critical problem in ASD.

To investigate WM correlates of dysregulation in intellectually able boys with ASD and TDC boys, we lever-
aged recent advances in multivariate analysis, canonical correlation analysis (CCA)41, and the diffusion spec-
trum imaging (DSI)  tractography42. DSI, relative to popular diffusion tensor imaging (DTI), was intentionally 
adopted to enable the detection of crossing WM fiber bundles, which have pronounced effects on  tractography43. 
We hypothesized that the ASD and TDC groups would have distinct associations of dysregulation with micro-
structural property in widespread WM tracts, which interconnect regions involved in cognitive, affective, and 
behavioral controls.

Results
The ASD and TDC groups in the main sample (59 ASD and 62 TDC) had comparable demographic features, 
including age, handedness, intelligence, and in-scanner head motion levels (signal dropout counts) and DSI 
data signal-to-noise ratio (SNR) (Table 1). The psychiatric comorbidity and concurrent methylphenidate use is 
shown in Supplementary Table 1.

Seventy-six white matter tracts of the whole brain were identified by the tract-based automatic analysis 
(TBAA)  method42, and their generalized fractional anisotropy (GFA) values were  calculated44. After controlling 
for age linear and squared terms, signal dropout counts, and SNR, the diagnostic differences in WM property 
did not survive correction for multiple tests by false discovery rate,  FDR45 (Supplementary Table 2).

CCA applies a multivariate approach to identify latent linear brain-behavior  relationships41 between sets of 
independent (behavioral measures) and dependent (brain measures)  variables46. The first mode of CCA estimates 
the maximum co-variation between these two sets of the brain and behavioral measures. The maximum residual, 
orthogonal co-variation is represented by subsequent modes. One significant mode (r = 0.59, FWE-corrected 
p = 0.005) of interdependencies between WM property patterns and the diagnosis, diagnosis by dysregulation 
interaction and general cognitive function (full-scale intelligence quotient, FIQ) (Fig. 1A and Supplementary 
Table 3) was identified by CCA. Specifically, lower GFA values of 3 tracts, including the left uncinate fasciculus, 
left inferior longitudinal fasciculus (ILF) and genu of the corpus callosum, were positively associated with higher 
dysregulation in ASD, but lower dysregulation levels in TDC (Fig. 1B, Table 2 and Supplementary Table 4). FIQ 
and diagnosis (as expressed as ASD > TDC) were also negatively associated with WM property patterns of this 
set of tract bundles. The directions of the diagnostic differences which drove this set of WM tracts identified 
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in the first CCA mode were compatible with that found in the conventional generalized linear model (Supple-
mentary Table 2).

On the other hand, higher GFA values of 16 tracts were positively associated with higher dysregulation 
in ASD but lower dysregulation levels in TDC (Fig. 1C, Table 2, and Supplementary Table 4). These 16 tracts 
included the main body and hippocampal components of the left cingulum, the hand and mouth part of the 
left corticospinal tract, the toe, trunk and throat part of bilateral corticospinal tracts, the left thalamic radiation 
linking to the precentral gyrus and auditory nerve, the right thalamic radiation linking to the postcentral gyrus, 
the right frontal aslant tract, the left medial lemniscus, and the posterior commissure, the left thalamic radiation 
linking to the precentral gyrus and auditory region, the right thalamic radiation linking to the postcentral gyrus, 
the right frontal aslant tract, the left medial lemniscus and the posterior commissure. The other 3 modes did 
not capture any additional meaningful association between patterns of WM property and behaviors (p = 0.080, 
0.229, 0.479, respectively).

To test the robustness of our results, we adopted two strategies. First, we implemented a “leave-five-out per 
diagnostic group” sensitivity analysis with 1,000 permutations. The average p value of the first CCA mode was 
0.015, and 95.3% of p values among these 1,000 permuted CCA was smaller than 0.05. Besides, we implemented 
the same CCA in the originally recruited sample (87 ASD and 77 TDC), which exhibited significant between-
group differences in age and intelligence (Supplementary Table 5). This additional CCA also identified one 
significant mode (r = 0.61, FWE-corrected p = 0.032; Supplementary Table 6) of interdependences between WM 
property patterns and diagnosis by dysregulation interaction and FIQ. Similarly distinct pattern of WM property 
and dysregulation in ASD and TDC was also found in this larger originally-recruited sample (Supplementary 
Fig. 1). The set of WM bundle tracts as identified in this additional CCA (Supplementary Table 7) overlapped 
with some of those from the initial results (8 out of 19), but showed largely consistent patterns in the involved 
functional systems (Supplementary Table 8).

Discussion
The current study is the first to investigate the neural correlates underpinning self-regulation in ASD and 
TDC based on WM microstructural property. By using the state-of-the-art DSI tractography and multivariate 
approach, we observed that ASD and TDC had distinct associations of self-regulation with microstructural 
property in diverse WM tracts, which may further contribute to altered strategies and the presentations of emo-
tion regulation and cognitive control in ASD.

We identified that lower GFA values were associated with higher dysregulation in ASD but lower dysregula-
tion in TDC in the left ILF, left uncinate fasciculus, and genu of the corpus callosum. The ILF interconnects the 
anterior temporal pole (affective) and occipital lobe (visual) and is involved in face recognition, semantic process-
ing, visual memory, and  emotion47. Earlier studies demonstrated the strong association of ILF and recognition of 
facial  emotions48,49. Lesions corresponding to the ILF are associated with impaired processing of affective facial 
 expressions50. The uncinate fasciculus is an association tract that connects the amygdala and hippocampus with 
the orbitofrontal cortex and supports emotional  empathy51 in patients with hemispheric stroke, and emotion 
 regulation52 in neurotypical adults. Moreover, the microstructural integrity of the uncinate fasciculus is signifi-
cantly correlated with the performance on the emotionally reading the mind in the Eyes Task in neurotypical 
 adults53 and can identify the at-risk group for bipolar disorder and the group with non-bipolar psychopathology 
(i.e., depression and ADHD)54. The genu of the corpus callosum is a commissure tract connecting the bilateral 
orbitofrontal cortex, which is critically implicated in emotion  regulation55, as well as connecting medial and 
lateral surface of the frontal regions. Previous studies demonstrated that the microstructural integrity of the genu 

Table 1.  Demographic and clinical features of the main sample. a Based on the current behavior algorithms. 
ASD, autism spectrum disorder; TDC, typically developing controls; IQ, intelligence quotient; SD, standard 
deviation.

Mean (SD)
ASD
(n = 59)

TDC
(n = 62)

Statistics
P value

Age (years) 12.5 (1.7) 12.0 (2.1) 0.199

Handedness, right (%) 55 (91.7) 60 (96.8) 0.432

Full-scale IQ 106.6 (14.3) 110.2 (11.3) 0.129

Verbal IQ 107.1 (14.1) 110.1 (10.9) 0.214

Performance IQ 105.1 (16.2) 109.1 (13.1) 0.150

Impaired self-regulation 204.8 (42.9) 151.0 (30.8) < 0.001

Autism diagnostic interview-reviseda

Social 9.7 (5.3) –

Communication 8.8 (4.1) –

Repetitive and stereotyped behaviors 5.1 (2.7) –

Head motion and image quality

Signal-to-noise ratio 27.9 (2.9) 27.3 (2.6) 0.217

Signal dropout counts 13.7 (15.6) 10.8 (12.5) 0.259
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of CC correlated with suicidal behaviors in bipolar  disorder56 and several emotional dysregulation associated 
psychiatric disorders including borderline personality  disorder57, major depressive  disorder58, bipolar  disorder59, 
and post-traumatic stress  disorder60.

Jointly, the WM tracts mentioned above interconnecting prefrontal components, the OFC and limbic, and 
visual and affective systems, are critical in the self-regulation of socio-emotional  behaviors31. The result that 
higher GFA values of this set of circuitries were associated with a dysregulation in TDC is largely consistent with 
 WM37,  functional17 and morphometric  correlates61 of self-regulation, as reported in earlier literature on neuro-
typical adults. Notably, the direction of this brain-behavior relationship reversed in the ASD group (diagnosis by 
dysregulation interaction), suggesting that ASD and TDC have different patterns of associations between dys-
regulation and white matter microstructural  property32,33,62,63. Our results endorse the hypothesis that alterations 
in circuitries linking OFC and limbic systems contribute to dysregulatory socioemotional behaviors in  ASD31.

Simultaneously identified in this significant CCA mode, higher GFA was associated with higher dysregulation 
in ASD but lower dysregulation in TDC in several major fiber traits, as described below. The central part of the 
cingulum bundle (dorsal cingulum) is implicated in  attention64,65 and executive control, and emotion. The hip-
pocampal part of the cingulum (ventral or parahippocampal cingulum) is closely linked to the learning, episodic 
 memory66, and manage  emotion67. The corticospinal tract, connecting the brain stem and primary motor cortex, 
mainly supports motor processing and voluntary  movement68. The subdivisions of these corticospinal tracts are 
based on previous  reports68,69. Interestingly, the microstructural property of the corticospinal tract is also sug-
gested to be associated with understanding  emotions67. The thalamic radiations of precentral and postcentral 
parts connect the thalamus with precentral and postcentral gyrus and are critical relays within the motor and 
somatosensory  network70,71. The left medial lemniscus connecting the thalamus and brain stem is associated with 

Table 2.  Similar and different associations between dysregulation and GFA values between autism spectrum 
disorder (ASD) and typically developing controls (TDC) based on the main sample. CC, corpus callosum; CST, 
corticospinal tract; ILF, inferior longitudinal fasciculus; L, left; R, right; SMA, supplementary motor area; TR, 
thalamic radiation; UF, uncinate fasciculus.

Pattern Tract Connected ROIs Connected ROIs System

Similar association Not significant

Different association

(a) The lower GFA values with the worse regulation in ASD/the better regulation in TDC

Left ILF L_temporal pole Occipital lobe Emotion recognition and visual-
affective integration

Left UF L_orbitofrontal gyrus L_superior temporal pole Emotion regulation

CC of genu L_frontal components, including 
orbitofrontal gyrus

R_frontal components, including 
orbitofrontal gyrus high cortical function regulation

(b) The higher GFA values with the worse regulation in ASD/the better regulation in TDC

L_CST of mouth L_primary motor cortex of mouth 
component Brain stem Motor

L_CST of toe L_primary motor cortex of toe 
component Brain stem Motor

L_CST of geniculate fibers L_primary motor cortex of throat 
component Brain stem Motor

L_CST of trunk L_primary motor cortex of trunk 
component Brain stem Motor

L_CST of hand L_primary motor cortex of hand 
component Brain stem Motor

R_CST of geniculate fibers R_primary motor cortex of throat 
component Brain stem Motor

R_CST of trunk R_primary motor cortex of trunk 
component Brain stem Motor

R_CST of toe R_primary motor cortex of toe 
component Brain stem Motor

L_TR of auditory nerve L_thalamus L_Heschl’s gyrus Sensory processing

L_TR of precentral gyrus L_thalamus L_precentral gyrus Sensorimotor integration

R_TR of postcentral gyrus R_thalamus R_postcentral gyrus Sensory processing

L_cingulum of hippocampal com-
ponent L_cingulate gyrus posterior part L_hippocampus Emotion, memory

L_cingulum of the main body 
component

L_cingulate gyrus (anterior + mid-
dle part) L_cingulate gyrus posterior part Attention, emotion, cognitive control

Posterior commissure Dorsal aspect of the upper end of the 
cerebral aqueduct Bilateral cerebral hemispheres

Pupillary light reflex and upward 
saccade, both related to automatic 
emotion perception

R_frontal aslant tract R_SMA R_inferior frontal gyrus opercular 
part Inhibition

L_medial lemniscus L_thalamus Brain stem Somatosensory
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motor planning and  execution72. The right frontal aslant tract connecting the supplementary motor area and infe-
rior frontal gyrus is associated with executive function especially inhibitory  control73. The posterior commissure 
is a commissural connection between the cerebrums and is suggested to be implicated in upward saccade and 
pupillary responses, which are both related to automatic emotion  perception74. Altogether, these 16 tracts work in 
parallel to support top-down regulation, such as attention and inhibition, as well as bottom-up processes includ-
ing memory, sensory-motor integration, motor processing, and automatic perception. Beyond the facets related 

Figure 1.  Canonical correlation analysis (CCA) mode relating microstructural property of 76 white matter 
tracts to dysregulation levels and cognitive measures across the whole cohort. (A) The CCA analysis identified 
a single significant (FWE-corrected p = 0.005) mode of associations between white matter microstructural 
property and the behavioral variables of interest. The strength and direction of the variance explained by the 
CCA mode are indicated in the figure by the vertical position and font size. (B) Higher dysregulation levels in 
ASD, while lower dysregulation levels in TDC, were negatively correlated with white matter property of a set 
of 3 tracts including the left uncinate fasciculus (UF), left inferior longitudinal fasciculus (ILF) and genu of 
corpus callosum (CC). (C) Higher dysregulation levels in ASD, while lower dysregulation levels in TDC, were 
positively correlated with white matter property of a set of 16 tracts including the main body and hippocampal 
components of the left cingulum (CG), hand and mouth part of the left corticospinal tract (CST), toe, trunk 
and throat part of bilateral corticospinal tracts, left thalamic radiation (TR) linking to the precentral gyrus and 
auditory nerve, right thalamic radiation linking to the postcentral gyrus, right frontal aslant tract, left medial 
lemniscus and the posterior commissure, left thalamic radiation linking to the precentral gyrus and auditory 
region, right thalamic radiation linking to the postcentral gyrus, right frontal aslant tract (FAT), left medial 
lemniscus and the posterior commissure (PC). The tracts depicted here are the tractogram reconstructed in the 
DSI template, which derived from the average of diffusion datasets of 122 healthy  adults42. The exact delineation 
of the tracts varied somewhat between individuals (see Supplementary Fig. 2). R, right; L, left; GFA, generalized 
fractional anisotropy.
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to emotion, the process of self-regulation intricately implicates in several neuropsychological constructs such as 
executive and attention control, response inhibition, motor planning, and emotion reactivity and  regulation16. 
The coordinated interplay between top-down and bottom-up systems is suggested to support many cognitive 
functions included under the ‘self-regulation’ umbrella, such as  attention75,  perception76, behavioral  inhibition77, 
and emotion  generation78. Together with the aforementioned results of tracts connecting OFC, visual, and limbic 
systems, our findings echo an earlier hypothesis conjecturing that emotion dysregulation in ASD might be related 
to cognitive regulation, informative processing, perception, or altered physiological  activity2.

Our speculation that dysregulation in ASD is contributed by a complex interplay between top-down and 
bottom-up systems was further supported by the sensitivity analysis based on the originally recruited sample. 
Despite potential confounding effects from between-group age, intelligence, and DSI SNR differences in this 
larger cohort, around half of the identified tracts in this additional CCA overlapped with that set using the main 
sample. Those seemingly inconsistent tracts identified in the additional CCA were actually also involved in the 
foregoing functional systems (Supplementary Table 8). For example, the left superior longitudinal fasciculus I 
was identified in the WM set from additional CCA, and is involved in regulating motor behaviors and voluntary 
oriented visuospatial  attention79. The left perpendicular fasciculus was a similar case, given its critical role in 
attention and eye movement  control80. These concordant findings also indirectly endorse the validity of using 
the CBCL-Dysregulation, which could exhaustively capture the miscellaneous features of the dysregulation, in 
the present study.

Besides the findings of distinct WM correlates underpinning self-regulation, we also observed interdepend-
ence between FIQ as well as diagnosis, and the aforementioned WM property patterns in the significant CCA 
mode. This result provides evidence to endorse the notion that the level of intelligence may be linked to altera-
tions in neural circuitries that are involved in self-regulation in  ASD31. The direction of diagnostic differences 
in this set of 19 tracts, which partly contributed to the first CCA mode, was compatible with the results from the 
conventional generalized linear model (Supplementary Table 2). However, these autism-associated WM altera-
tions based on the univariate analysis did not survive correction for multiple tests, which are incompatible with 
the previous  studies81. The reasons for this lack of diagnostic differences may be related to some issues. A major 
source of inconsistency is certainly the fact that sample  characteristics82, especially sex  effects83, are confounded.

On the one hand, our male-only sample may reduce sex-related heterogeneity; on the other hand, this 
approach may limit comparability with other studies. Methodologically, the present study applied the template-
based whole-brain tractography based on DSI data (TBAA) to investigate microstructural WM properties, 
particularly  GFA42. Despite its methodological sensitivity and specificity, the current findings should be com-
plemented by other dMRI data, such as high angular resolution diffusion imaging and DTI, other template-
based tract-specific analysis, e.g., tract-based spatial  statistics84, and another approach estimating structural 
 connectivity85. Moreover, despite a high correlation between GFA and fractional  anisotropy86,87, we should refrain 
from directly comparing the findings from DSI and DTI without considering their different biophysical models 
and  assumptions88. In addition, the present null diagnostic difference based on the univariate analysis may reflect 
our emphasis on comparable levels of head motion between ASD and TDC, as emerging evidence has indicated 
that in-scanner motion tends to produce spurious group  differences89.

Some other limitations need to be mentioned. First, the current intellectually able sample of ASD may limit 
the generalization of the present findings to others on the  spectrum90. In addition, considering common co-
occurrence, we included children with ASD co-occurring with ADHD in the study. The ratio of psychiatric 
comorbidity in our ASD group (Supplementary Table 1) is largely compatible with the previous  literature91. 
Nonetheless, this caveat regarding inclusion criteria may influence the present results, as ADHD is also highly 
associated with impaired self-regulation92,93. Furthermore, the concurrent use of methylphenidate might also have 
effects on the WM  microstructure94. Future studies, including individuals with a broader functional presentation 
on the autism spectrum as well as individuals with ADHD-only, could help address this limitation. Second, we 
only used the CBCL to estimate dysregulation levels. Despite the validity of CBCL-Dysregulation24, this profile 
could only capture proxy dysregulation information cardinally containing affective, behavior, and cognitive 
domains. Other approaches, such as emotion dysregulation  inventory95, could be adopted in the future study.

Our results provide the first evidence that ASD and TDC have distinct associations of dysregulation with the 
properties of WM tracts involved in emotion, attention control, sensorimotor processing, and visual-affective 
integration. Our results should be considered robust based on the consistent findings from two different strate-
gies of sensitivity analyses. These findings not only support a notion that self-regulation encompasses multiple 
cognitive processes, but also suggest indispensable diagnosis-specific strategies when advancing therapeutics 
for dysregulation in individuals with ASD.

Methods and materials
participants and procedures. We restricted the recruitment to males because of differences in white mat-
ter properties between ASD girls and boys, and also a relatively low prevalence of female patients with  ASD96,97. 
Study participants hence included 104 Taiwanese boys with ASD from the child psychiatric outpatient clinic 
of National Taiwan University Hospital (NTUH) and 90 TDC boys from similar geographical areas. Structural 
MRI (T1-weighted) data of some participants have been published  elsewhere28. The diagnosis of ASD was first 
assessed by the corresponding author (SSG) based on the DSM-IV-TR and ICD-10 criteria and further con-
firmed by interviewing the parents with the Chinese version of the Autism Diagnostic Interview-Revised (ADI-
R). The age range of participants was 7–17 years, and their FIQ was higher than 70. The intellectual function was 
assessed Wechsler Intelligence Scale for Children–3rd Edition (for those younger than 16 years) and Wechsler 
Adult Intelligence Scale-3rd Edition (for the remaining older participants).
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To confirm the psychiatric comorbid conditions, all the participants accepted the assessment of the Chinese 
version of the Schedule for Affective Disorders and Schizophrenia for School-Age Children–Epidemiological Ver-
sion (K-SADS-E)  interview98–100. The exclusion criteria for ASD and TDC were different. For ASD, we excluded 
the lifetime and current major psychiatric disorders such as schizophrenia, mood disorder, and substance use 
disorders, while autistic participants with the lifetime or current co-occurring attention-deficit/hyperactivity 
disorder, oppositional defiant disorder, learning disorder, and tic disorder were included in our study. To decrease 
the impact of anxiety on our results, the lifetime co-occurring anxiety disorder was included, but current co-
occurring anxiety disorder was excluded. For TDC, we excluded any lifetime and current DSM-IV psychiatric 
disorders such as schizophrenia, mood disorder, anxiety disorder, substance use disorders, ADHD, learning dis-
order, and tic disorder. Participants with current or lifetime severe medical or neurological illness (e.g., epilepsy) 
and psychotropic medication, except methylphenidate, were also excluded from the study. The Research Ethics 
Committee at NTUH approved our study before implementation (200903062R, 201201006RIB; ClinicalTrials.
gov number, NCT00916851, NCT01582256). Besides the ethical standards of the Committee at the NTUH on 
human experimentation, all procedures contributing to this work also comply with the Helsinki Declaration of 
1975, as revised in 2008. Written informed consent forms were obtained from the participants and their parents 
after the detailed face-to-face explanations of the current study objectives and procedures.

Assessments of dysregulation by the Child Behavior Checklist (CBCL). The CBCL is a parent-
reported scale to evaluate the behavioral problems of children aged 4–18. Among 118 items, eight subscales were 
categorized including attention, anxiety/depression, aggression, delinquency, social problems, somatic symp-
toms, thought problems, and  withdrawn101. Raw scores of each subscale were transformed to T-scores with a 
mean of 50 and a standard deviation of 10 based on a norm of typically developing children and adolescents. The 
level of dysregulation was assessed by the sum of the T-scores from 3 subscales including Attention, Aggression, 
and Anxiety-Depression, as defined and used in the previous  studies24,102.

Image acquisition. This study adopted DSI, rather than DTI, for its better capacity to deal with the issues 
of crossing fibers and to unravel complex structural  information103.

T1-weighted images and DSI were acquired on a 3 T MRI system (Siemens Magnetom Tim Trio, Ger-
many) using a 32-channel phased arrayed head coil. High-resolution T1-weight imaging was performed 
using a 3D magnetization prepared rapid acquisition gradient echo sequence: Repetition time (TR)/Echo 
time (TE) = 2,000/2.98 ms; Inversion time = 900 ms; flip angle = 9°; field of view = 256 mm × 192 mm; matrix 
size = 256 × 192 × 208; voxel size = 1  mm3. DSI was performed using a pulsed-gradient spin-echo echo planner 
imaging with a twice-refocused balanced echo  sequence104. The DSI sequence comprised 102 diffusion-encoding 
directions corresponding to the grid points within a half-sphere of the 3D diffusion encoding space (q-space) 
with the maximum diffusion sensitivity value  (bmax) of 4,000 s/mm2105. The grid points had coordinates with equi-
distance of 1 unit, and the coordinates of the grid points (qx, qy, qz) satisfied the relationship:  (qx2 + qy2 + qz2) ≤ r2, 
where r was the radius specified by the DSI scheme. To reduce the scan time, the grid points contained within the 
half-sphere with radius r were acquired. The grid points outside the half-sphere were filled with zeros. Moreover, 
owing to the symmetric property of q space signal about the origin, only half of the q space data in the + z direc-
tion were acquired. For DSI with diffusion data acquired at 102 grid points within the half q space, the radius r 
was set at 3.6. The b values at grid coordinates were scaled according to the corresponding r values, referenced to 
bmax = 4,000 s/mm2 at r = 3. The other parameters were: TR/TE = 9,600/130 ms, FOV = 200 mm × 200 mm, acqui-
sition matrix = 80 × 80, in-plane spatial resolution = 2.5 × 2.5 mm, slice thickness = 2.5 mm, and slice number = 54.

For the control of head motion, all participants were requested to lie still on the table with head movement 
restricted by expandable foam cushions. Besides, the DSI data underwent a quality assurance procedure to 
ensure acceptable in-scanner head motion by counting the number of diffusion-weighted images with signal 
dropout in the DSI  datasets89. DSI datasets with more than 90 signal dropout images were  discarded42. The DSI 
images of each individual (5,508 images per person, 102 (directions / slice) × 54 (slices / head)) were scrutinized 
by calculating the signals in the central square (20 × 20 pixels) of each image. Signal dropout was defined as the 
average signal intensity of an image lower than two standard deviations from the mean of all images (after cor-
recting for its b value)42. Besides, we calculated the SNR based on the signal statistics in two predefined regions 
of interest, one placed in the central slice of the brain and the other in the  background106. DSI datasets with SNR 
lower than 20 were excluded from the analysis.

Seventeen ASD and 13 TDC were excluded from further imaging processing owing to excessive in-scanner 
head motion and low SNR, yielding a sample of 87 boys with ASD and 77 TDC boys (the henceforth ‘originally 
recruited sample’). Our preliminary analysis found significant differences in age and intelligence between ASD 
and TDC. Such differences may strongly confound the findings. Therefore, we further matched the age and 
intelligence between the two groups, yielding a final sample of 59 boys with ASD and 62 TDC boys (the ‘main 
sample’ henceforth) for the initial data analysis. The main results were analyzed based on this main sample of 
59 ASD and 62 TDC. We ran a sensitivity analysis by implementing an additional CCA based on the originally 
recruited sample (87 ASD and 77 TDC). These additional results are shown in Supplementary Tables 5–8 and 
Supplementary Fig. 1.

DSi image reconstruction. The DSI data were reconstructed based on the Fourier relationship between 
the probability density function (PDF) and q-space  signal107. Three-dimensional Fourier transform was per-
formed on the q-space signal, applied with a Hanning filter of 17 units in width, to reconstruct the PDF. The 
orientation distribution function (ODF) was determined by computing the second moment of the PDF along 
each of the 362 radial directions in a sixfold  tessellation108. Herein, WM microstructural properties, specifically 



8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13811  | https://doi.org/10.1038/s41598-020-70836-y

www.nature.com/scientificreports/

diffusion anisotropy (i.e., direction dependence)86 were represented by the GFA  value44, which was estimated 
with the formula: (standard deviation of the ODF)/(root mean square of the ODF)44. The GFA value is the most 
widely accepted measure in DSI and q-ball imaging and has a high linear correlation with the fractional anisot-
ropy value derived based on the diffusion tensor model in  DTI109. Based on the study investigating the plasticity 
in the motor network of stroke  patients110, the observed decreased GFA values might link to disruption or loss 
of the axonal structures, whereas a GFA increase might be related to axonal sprouting or myelin growth. Despite 
this speculation, GFA (or any diffusion anisotropy measure such as fractional anisotropy) is only an indirect 
measures of axonal and myelin properties.

Whole‑brain tract‑based automatic analysis. For the whole-brain tract analysis, the TBAA method 
was used to enable efficient tract-based analysis of the major fiber tracts over the entire  brain42. Briefly, all the 
DSI datasets were first registered to create a study-specific template (SST), which was then registered to the DSI 
template (NTU-DSI-122)111. The DSI template (NTU-DSI-122) is a DSI data set averaged over 122 registered 
DSI datasets of healthy adults. A total of 76 tracts have been constructed by deterministic tractography using 
open software (DSI Studio: https ://dsi-studi o.labso lver.org). We then transformed the predefined 76 fiber tract 
bundles from the DSI template into the individual DSI data sets by transforming the sampling coordinates from 
the DSI template to the SST and then to the individual DSI data sets. GFA values were sampled on the tract coor-
dinates of the 76 tract bundles. In this study, the mean GFA value was calculated from the GFA profile sampled 
along with each tract bundle in each participant. Supplementary Fig. 3 depicts the sample GFA profiles which 
record the GFA variability of the sampled tracts.

Statistical analysis. Data analyses on group comparisons of demographic data and mean GFA values were 
conducted by using SAS 9.4 version (SAS Institute, Cary, NC). The alpha value was preselected at 0.05. The 
demographic data were compared by independent sample t-test (Table 1). The mean GFA values of the whole-
brain white matter tracts between ASD and TDC were compared using the general linear model with a linear 
and square term of age, signal dropout counts, and SNR as covariates (Supplementary Table 2). To control for 
multiple tests in 76 tracts, a false discovery rate (FDR, q) correction was set at q < 0.05.

canonical correlation analysis. We implemented CCA, in steps similar to those previously 
 reported41,112,113, to identify modes that relate WM microstructural property of 76 tracts with dysregulation 
levels and cognitive measures across the whole cohort (ASD + TDC).

In detail, the WM property matrix N1 (76 × 164) was normalized and demeaned per the procedure reported in 
Smith et al.41 (https ://fsl.fmrib .ox.ac.uk/analy sis/ HCP-CCA/hcp_cca.m), resulting in a matrix N2 for subsequent 
analyses. The potential confounding effects of head motion and age (i.e., signal dropout counts, SNR, and linear 
and square terms of age) were regressed from N2 to yield N3. A principal component analysis was then imple-
mented using the FSLNets  toolbox114 to reduce the dimensionality of the deconfounded WM property matrix 
(N3) to twenty eigenvectors (explaining 80.63% of the total variance in the N3 matrix). The data were reduced to 
this resolution to balance between maintaining the information within the datasets and avoiding overfitting the 
CCA. Notably, we acknowledge that no consensus exists for component number  selection115.

Four subject measures were chosen to be included in the CCA: diagnosis, dysregulation levels, diagnosis 
by dysregulation interaction, and FIQ. Four CCA modes, which consisted of weighted linear combinations of 
orthogonalized non-imaging measures and WM property eigenvectors patterns, were generated. Each mode m 
stands for the maximum latent co-variation between these two combinations of the brain and behavioral variates 
in decreasing rank order. The vectors Um and Vm denoted each participant’ weights for subject measures and WM 
property matrices within mode m, respectively:

The vector Um represented the level of which each participant is (positively or negatively) correlated to popu-
lation variation in subject measures within the mode m. The vector Vm is the extent to which each participant is 
correlated to population variation in WM property within the mode m. Rm represented the population covariation 
in the mode m, and was calculated by the correlation between Um and Vm. Familywise error (FWE)-corrected 
alpha < 0.05 was estimated via 10,000 per-mutations of the rows of one matrix relative to the other, to determine 
the statistical significance of each CCA mode.

We next assessed which WM tracts were most powerfully expressed by population variations in the original 
sets of WM property captured by CCA mode m. First, to obtain the relative weight (and directional signs) of 
each tract associated with the WM property patterns within mode m, we correlated Vm with the original WM 
property estimates in N3, resulting in a vector AFm. In line with that has been previously  done41,112,113, the top 25% 
highest absolute values within AFm defined WM tracts, which were most strongly covaried, either positively or 
negatively, with subject behavioral measures.

The other sensitivity analysis for CCA based on the primary sample (59 ASD and 62 TDC) was implemented 
using the ‘leave-five-out per diagnosis group’ approach, with 1,000 permutations. The average p value of the first 
CCA mode from these permutations was calculated.
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