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Viscoelasticity in simple 
indentation‑cycle experiments: 
a computational study
Yu. M. Efremov1*, S. L. Kotova1,2 & P. S. Timashev1,2,3,4

Instrumented indentation has become an indispensable tool for quantitative analysis of the 
mechanical properties of soft polymers and biological samples at different length scales. These types 
of samples are known for their prominent viscoelastic behavior, and attempts to calculate such 
properties from the indentation data are constantly made. The simplest indentation experiment 
presents a cycle of approach (deepening into the sample) and retraction of the indenter, with the 
output of the force and indentation depth as functions of time and a force versus indentation 
dependency (force curve). The linear viscoelastic theory based on the elastic–viscoelastic 
correspondence principle might predict the shape of force curves based on the experimental 
conditions and underlying relaxation function of the sample. Here, we conducted a computational 
analysis based on this theory and studied how the force curves were affected by the indenter 
geometry, type of indentation (triangular or sinusoidal ramp), and the relaxation functions. The 
relaxation functions of both traditional and fractional viscoelastic models were considered. The curves 
obtained from the analytical solutions, numerical algorithm and finite element simulations matched 
each other well. Common trends for the curve-related parameters (apparent Young’s modulus, 
normalized hysteresis area, and curve exponent) were revealed. Importantly, the apparent Young’s 
modulus, obtained by fitting the approach curve to the elastic model, demonstrated a direct relation 
to the relaxation function for all the tested cases. The study will help researchers to verify which model 
is more appropriate for the sample description without extensive calculations from the basic curve 
parameters and their dependency on the indentation rate.

Micro- and nanoindentation (including atomic force microscopy, AFM) have become indispensable tools for the 
quantitative analysis of the mechanical properties of soft polymers and biological samples with the focus on the 
corresponding micro- and nanoscale1–3. Their benefits include a small sample size and simple preparation, an 
easily achievable environmental control (e.g. a temperature-controlled fluid cell), a possibility of region-specific 
mapping and coupling with optical techniques. The purpose of the indentation analysis is to link the indenta-
tion data to the meaningful mechanical properties of the sample. Biological samples generally possess time-
dependent viscoelastic properties, which can be observed at both the tissue and cellular levels. The important 
role of viscoelastic properties, as opposed to a purely elastic behavior, has been shown in the studies of different 
cell phenomena including cancer4,5, contractile prestress6, and response to the substrate stiffness7. Mathematical 
models are used to describe the viscoelastic behavior in terms of the relaxation functions. A set of traditional and 
fractional linear viscoelasticity models are used to describe the sample properties and facilitate the comparison 
of the parameters across different studies8–10.

Recently, a large variety of indentation-based methods have been developed to measure and map viscoelas-
tic properties6,11–15. Most of them are using modifications of the testing protocol by including constant stress 
or constant strain phases and oscillatory indentation. However, there are also methods to extract viscoelastic 
properties directly from the simplest indentation experiment presenting a cycle of approach (deepening into 
the sample) and retraction of the indenter5,16–18. Indentation of a viscoelastic body presents a complex problem 
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with time-varying boundary conditions. The correspondence principle that is used for the problems involving a 
linear, isotropic viscoelastic body breaks down for the complex indenter shapes and indentation conditions. Lee 
and Radok obtained an expression for the indentation force and spherical indentation by replacing the elastic 
modulus in the Hertz solution19,20 by hereditary integral involving the relaxation response function21. However, 
this solution was found to be invalid when the contact radius decreases with time; the issue was addressed later 
by Hunter22, Graham23 and Ting24,25. In any case, the viscoelastic analysis of indentation experiments is much 
more computationally sophisticated than the analysis based on simple elastic assumptions, and thus, the latter 
is prevailing in the experimental studies. Moreover, a thorough analysis of force-indentation curves predicted 
by different viscoelastic models has not been performed before.

This work aims at finding how the viscoelastic relaxation function affects the shape of force curves obtained 
at different indentation conditions. We analyzed how some basic characteristic curve features change when 
acquisition parameters such as the indentation rate or indenter shape are varied. These basic features (apparent 
Young’s modulus, normalized hysteresis area, the curve exponent) can be routinely obtained from experimental 
curves. Three approaches were used to obtain force curves here: an analytical solution, for the cases where the 
closed-form analytical solution might be obtained, a numerical solution based on the direct calculation of the 
Ting’s equations5, and a FEM simulation-based solution. We performed the analysis for three types of indenter 
geometries (cylinder, cone, sphere), two types of indentation histories (triangular and sinusoidal ramps), and 
several types of traditional and fractional viscoelastic models.

Results
The main purpose of the study is to find how the viscoelastic relaxation function of a sample will be reflected in 
the shape of force curves obtained by indentation. Especially, we are interested in some characteristic features 
and how they might change when the acquisition parameters such as the indentation rate (inverse of indentation 
time) are varied. The force curves were obtained using three approaches: an analytical solution, for the cases 
where the closed-form analytical solution might be obtained, a numerical solution based on the direct calculation 
of the Ting’s equations, and a FEM simulation solution. The latter one is also a numerical solution by nature, but 
here we will call it a “simulation solution” to distinguish from the former one. We performed such analysis for 
three types of indenter geometries (cylinder, cone, sphere), two types of indentation histories (triangular and 
sinusoidal ramps), and several types of viscoelastic models (Fig. 1).

For all the scenarios (a combination of the probe geometry, indentation history, and viscoelastic model) that 
provided the closed-form analytical solution, we found a perfect agreement between the analytical and numeri-
cal solutions (Figs. S1, S2). This confirms that the numerical solution could effectively substitute the analytical 
one, and it is especially useful for the cases where the analytical solution could not be obtained. These cases 
include both complex indentation histories (e.g. non-linear indentation due to a cantilever deflection during 
the piezo movement, non-linearity in the piezo movement itself) and viscoelastic models (with a large number 
of elementary elements). The available analytical solutions are presented in Appendix A.

The FEM analysis was performed on two selected sets of parameters for each viscoelastic model, probe 
geometry and indentation history (total of 24 simulations). The FEM simulation solutions were close to the 
analytical (where they were obtained) and numerical solutions for all the selected model parameters (Figs. S1, 
S2). Some observed differences could originate from the finite-size effects. However, the FEM solution is much 
more time-consuming in comparison with the numerical solution used here.

Therefore, to facilitate the analysis of the force curves, we used only the numerical solutions in the consequent 
study. Several considerations were taken into account to optimize the analysis:

1.	 The geometrical parameters of the probe (e.g. cylinder radius, cone angle) will not affect the shape of the 
curve after the normalization, thus they were not varied. They were arbitrarily set to 5 µm (sphere radius), 
0.4 µm (cylinder radius), 85° (half-angle of the cone).

Figure 1.   (A) The used indenter (probe) geometries: flat-ended cylinder, sphere, and cone. (B) The applied 
indentation histories, triangular (black) and sinusoidal (red) ramps. (C) The parameters, extracted for the 
force curves: apparent Young’s modulus (YM), obtained from the Hertzian fit (red curve); the approach curve 
exponent, obtained from the fit with an exponent as a fitting parameter; the normalized hysteresis area (NHA), 
obtained as the area enclosed in the force curve (dark-grey area) divided by the area under the approach curve 
(light-grey plus dark-grey area). Here, the case of the spherical probe and the springpot viscoelastic model is 
shown as an example.
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2.	 The indentation depth does not affect the shape of the curve since the materials are assumed to behave within 
the limits of the linear viscoelasticity. Therefore, the change in the indentation depth equals to the change in 
the indentation speed in the normalized coordinates ( δ(t) = δ(t)/δmax , F(δ(t)) = F(δ(t))/Fmax ). The results 
are presented in the normalized coordinates or in the actual coordinates (the maximum indentation depth 
was arbitrarily set to 100 nm, the units of nm for the distance and nN for the force are used in the figures) 
for a better representation. Exact values of some viscoelastic model parameters do not affect the shape of 
the curves in the normalized coordinates, while the relations between the parameters do affect the shape of 
the curves and define the characteristic times of the model.

3.	 The following parameters were extracted from the force curves. The normalized hysteresis area (NHA), 
defined as the area enclosed between the approach and retraction curves divided by the area under the 
approach curve (Fig. 1C). This parameter represents the energy dissipation during the indentation cycle, 
and thus it is especially useful. The NHA may have values in the range between zero (elastic behavior, the 
approach and retraction curves are coinciding with each other) and one (all the energy is dissipating); in the 
intermittent regime, the approach curve is always laying above the retraction curve. The second parameter 
is the power-law exponent of the simple power-law fit applied to the approach curve. Basically, it represents 
how far the curve deviates from the Hertzian fit. Additionally, the apparent Young’s modulus (YM) extracted 
from the Hertzian fit of the complete curve (with the fixed exponent value corresponding to the probe geom-
etry) was extracted and its dependency from the indentation time was studied. The graphs are shown in the 
coordinates of the indentation time tind , defined as the total time of indentation cycle, and the corresponding 
indentation rate is the inverse value of the indentation time.

Simplest spring‑dashpot combinations.  We begin the analysis with the simplest analytic viscoelastic 
constitutive models which present a single spring or a dashpot element and their combinations. A spring element 
symbolizes an ideal elastic behavior; the stress is linearly proportional to the strain: σ(t) = kε(t) . For this ele-
ment, the relaxation function is constant in time (E(t) = E), and the Ting’s equation solution corresponds to the 
well-known Hertzian solution of the form:

The n = 1, 1.5, 2 for the cylindrical, spherical and conical probe respectively, the geometrical coefficients are: 
Ccylinder = 2R , Csphere = 4

√
R/3 , Ccone = 2(tanαcone)/π . The numerical algorithm and FEM simulations provide 

the force-indentation curves which are analogous to the analytical solution. The force curves show a zero hys-
teresis area (NHA = 0), the curve exponents match with the predicted ones (Fig. 2A).

For a dashpot element, the stress is proportional to the strain rate by Trouton’s (or Newton’s) law: 
σ(t) = ηdε(t)/dt ( η is the viscoelastic coefficient or viscosity with the units of [Pa s], where symbol s is used for 
seconds) according to the behavior of an ideal Newton liquid. The relaxation function is E(t) = ηδD(t) , where 
δD(t) is the Dirac delta function. This viscosity is mostly related to the compressive viscoelastic coefficient (also 
known as the Trouton coefficient) because indentation measurements involve application of compressive forces 
normal to the sample surface26. The analytical solution (eq. A3 in the Appendix) shows that the force drops to 
zero then the cantilever goes up (retracts), as expected for the viscous material. Thus, the NHA is always equal 
to one (all energy is dissipated). The shape of the curve is very different from the Hertzian shape and shows a 
power-law exponent that is lower by one, therefore the Hertzian fit does not provide reasonable data (Fig. 2B,C). 
Unlike in case of the spring element, the curves now depend on the indentation history and differ for the tri-
angular and sinusoidal ramps. The case of a single dashpot element might correspond to the viscous flow or 
complete plastic deformation.

The combination of a spring and a dashpot in parallel, known as the Kelvin-Voight element, has the follow-
ing relaxation function:

(1)F(δ(t)) = CgeomEδ
n.

(2)E(t) = E∞ + ηδD(t);

Figure 2.   The force versus indentation curves in the normalized coordinates for the spring (A) and dashpot 
(B,C) elements. The spring element provides the curves described by the Hertzian mechanics, with the curve 
exponent defined by the probe geometry and zero hysteresis. In contrast, the dashpot provides complete curves 
with complete hysteresis (zero force during the retraction) that depend on the indentation history, triangular (B) 
or sinusoidal (C) ramp.
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where the subscript “∞” symbolizes a long-term response here and thereafter (E∞ corresponds to the long-term 
modulus). The characteristic time of the model is τKV = η

Einf
 . At short indentation times ( tind << τKV  ), the 

behavior is dominated by the dashpot, and at long indentation times ( tind >> τKV)—by the spring (the spring 
modulus corresponds to E∞ ). Accordingly, the NHA decreases with the indentation time, it is close to zero at 
slow rates, and close to one at fast rates (Fig. 3). The effective YM is proportional to the indentation rate at short 
times, but then it reaches a plateau corresponding to E∞ at long times. The curve exponent at long times is equal 
to the Hertzian one, but as for the single.

dashpot model, it is lower by one at short times. In the actual experiments, such a huge deviation from the 
Hertzian exponent could indeed be observed when the dissipation (NHA) is large, for example in AFM experi-
ments on cells at very high indentation rates27 (Fig. S3). A notable feature of the model is the jump in the force 
(discontinuity) at the initial contact for the case of the cylindrical indenter, that is caused by the dashpot and 
could be seen in FEM simulations as well28 (Fig. S1). Another discontinuity is the drop of the force at the turning 
point of the triangular displacement caused by the dashpot element (Fig. 3A). The Kelvin-Voight element can 
describe the plastic flow of the material during the indentation. In the normalized coordinates F  versus δ , the 
curve shape is determined solely by the tind/τKV ratio. The curves of NHA, YM, and exponent versus normalized 
contact time only weakly depend on the probe geometry (Fig. 3C). The data for the sinusoidal ramp demonstrated 
similar trends and are not shown here.

For another combination, a spring and a dashpot in series, known as the Maxwell element, the relaxation 
function presents a well-known exponential decay:

where the subscript “0” symbolizes the instantaneous response here and thereafter (spring modulus corresponds 
to the instantaneous modulus E0 ). The characteristic time τMW = η

E0
 . At short indentation times tind << τMW 

the behavior is dominated by the spring, and at long indentation times tind >> τMW—by the dashpot. Accord-
ingly, the NHA increases with the indentation time, it is close to zero at fast rates, and close to one at slow rates, 
which is opposite to the Kelvin-Voight model. The effective YM is proportional to the indentation rate at long 
times, but a plateau corresponding to E0 is observed at short indentation times. The curve exponent at short 

(3)E(t) = E0e
− t

τ ;

Figure 3.   The force curves and parameters acquired from the force curves for the Kevin-Voight model. (A) 
The force curves for the triangular displacement; cylindrical, spherical, and conical indenters, and varied 
tind/τKV ratio (shown with different line colors), E∞ = 1,000 Pa is fixed. (B) The force curves for the sinusoidal 
displacement. (C) Dependencies for the normalized YM ( YM/E∞ ), NHA, and curve exponent on the 
normalized indentation time t = tind/τKV.
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times is equal to the Hertzian one and is lower by one at long times. Again, the probe geometry and ramp type 
only weakly affect the observed dependencies (Fig. 4).

The standard linear solid model (Zener model) can be represented as the Maxwell element in parallel with a 
second spring ( Es2 ) that determines the long-term modulus of the system. The short-term modulus is a combi-
nation of the moduli of the two springs E0 = Es1 + Es2 . The relaxation function is:

which differs from the relaxation function of the Maxwell element by the presence of the E∞ term. The model 
has the characteristic times τrel = η

(E0−E∞)
 and τcreep = E0η

E∞(E0−E∞)
 , known to be characteristic times of relaxation 

and creep, respectively. From here, for the larger E0/E∞ ratio and the same τrel value, the relaxation will be more 
pronounced and will take more time. At short and long indentation times, there are plateaus for all dependencies, 
with the moduli corresponding to E0 and E∞ , respectively, the curve exponent corresponding to the Hertzian 
one, and NHA close to zero. The maximum.

NHA is observed at values slightly larger than τrel and τcreep ; the larger E0/E∞ ratio provides a larger and 
wider negative peak. At the very large E0/E∞ ratios, the model behaves as a single dashpot in this intermittent 
regime, while at small ratios the viscoelastic behavior will be unnoticeable. The curve exponent is affected in a 
similar way (Fig. 5A–C).

The SLS model could be seen as a particular case of the generalized Maxwell model, where several Maxwell 
elements are connected in parallel. We analyzed a case with two such elements and a spring:

where E0 = Es1 + Es2 + Es3 , Einf = Es3 . The main outcome of such a model is that, locally, near the relaxation 
time of one of the Maxwell elements, the shape of the force curves will be determined by this particular element. 
If the relaxation times of both Maxwell elements are close to each other, then larger and wider peak for the NHA 
and curve exponent will be observed instead of two separate peaks (Fig. 5D).

(4)E(t) = Es1e
− t

τ + Es2 = (E0 − E∞)e−
t
τ + E∞;

(5)E(t) = Es1e
− t

τ1 + Es2e
− t

τ2 + Es3;

Figure 4.   The force curves and parameters acquired from the force curves for the Maxwell model. (A) The force 
curves for the triangular displacement; cylindrical, spherical, and conical indenters, and varied tind/τMW ratio 
(shown with different line colors), E0 = 1,000 Pa is fixed. (B) The force curves for the sinusoidal displacement. 
(C) Dependencies for the normalized YM ( YM/E0 ), NHA, and curve exponent on the normalized indentation 
time t = tind/τMW.
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Fractional viscoelastic models.  From the Fractional Calculus theory, another type of the basic viscoe-
lastic element is a so-called springpot with a governing equation σ(t) = Kαd

αε(t)/dtα . The element has two 
parameters, the unitless power-law exponent and the parameter Kα with units of [Pa s−α]. The Young’s relaxation 
function can be written as:

where Γ() is the Gamma function. It is worth stressing the meaning of the other parameters in the equation. The 
Kα parameter with units of [Pa s−α] is not very convenient and does not have a straightforward physical meaning. 
It is commonly replaced with Kα = Eατ

α , where Eα is the Young modulus in [Pa] and τ is in [s]. However, these 
two parameters are not independent and are linked via Kα . To reduce the number of independent parameters 
back to two, we might assign τ = 1 s, then the parameter Eα1 = Eα,τ=1/Ŵ(1− α) will arise with units of [Pa] 
and a simple meaning of the value of the relaxation function at t = 1 s. However, for the correspondence of the 

(6)E(t) =
Kα

Ŵ(1− α)
t−α =

Eα

Ŵ(1− α)

(

t

τ

)−α

= Eα1t
−α;

Figure 5.   The force curves and parameters acquired from the force curves for the SLS model. (A) The force 
curves for the triangular displacement; cylindrical, spherical, and conical indenters, and varied tind/τrel ratio 
(shown with different line colors), E0 = 1,000 Pa,  E∞ = 300 Pa are fixed. (B) The force curves for the sinusoidal 
displacement. (C) Dependencies for the normalized YM ( YM/(E0 − E∞) ), NHA, and curve exponent on the 
normalized indentation time t = tind/τrel for different E0/E∞ ratios. (D) Generalized Maxwell model with 
two relaxation times, two cases with a small and large difference in the relaxation times. Es1 = 500 kPa, Es2 = 
100 kPa, Es3 = 10 kPa. Dependencies for the YM, NHA, and curve exponent on the indentation time. Here, 
absolute YM in Pa and time in seconds (s) are used for a better representation.
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units, the time in the last part of Eq. (12) should be considered as unitless ( t/[τ = 1s] ). Notably, the model can 
be easily rescaled to any other characteristic time τ.

The springpot element intermediates between a spring and a dashpot through a fractional-order derivative 
α of the strain history (0 < α < 1). The force curves constructed with the model demonstrate some interesting 
features: (1) In the normalized coordinates, the shape of the curve is defined solely by α (Fig. 6A,B); (2) The 
NHA and curve exponent parameters are independent of the indentation time and are also determined by α . The 
larger α value corresponds to the larger hysteresis. The curve exponent value approximately equals to its Hertz-
ian value minus α ; (3) Effective Young’s modulus increases with the indentation rate following the power-law 
dependency with the same exponent α (Fig. 6C). These effects were similar for all the considered geometries, 
for the sinusoidal and triangular ramp loadings. Such behavior makes a simple guidance for the identification 
of the power-law behavior in experiments: the constant hysteresis in the force curves acquired at different rates, 
the power-law dependency of the effective modulus on the indentation rate. Such effects are indeed observed in 
experiments on cells in a wide range of indentation rates5 (Fig. S4).

The springpot element could be used in various combinations with other elements, including other springpot 
elements. We will address some basic combinations here. A springpot in parallel with a spring will provide the 
following relaxation function:

where E∞ < Eα1 . This combination is also known as the fractional Kelvin-Voight model29,30. The difference with 
a single dashpot element is the presence of the long-term modulus at slow indentation rates. Therefore, the YM, 
curve exponent and NHA observe the gradual prolonged transition between the power-law and elastic regimes. 
The transition point is defined by the characteristic time τ = (Eα1/E∞)

1
α [s]; at shorter times, the behavior is 

dominated by the springpot. Thus, hysteresis increases with the indentation rate toward the certain limit defined 
by the α value (Fig. 7).

For a springpot and a spring in series, the resulted relaxation function is more complex due to the presence 
of the Mittag-Lefler function (ML) in the equation:

(7)E(t) = Eα1t
−α + E∞;

Figure 6.   The force curves and parameters acquired from the force curves for the springpot model. (A) The 
force curves for the triangular displacement; cylindrical, spherical, and conical indenters, and varied α . (B) The 
force curves for the sinusoidal displacement. (C) Dependencies for the YM, NHA, and curve exponent on the 
indentation time, only for the spherical indenter, triangular displacement. Here, absolute YM in Pa and time in 
seconds (s) are used for a better representation, Eα1 = 1,000 Pa is fixed.
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The Mittag–Leffler function is a special function that arises from the solution of certain fractional differen-
tial equations and is calculated numerically. As opposed to the parallel combination, now the spring ( Es = E0 ) 
dominate in response at short timescales and the springpot – at long timescales (Fig. 8). The characteristic 
transition time is E0/Eα1 [s].

The same analogy could be observed in combinations of a springpot and a dashpot: when placed in paral-
lel, the short-time response is controlled by the dashpot, and when in series—by the springpot. The relaxation 
functions are:

for the parallel and serial arrangements, respectively (Fig. 9A,B). More generally, when a combination of two 
springpot elements is considered, the parallel arrangement leads to the short-time behavior controlled by the 
element with the higher exponent, and the long-time response—by the element with the lower exponent. The 
opposite is true when the elements are arranged in series. The relaxation functions for two springpot elements 
are as follows:

for the parallel arrangement; and for the serial arrangement:

(8)E(t) = E0MLα

[

−
E0

Eα1
tα
]

.

(9)E(t) = Eα1t
−α + ηδD(t);

(10)E(t) = η
β

β−1
(

Eβ1
)

1
1−β t−βML1−β ,1−β

[

−
Eβ1

η
t1−β

]

;

(11)E(t) = Eα1t
−α + Eβ1t

−β ;

(12)E(t) = (Eα1)
β

β−α
(

Eβ1
)

α
α−β t−βMLα−β ,1−β

[

−
Eβ1

Eα1
tα−β

]

;

Figure 7.   The force curves and parameters acquired from the force curves for the fractional Kelvin-Voight 
model. (A) The force curves for the triangular displacement; cylindrical, spherical, and conical indenters, 
α = 0.2 and varied tind/τ ratio, Eα1 = 1,000 Pa and E∞ = 600 Pa. (B) The force curves for the sinusoidal 
displacement. (C) Dependencies for the normalized YM, NHA, and curve exponent on the normalized 
indentation time t = tind/τ for different α values.
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where α > β (Fig. 9C,D). All the previously considered models for serial arrangements of the elements could be 
seen as a particular case of the two serial springpot elements. When α = 1 , the springpot element reduces to the 
dashpot, and when β = 0 , it reduces to the spring. The characteristic transition times, as was shown in8, can be 

presented as τparallel =
(

Eα1
Eβ1

)
1

α−β and τserial =
[

(1− α) Eα1Eβ1

]
1

α−β.
The addition of a spring in parallel to another element results in the addition of the long-term modulus E∞ 

to the relaxation function. We will consider two such models here, the first one is a spring in parallel with a 
springpot and spring combination, also known as a fractional SLS (fractional Zener) model31, with the following 
relaxation function:

where E0 = Es + Einf  and the characteristic time is τfSLS =
(

Eα1
Es

)
1
α . As in the common SLS model, this model 

has plateau regions at short and long times corresponding to E0 and Einf  elastic moduli. At α = 0 , the model 
reduces to the SLS model. Increase in α leads to the stretching of the transition region around the transition time, 
similar to the model known as the stretched exponent model32. Accordingly, the hysteresis in force curves is 
observed over a wider range of indentation times, while diminishing to zero at extremes (Fig. 10A).

The second model is a spring in parallel with a springpot and dashpot combination. The model was compre-
hensively studied in the recent works8,33. The relaxation function is:

The behavior of the model, as expected, is similar to the springpot—dashpot combination with a transition 
to the elastic regime at the long timescales. On the other hand, the model reduces to the SLS model when β = 0 . 
The largest hysteresis in force curves is observed in the middle region where the dashpot is active, then, at short 
timescales, the hysteresis reduces toward the values defined by the springpot exponent β (Fig. 10B).

(13)E(t) = EsMLα

[

−
Es

Eα1
tα
]

+ Einf = (E0 − Einf )MLα

[

−
(

t

τfSLS

)α]

+ Einf ;

(14)E(t) = η
β

β−1
(

Eβ1
)

1
1−β t−βML1−β ,1−β

[

−
Eβ1

η
t1−β

]

+ Einf .

Figure 8.   The force curves and parameters acquired from the force curves for the model representing by a 
springpot and a spring in series. (A) The force curves for the triangular displacement; cylindrical, spherical, 
and conical indenters, α = 0.4 and varied tind/τ ratio, E0 = 1,000 Pa. (B) The force curves for the sinusoidal 
displacement. (C) Dependencies for the normalized YM, NHA, and curve exponent on the normalized 
indentation time t = tind/τ for different α values.
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General dependencies of the curve parameters on the relaxation function.  Some general 
dependencies could be drawn from the provided numerical analysis. Importantly, the shape of the force curves is 
strongly affected by the relaxation function of the material. A huge deviation from the Hertzian curve exponent 
(up to minus one) is possible when relaxation is significant. It correlates with the large hysteresis, NHA, of the 
curve. Since the elastic assumption is often used to fit the force curves, the lower curve caused by viscoelasticity 
might be misinterpreted as non-linear elasticity (strain-softening), since the fit of shallower regions will provide 
a higher YM and the fit of the deeper regions—a lower YM. Otherwise, if the real non-linearity like strain-
stiffening is presented, viscoelasticity might conceal it to some extent.

The dependencies of the apparent YM, NHA, and curve exponent versus indentation time were close for the 
studied indenter geometries and indentation histories. By comparison with the actual relaxation functions, we 
have found that the apparent YM corresponds very closely to the time-averaged value of the relaxation function 
with the limits from t = 0 to t = tind/4 (Fig. 11A):

(15)< E >=
1

tind/4

tind/4

∫
0

E(t)dt.

Figure 9.   The parameters acquired from the force curves for a springpot and a dashpot in different 
combinations. Dependencies for the YM, NHA, and curve exponent on the normalized indentation time 
t = tind/τ , where τ is the characteristic time of the corresponding model, for different α (and β ) values for a 
springpot in parallel with a dashpot (A); a springpot in series with a dashpot (B); a springpot in parallel with 
another springpot; (D) a springpot in series with another springpot. Eα1 = 1,000 Pa and η = 1,000 Pa s (A); 
Eβ1 = 1,000 Pa and η = 104 Pa s (B); Eα1 = 1 Pa and Eβ1 = 1 Pa (C); Eα1 = 1 Pa and Eβ1 = 1 Pa (D).
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The upper limit corresponds to half of the approach time since only the approach curve data are used for 
the YM calculation. The dependencies of the NHA and curve exponent values are more complex. As a first 
approximation, they are related to the local slope of the relaxation function on a logarithmic scale. Indeed, we 
have found that the doubled slope of the time-averaged relaxation function, shown in Fig. 11A, is close to the 
observed NHA values (Fig. 11B). A zero slope corresponds to the elastic regions with a zero NHA and Hertzian 
exponent value; and the maximum slope, which is equal to one (for the dashpot), leads to the NHA = 1 and a 
decrease in the exponent by one. It should also be noted, that NHA is a fraction of the energy dissipated during 

Figure 10.   The parameters acquired from the force curves for the two three-element fractional viscoelastic 
models: a spring in parallel with a springpot and spring combination (A), a spring in parallel with a springpot 
and dashpot combination (B). Dependencies for the YM, NHA, and curve exponent on normalized indentation 
time t = tind/τ , where τ is the characteristic time of the corresponding model, for different α values. E0 = 
1,000 Pa, E∞ = 300 Pa (A); Eβ1 = 1,000 Pa, E∞ = 300 Pa (B).

Figure 11.   Comparison of the apparent YM (A) and NHA (B) acquired from the force curves with the 
relaxation function for the three viscoelastic models: Generalized Maxwell model with two relaxation times; a 
spring in parallel with a springpot and spring combination; a spring in parallel with a springpot and dashpot 
combination. (A) The YM, the relaxation function E(t), and the time-averaged relaxation function. (B) The 
NHA and slope of the time-averaged relaxation function on the logarithmic scale.
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the indentation cycle, and thus it is related to the loss tangent (ratio of the loss modulus to the storage modulus) 
at the frequency corresponding to 1/tind . As suggested previously17,27, the equations for the time-to-frequency-
domain conversion9 can be used for the assessment of the complex Young’s modulus at this apparent frequency.

Discussion
The shape of the force-indentation curves is well-predicted by the underlying viscoelastic relaxation function; the 
analytical, numerical, and simulation solutions provide well-matched results. Viscoelasticity causes substantial 
deviation of the curve shape from the purely elastic response. The curve exponent decreases from the Hertz-
ian value, which might be misinterpreted as strain-softening if the elastic assumption is used. The presence of 
the hysteresis area is a clear sign of the viscoelastic response (in the absence of strong adhesion and plasticity).

Several approaches might be used to extract the information about the relaxation function from the indenta-
tion data. One of simple ways is to observe the dependencies of the apparent YM and NHA on the indentation 
rate and to compare them with the predictions from the relaxation functions. For example, the presence of the 
constant NHA over the wide range of times is an indicator of the power-law rheology. The idea of using the YM 
versus indentation rate was implemented in the previous studies34,35. In the case of the power-law rheology, the 
power-law exponent might be extracted from such a dependency. The empirical comparison shows that the 
apparent modulus does not follow the relaxation function exactly, but it is very close to the time-averaged value 
of this function (Fig. 11A). The NHA is related to the local slope of the relaxation function on a logarithmic 
scale. A large hysteresis in the curve correlates with the strong dependency of the YM on the indentation rate.

More advanced approaches involve algorithms for the fitting of the force curves to the preselected viscoelastic 
models5,16,17 or algorithms for the direct reconstruction of the relaxation function. In both cases, however, it is 
useful to obtain experimental curves in a wide range of indentation rates, and thus, it is useful to know how the 
curves should look for different viscoelastic models. This work might also be a basis for the further development 
of the more advanced models involving convolution of the viscoelasticity with the sample non-linearity, adhe-
sion, anisotropy and other effects.

Methods
Linear viscoelasticity theory for indentation experiments.  We will base the further description 
on the solution of the indentation problem of a viscoelastic half-space provided by Ting24,25. The solution was 
obtained for the cases of an arbitrary varying radius of the contact area, while here we will concentrate our 
attention on the load history with a single maximum: the contact area increases first during the approach phase 
(indenter is pressed into the sample) and then decreases during the retraction phase of the displacement-con-
trolled experiment. The solution for the approach curve coincide with the solution provided by Lee and Radok21, 
while the solution for the retraction curve requires an auxiliary function t1(t) . The t1(t) auxiliary function was 
introduced as a time point t1 during the approach phase which corresponds to the same contact area at a time 
point t during the retraction phase. The Lee-Radok’s and Ting’s solutions match for both the approach and 
retraction curves for a cylindrical indenter and used indentation histories due to the constant contact area. The 
solution also assumes that a rigid indenter is smooth and axisymmetric but otherwise might have an arbitrary 
shape. Here we will consider the three most widely used indenter geometries (Fig. 1A): cylinder, sphere, and 
cone (or pyramid, the difference will be only in the geometrical factor). For the indentation displacement-con-
trolled experiment, the Ting’s solution could be presented in the following form5: 

where F is the force acting on the cantilever during the approach ( Fappr ) or the retraction ( Fretr ); δ is the indenta-
tion depth; a is the contact area; t1(t) function is determined by the Eq. (18); t is the indentation time initiated at 
initial contact ( tm is the time when the maximum contact radius is reached, tind is the duration of a complete inden-
tation cycle); ξ  is the dummy time variable required for the integration; E(t) is the relaxation function (Young’s 
relaxation modulus); n and Cgeom are constants related to the indenter shape20, e.g.: n = 1 , Ccyl = 2Ryl/(1− ν2) 
for a cylindrical punch ( Rcyl is the radius of the cylinder); n = 2 , Ccone = 2(tanαcone)/π/(1− ν2) for a conical 
indenter (αcone is the included half-angle of the cone); n = 3/2 , Csphere = 4

√
R/3/(1− ν2) for a paraboloid/

spherical indenter ( R >> δ is the radius of the sphere); ν is the Poisson’s ratio of the sample (assumed to be 
time-independent). fBEC(δ) is the tip geometry dependent correction coefficient for the finite thickness of the 
sample attached to the hard substrate28,36. This factor does not depend on time and could be neglected when the 
sample thickness is much larger than the tip-sample contact area. Equation (16) for Fappr (Lee-Radok’s solution) 
can also be used to describe the force during the retraction phase, but with limited accuracy. The Ting’s solution 
requires calculation of t1(t) for the retraction phase. As can be seen from Eq. (18), the t1(t) function is common 
for all the indenter geometries but depends on the indentation history and the viscoelastic model.

The Young’s relaxation modulus E(t) is a function which determines the viscoelastic behavior of the material 
and is defined by a specific constitutive viscoelastic model. It is related to the shear stress relaxation modulus as 

(16)Fappr(t, δ(t)) = Cgeom

t
∫
0

E(t − ξ)
∂δn

∂ξ
fBEC(δ)dξ , ȧ >= 0, 0 ≤ t ≤ tm;

(17)Fretr(t, δ(t)) = Cgeom

t1(t)
∫
0

E(t − ξ)
∂δn

∂ξ
fBEC(δ)dξ , ȧ < 0, t ≥ tm ≥ tind;

(18)
t
∫

t1(t)
E(t − ξ)

∂δ

∂ξ
dξ = 0;



13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:13302  | https://doi.org/10.1038/s41598-020-70361-y

www.nature.com/scientificreports/

G(t) = E(t)/2/(1+ v)37. Note, that the time-independent Poisson’s ratio is assumed here. A “reduced” form of 
the relaxation (creep) function can be obtained that represents the function normalized by its value at a certain 
time point, usually, t = 0 or t = ∞ . However, such an approach does not always work since some relaxation 
functions have infinite or zero values at these time points.

Most modern indenters offer both load and displacement control indentation testing. For example, in a 
typical AFM experiment, the load is applied by expanding the piezo. The system controls the rate of expansion/
retraction of the piezo, but neither force nor indentation histories are controlled directly. The indentation depth 
δ is related to the piezo displacement Z as:

where z0 is the contact point position (position of the undisturbed sample surface) and d is the cantilever deflec-
tion. The simplified relation might be considered if the cantilever (or another force sensor) is quite stiff and its 
deflection is much lower than the indentation depth. If we also place the zero of the displacement axis at the 
contact point position ( z0 = 0), the simplified indentation function will be: δ(t) = z(t) . From here, it is possible 
to obtain analytical solutions for certain relaxation functions and indentation histories, and this simplification 
was used in this work.

Here, we will consider two indentation histories, a triangular linear ramp (ramp) and sinusoidal (sin) probe 
movement (Fig. 1B):

For a triangular linear ramp, the maximum contact radius is reached at t = tm and then it decreases during 
retraction, the maximum indentation depth is δm = vtm . For the sinusoidal displacement, the maximum contact 
radius is reached at tm = π

2ω
 corresponding to a quarter period of the sin wave, the amplitude A is set equal to 

δm . The tm value is related to the total probe-sample contact time (indentation time, tind ) as tm < tind < 2tm , 
since the contact area is always present during the approach phase, but would vanish at some point during the 
retraction phase. The sinusoidal ramp could be beneficial at high indentation rates, since, unlike the triangular 
ramp, it does not produce an abrupt change in the indentation speed around the turning point. The sinusoidal 
ramp is used, for example, in the Peak-Force Tapping technique38 that allows acquisition of force maps with a 
high speed in AFM experiments.

Numerical and analytical solutions of the Ting’s model.  The MATLAB code based on the previous 
works5,27 was used here to obtain a numerical solution of the Ting’s model. It calculates the force versus time 
and the force versus displacement dependencies via numerical differentiation and integration steps, both for the 
approach and retraction parts of a force curve, the latter involves the numerical calculation of the t1(t) function 
by an iterative procedure. Arbitrary relaxation functions (in the form of the Young’s relaxation modulus) and 
indentation histories (currently, with a single maximum in the contact radius versus time data) might be used 
as an input.

The analytical solutions were obtained for specific viscoelastic models as described in Appendix A. The 
Python version of the code for the numerical simulation of indentation curves is available at https​://githu​b.com/
yu-efrem​ov/Visco​Inden​t.

Finite element analysis.  The finite element method (FEM) analysis was performed using the Abaqus CAE 
software (version 14, Simulia Corp., Providence, RI). The axisymmetric system was created with a cylindrical 
sample, having a radius of 100 µm and a height of 40 µm. The probe was modeled as a rigid body with the geom-
etries of a flat-ended cylinder (radius of 0.4 µm), sphere (radius of 5 µm), or cone (half-angle of 85°). The sample 
mesh was optimized for each indenter geometry for a balance between the computational time and accuracy. 
The probe displacement was assigned for triangular and sinusoidal ramps. The viscoelastic behavior of samples 
was assigned via the Prony series coefficients. For the power-law rheology model, the relaxation function was 
approximated as the Prony series expansion including six terms, the coefficients were fitted in MATLAB.

Data availability
The datasets analyzed during the current study are available from the corresponding author on request and 
could be generated using the open-source Python code available at https​://githu​b.com/yu-efrem​ov/Visco​Inden​t.

Received: 5 June 2020; Accepted: 23 July 2020

References
	 1.	 Qian, L. & Zhao, H. Nanoindentation of soft biological materials. Micromachines. 9, 654. https​://doi.org/10.3390/mi912​0654 (2018).
	 2.	 Ebenstein, D. M. & Pruitt, L. A. Nanoindentation of biological materials. Nano Today. 1, 26–33. https​://doi.org/10.1016/S1748​

-0132(06)70077​-9 (2006).
	 3.	 Efremov, Y. M., Okajima, T. & Raman, A. Measuring viscoelasticity of soft biological samples using atomic force microscopy. Soft 

Matter 16, 64–81. https​://doi.org/10.1039/C9SM0​1020C​ (2020).
	 4.	 Rother, J., Nöding, H., Mey, I. & Janshoff, A. Atomic force microscopy-based microrheology reveals significant differences in the 

viscoelastic response between malign and benign cell lines. Open Biol. 4, 140046. https​://doi.org/10.1098/rsob.14004​6 (2014).

(19)δ(t) = z(t)− z0 − d;

(20)δramp(t) =
{

vt, 0 ≤ t ≤ tm
v(2tm − t), t > tm

;

(21)δsin(t) = A sin(ωt).

https://github.com/yu-efremov/ViscoIndent
https://github.com/yu-efremov/ViscoIndent
https://github.com/yu-efremov/ViscoIndent
https://doi.org/10.3390/mi9120654
https://doi.org/10.1016/S1748-0132(06)70077-9
https://doi.org/10.1016/S1748-0132(06)70077-9
https://doi.org/10.1039/C9SM01020C
https://doi.org/10.1098/rsob.140046


14

Vol:.(1234567890)

Scientific Reports |        (2020) 10:13302  | https://doi.org/10.1038/s41598-020-70361-y

www.nature.com/scientificreports/

	 5.	 Efremov, Y. M., Wang, W.-H., Hardy, S. D., Geahlen, R. L. & Raman, A. Measuring nanoscale viscoelastic parameters of cells 
directly from AFM force-displacement curves. Sci. Rep. 7, 1541. https​://doi.org/10.1038/s4159​8-017-01784​-3 (2017).

	 6.	 Schierbaum, N., Rheinlaender, J. & Schäffer, T. E. Combined atomic force microscopy (AFM) and traction force microscopy (TFM) 
reveals a correlation between viscoelastic material properties and contractile prestress of living cells. Soft Matter 15, 1721–1729. 
https​://doi.org/10.1039/C8SM0​1585F​ (2019).

	 7.	 Rianna, C. & Radmacher, M. Comparison of viscoelastic properties of cancer and normal thyroid cells on different stiffness sub-
strates. Eur. Biophys. J. 46, 309–324. https​://doi.org/10.1007/s0024​9-016-1168-4 (2017).

	 8.	 A. Bonfanti, J.L. Kaplan, G. Charras, A.J. Kabla, Fractional viscoelastic models for power-law materials, (2020) 1–28. https​://arxiv​
.org/abs/2003.07834​.

	 9.	 R. Lakes, Viscoelastic materials (Cambridge University Press, Cambridge, 2009) https​://doi.org/10.1017/CBO97​80511​62672​2.
	10.	 Magin, R. L. Fractional calculus in bioengineering, part 2. Crit. Rev. Biomed. Eng. 32, 105–194. https​://doi.org/10.1615/CritR​evBio​

medEn​g.v32.i2.10 (2004).
	11.	 Efremov, Y. M., Cartagena-Rivera, A. X., Athamneh, A. I. M., Suter, D. M. & Raman, A. Mapping heterogeneity of cellular mechan-

ics by multi-harmonic atomic force microscopy. Nat. Protoc. 13, 2200–2216. https​://doi.org/10.1038/s4159​6-018-0031-8 (2018).
	12.	 Dokukin, M. & Sokolov, I. High-resolution high-speed dynamic mechanical spectroscopy of cells and other soft materials with 

the help of atomic force microscopy. Sci. Rep. 5, 12630. https​://doi.org/10.1038/srep1​2630 (2015).
	13.	 Takahashi, R. & Okajima, T. Mapping power-law rheology of living cells using multi-frequency force modulation atomic force 

microscopy. Appl. Phys. Lett. 107, 173702. https​://doi.org/10.1063/1.49348​74 (2015).
	14.	 Cheng, Y. T. & Yang, F. Obtaining shear relaxation modulus and creep compliance of linear viscoelastic materials from instru-

mented indentation using axisymmetric indenters of power-law profiles. J. Mater. Res. 24, 3013–3017. https​://doi.org/10.1557/
jmr.2009.0365 (2009).

	15.	 Garcia, P. D., Guerrero, C. R. & Garcia, R. Nanorheology of living cells measured by AFM-based force-distance curves. Nanoscale. 
12, 9133–9143. https​://doi.org/10.1039/c9nr1​0316c​ (2020).

	16.	 Brückner, B. R., Nöding, H. & Janshoff, A. Viscoelastic properties of confluent MDCK II cells obtained from force cycle experi-
ments. Biophys. J. 112, 724–735. https​://doi.org/10.1016/j.bpj.2016.12.032 (2017).

	17.	 de Sousa, J. S. et al. Analytical model of atomic-force-microscopy force curves in viscoelastic materials exhibiting power law 
relaxation. J. Appl. Phys. 121, 34901. https​://doi.org/10.1063/1.49740​43 (2017).

	18.	 Ramesh Kumar, M. V. & Narasimhan, R. Analysis of spherical indentation of linear viscoelastic materials. Curr. Sci. 87, 1088–1095 
(2004).

	19.	 Hertz, H. Über die Berührung Fester Elastischer Körper. J. Für Die Reine u. Angew. Math. 92, 156–171 (1881).
	20.	 Sneddon, I. N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. 

Int. J. Eng. Sci. 3, 47–57 (1965).
	21.	 Lee, E. H. & Radok, J. R. M. The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438–444 (1960).
	22.	 Hunter, S. C. The Hertz problem for a rigid spherical indenter and a viscoelastic half-space. J. Mech. Phys. Solids. 8, 219–234. https​

://doi.org/10.1016/0022-5096(60)90028​-4 (1960).
	23.	 Graham, G. A. C. The contact problem in the linear theory of viscoelasticity when the time dependent contact area has any number 

of maxima and minima. Int. J. Eng. Sci. 5, 495–514. https​://doi.org/10.1016/0020-7225(67)90037​-7 (1967).
	24.	 Ting, T. C. T. The contact stresses between a rigid indenter and a viscoelastic half-space. J. Appl. Mech. 33, 845–854. https​://doi.

org/10.1115/1.36251​92 (1966).
	25.	 Ting, T. C. T. Contact problems in the linear theory of viscoelasticity. J. Appl. Mech. 35, 248. https​://doi.org/10.1115/1.36011​88 

(1968).
	26.	 Garcia, P. D., Guerrero, C. R. & Garcia, R. Time-resolved nanomechanics of a single cell under the depolymerization of the 

cytoskeleton. Nanoscale. 9, 12051–12059. https​://doi.org/10.1039/C7NR0​3419A​ (2017).
	27.	 Efremov, Y. M., Shpichka, A. I., Kotova, S. L. & Timashev, P. S. Viscoelastic mapping of cells based on fast force volume and Peak-

Force Tapping. Soft Matter 15, 5455–5463. https​://doi.org/10.1039/C9SM0​0711C​ (2019).
	28.	 Garcia, P. D. & Garcia, R. Determination of the viscoelastic properties of a single cell cultured on a rigid support by force micros-

copy. Nanoscale. 10, 19799–19809. https​://doi.org/10.1039/C8NR0​5899G​ (2018).
	29.	 Zhang, H., Wang, Y. & Insana, M. F. Ramp-hold relaxation solutions for the KVFD model applied to soft viscoelastic media. Meas. 

Sci. Technol. 27, 25702. https​://doi.org/10.1088/0957-0233/27/2/02570​2 (2016).
	30.	 Zhang, H. et al. Modeling ramp-hold indentation measurements based on Kelvin-Voigt fractional derivative model. Meas. Sci. 

Technol. 29, 035701. https​://doi.org/10.1088/1361-6501/aa9da​f (2018).
	31.	 Carmichael, B., Babahosseini, H., Mahmoodi, S. N. & Agah, M. The fractional viscoelastic response of human breast tissue cells. 

Phys. Biol. 12, 46001. https​://doi.org/10.1088/1478-3975/12/4/04600​1 (2015).
	32.	 Okajima, T. et al. Stress relaxation of HepG2 cells measured by atomic force microscopy. Nanotechnology. 18, 084010. https​://doi.

org/10.1088/0957-4484/18/8/08401​0 (2007).
	33.	 Bonfanti, A., Fouchard, J., Khalilgharibi, N., Charras, G. & Kabla, A. A unified rheological model for cells and cellularised materi-

als. R. Soc. Open Sci. 7, 190920. https​://doi.org/10.1098/rsos.19092​0 (2020).
	34.	 Caporizzo, M. A. et al. Strain-rate dependence of elastic modulus reveals silver nanoparticle induced cytotoxicity. Nanobiomedicine. 

2, 9. https​://doi.org/10.5772/61328​ (2015).
	35.	 Efremov, Y. M. et al. The effects of confluency on cell mechanical properties. J. Biomech. 46, 1081–1087. https​://doi.org/10.1016/j.

jbiom​ech.2013.01.022 (2013).
	36.	 Garcia, P. D. & Garcia, R. Determination of the elastic moduli of a single cell cultured on a rigid support by force microscopy. 

Biophys. J. 114, 2923–2932. https​://doi.org/10.1016/j.bpj.2018.05.012 (2018).
	37.	 Landau, L. D. & Lifshitz, E. M. Theory of Elasticity (Pergamon Press, Oxford, 1989).
	38.	 Kaemmar, S. B. Introduction to Bruker’s ScanAsyst and PeakForce Tapping AFM technology. Appl. Note. 133, 12 (2011).

Acknowledgements
This study was supported by the Russian academic excellence project “5-100” (FEM simulations), by the Russian 
Science Foundation under the grant No. 19-79-00354 (Yu.M.E., development of numerical algorithms) and by the 
grant of the President of the Russian Federation for young scientists MK‐1613.2020.7 (Yu.M.E., data analysis).

Author contributions
Yu.M.E. and P.S.T. designed the study. Yu.M.E. performed the computational analysis and prepared the figures. 
Yu.M.E. and S.L.K. wrote the main manuscript text. All authors discussed and reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

https://doi.org/10.1038/s41598-017-01784-3
https://doi.org/10.1039/C8SM01585F
https://doi.org/10.1007/s00249-016-1168-4
http://arxiv.org/abs/2003.07834
http://arxiv.org/abs/2003.07834
https://doi.org/10.1017/CBO9780511626722
https://doi.org/10.1615/CritRevBiomedEng.v32.i2.10
https://doi.org/10.1615/CritRevBiomedEng.v32.i2.10
https://doi.org/10.1038/s41596-018-0031-8
https://doi.org/10.1038/srep12630
https://doi.org/10.1063/1.4934874
https://doi.org/10.1557/jmr.2009.0365
https://doi.org/10.1557/jmr.2009.0365
https://doi.org/10.1039/c9nr10316c
https://doi.org/10.1016/j.bpj.2016.12.032
https://doi.org/10.1063/1.4974043
https://doi.org/10.1016/0022-5096(60)90028-4
https://doi.org/10.1016/0022-5096(60)90028-4
https://doi.org/10.1016/0020-7225(67)90037-7
https://doi.org/10.1115/1.3625192
https://doi.org/10.1115/1.3625192
https://doi.org/10.1115/1.3601188
https://doi.org/10.1039/C7NR03419A
https://doi.org/10.1039/C9SM00711C
https://doi.org/10.1039/C8NR05899G
https://doi.org/10.1088/0957-0233/27/2/025702
https://doi.org/10.1088/1361-6501/aa9daf
https://doi.org/10.1088/1478-3975/12/4/046001
https://doi.org/10.1088/0957-4484/18/8/084010
https://doi.org/10.1088/0957-4484/18/8/084010
https://doi.org/10.1098/rsos.190920
https://doi.org/10.5772/61328
https://doi.org/10.1016/j.jbiomech.2013.01.022
https://doi.org/10.1016/j.jbiomech.2013.01.022
https://doi.org/10.1016/j.bpj.2018.05.012


15

Vol.:(0123456789)

Scientific Reports |        (2020) 10:13302  | https://doi.org/10.1038/s41598-020-70361-y

www.nature.com/scientificreports/

Additional information
Supplementary information  is available for this paper at https​://doi.org/10.1038/s4159​8-020-70361​-y.

Correspondence and requests for materials should be addressed to Y.M.E.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this license, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-70361-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Viscoelasticity in simple indentation-cycle experiments: a computational study
	Anchor 2
	Anchor 3
	Results
	Simplest spring-dashpot combinations. 
	Fractional viscoelastic models. 
	General dependencies of the curve parameters on the relaxation function. 

	Discussion
	Methods
	Linear viscoelasticity theory for indentation experiments. 
	Numerical and analytical solutions of the Ting’s model. 
	Finite element analysis. 

	References
	Acknowledgements


