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Metabolic radiogenomics in lung 
cancer: associations between FDG 
PET image features and oncogenic 
signaling pathway alterations
Gahyun Kim1,2,6, Jinho Kim1,6, Hongui Cha1,2, Woong‑Yang Park3, Jin Seok Ahn4, 
Myung‑Ju Ahn4, Keunchil Park4, Yong‑Jin Park5, Joon Young Choi5, Kyung‑Han Lee5, 
Se‑Hoon Lee2,4,6* & Seung Hwan Moon5,6*

This study investigated the associations between image features extracted from tumor 
18F-fluorodeoxyglucose (FDG) uptake and genetic alterations in patients with lung cancer. A total of 
137 patients (age, 62.7 ± 10.2 years) who underwent FDG positron emission tomography/computed 
tomography (PET/CT) and targeted deep sequencing analysis for a tumor lesion, comprising 61 
adenocarcinoma (ADC), 31 squamous cell carcinoma (SQCC), and 45 small cell lung cancer (SCLC) 
patients, were enrolled in this study. From the tumor lesions, 86 image features were extracted, 
and 381 genes were assessed. PET features were associated with genetic mutations: 41 genes 
with 24 features in ADC; 35 genes with 22 features in SQCC; and 43 genes with 25 features in SCLC 
(FDR < 0.05). Clusters based on PET features showed an association with alterations in oncogenic 
signaling pathways: Cell cycle and WNT signaling pathways in ADC (p = 0.023, p = 0.035, respectively); 
Cell cycle, p53, and WNT in SQCC (p = 0.045, 0.009, and 0.029, respectively); and TGFβ in SCLC 
(p = 0.030). In addition, SUVpeak and SUVmax were associated with a mutation of the TGFβ signaling 
pathway in ADC (FDR = 0.001, < 0.001). In this study, PET image features had significant associations 
with alterations in genes and oncogenic signaling pathways in patients with lung cancer.

Radiogenomics, merging medical imaging data and genomic information, has great potential in the era of 
personalized medicine1–4. Genomic information could enable physicians to select appropriate management 
strategies according to the genetic alterations in an individual patient with cancer5. Nevertheless, the application 
of genomic medicine in the field of oncology has shortcomings because tumors have genetic and phenotypic 
diversities even within a single mass5–7. Such intra-tumor heterogeneity eventually drives treatment failure and 
disease progression7–9. To overcome it, multiple and sequential biopsies should be conducted to identify all the 
genetic alterations within the whole tumor throughout the course of disease progression within a patient, which 
is not always feasible in routine clinical practice. Therefore, the search for noninvasive techniques that reflect 
genetic alterations in multiple sites and at multiple time points is important because such techniques could 
improve patient care. Various features from medical images of a tumor could be surrogate markers that predict 
the alteration of particular genetic pathways. A known association between image features and genetic alterations 
has a potential as a useful additional information to improve decision making of biopsies, which could create 
new, accessible management strategies for patients with cancer4,6,10.
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Associations between image features extracted from 18F-fluorodeoxyglucose (FDG) positron emission tomog-
raphy/computed tomography (PET/CT) and genetic alterations have not been fully investigated. Image features 
derived from tumor FDG uptake, which reflects a tumor’s metabolic status, might be associated with the tumor’s 
genetic characteristics, and such an association could complement the radiogenomic approach made possible by 
anatomical imaging modalities. We previously investigated the associations among genetic characteristics, het-
erogeneity, mutation burden, and FDG PET/CT features in patients with lung cancer11. However, that study did 
not consider whether FDG PET indices are associated with particular genetic alterations. Despite the potential 
of radiogenomics-based FDG PET images, only a few studies have focused on the relationships between FDG 
uptake and genetic alterations in patients with lung cancer12–15, and the study subjects and PET image features 
of the few studies that have been done were not sufficient to fully elucidate the association between FDG PET 
imaging and genomic information12–15. Therefore, the value of features extracted from tumor FDG uptake in 
predicting genetic alterations in tumors has not been established. Whether or not PET-derived features can reflect 
alterations in specific oncogenic pathways is not well known.

Therefore, we investigated the associations between features extracted from tumor FDG uptake and genetic 
alterations in patients with lung cancer.

Results
Characteristics of subjects.  The characteristics of the study patients are summarized in Table 1. They had 
a mean age (± standard deviation) of 62.7 ± 10.2 years (range, 29–82 years), and ADC was the most common 
cancer type (44.5%).

The 137 patients underwent 1st line surgery treatments only (29 patients, 21.2%), chemotherapy only (54 
patients, 39.4%), chemoradiotherapy (16 patients, 11.7%), surgery combined with adjuvant chemotherapy (24 
patients, 17.5%), surgery combined with chemoradiotherapy (10 patients, 7.3%), and surgery with neoadjuvant 
chemoradiotherapy (4, 2.9%).

Patients were clinically followed-up for a median of 24.5 months (range, 0.3–133.0 months). Of the 137 
patients, 76 patients (55.5%) died during the follow-up period, and 105 patients (76.6%) had disease progression, 
with a median PFS of 8.7 months.

Among the 137 tumor lesions, 106 lesions were from lung tissue or bronchus (77.4%, 106/137), and 26 lesions 
were from lymph nodes (18.9%, 26/137). The remaining 5 tumor lesions were from pleura or trachea (4%, 5/137). 
In the 106 lung tissue or bronchus lesions, 64 were obtained by surgical resection (60.4%, 64/106), 29 were 
percutaneous needle biopsy (27.3%, 29/106), and the other 13 were obtained by bronchoscopy biopsy (12.3%, 
13/106). All lymph node lesions were obtained by fine needle aspiration biopsy. On average, tumor lesions of 
enrolled patients had a SUVmax of 11.8 ± 5.7 and an MTV of 65.7 ± 89.2 cm3 (These are measured values before 
the correction by harmonization method).

Genetic mutations and PET image features.  We found that genetic mutations have an association 
with PET image features. Patients with mutations of particular genes showed different values in certain image 
features than patients without a mutation in those genes.

Due to limited space, the full dataset of the associations between PET image features and genetic mutations 
is presented only in Supplementary data 3 (FDR values). Briefly, in patients with ADC, 41 of the 381 target genes 
had an association with PET image features. The association varied from genes associated with 1 image feature 
to genes associated with 7 features. In terms of the PET image features, 24 features were associated with genetic 
mutation, and the number of genes associated with a particular feature ranged from 1 to 7. In SQCC, 35 genes 
had an association with image features (range from 1 to 10), and 22 image features had an association with genes 
(range from 1 to 9). In SCLC, 43 genes had an association with image features (range from 1 to 7), and 25 image 
features had an association with genes (range from 1 to 9).

The major associations (those genes which were mutated in more than 3 of the enrolled patients) are sum-
marized in Table 2. Only 1 of the 41 associated genes in ADC, 4 of the 35 genes in SQCC, and 2 of the 43 genes 
in SCLC were mutated in more than 3 enrolled patients. In ADC, the PTCH2 gene were associated with 1 PET 
image feature; in SQCC, the ERCC2, IRS2, NOTCH1, and XPO1 genes were associated with 6 features; and in 
SCLC, the TSHR and ROS1 genes were associated with 2 features. Additionally, we calculated correlation of the 
PET image features in Supplementary data 4 because there are associations between the features.

Clusters of image features and oncogenic signaling pathways.  The clusters based on PET image 
features showed an association with alterations in the oncogenic signaling pathways. We classified patients into 
different groups on the basis of patterns of PET image features by using a consensus clustering analysis, and then 
we assessed the association between those groups and oncogenic signaling pathways. The results are presented 
as heatmaps in Figs. 1, 2, and 3, which supports that PET radiomic signature has a potential to predict specific 
oncogenic pathway alteration. Although the current form of the result has a limitation in practical aspect, they 
can be based to build a novel image-based model for predicting genetic alteration. In ADC, patients were divided 
into 9 different clusters, which were mainly represented by 11 PET image features, and the incidence of muta-
tions in the cell cycle and WNT signaling pathways differed significantly by cluster (p = 0.023, p = 0.035, respec-
tively, Fig. 1). The patients with SQCC were divided into 7 clusters represented by 12 features. Those clusters 
had associations with the cell cycle, p53, and WNT pathway (p = 0.045, 0.009, and 0.029, respectively, Fig. 2). 
The patients with SCLC divided into 3 clusters represented by 7 features, which were associated with the TGFβ 
signaling pathways (p = 0.030, Fig. 3).

In addition, we assessed the survival value of the clusters. We selected the typical clusters based on their 
proximity to one another and the pattern of pathway alteration, and reclassified the clusters. The estimated 
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survival over time according to the reclassified clusters is presented in Fig. 4. A Kaplan–Meier analysis showed 
that the patients in clusters 1 and 9 had better OS than the patients in the other clusters (p = 0.032) in ADC. 
Patients with SQCC and SCLC didn’t show any significant difference in survival according to the reclassified 
clusters. In addition, to evaluate survival value of the clusters in ADC, in relation to other factors such as TNM 
staging, therapeutic regimen, and other PET features, we performed a multivariate survival analysis using Cox 
proportional hazards regression model. However, the clusters didn’t show any significance in multivariate analysis 
(supplementary table 5).

Metabolic intensity and oncogenic signaling pathways.  Metabolic intensity is associated with a 
mutation of the TGFβ signaling pathway in ADC. SUVpeak was selected to indicate the metabolic intensity of 
tumor lesions and was found to be higher in patients with mutations in the TGFβ signaling pathway than in 
those without them. When SUVmax was used as an indicator of metabolic intensity, the results were similar to 
those with SUVpeak in the TGFβ signaling pathway (fold change = 0.130, FDR < 0.001, data not shown). SUVpeak 
also showed raw p-value less than 0.05 in correlation with PI3-Kinase mutation. However, they failed to show 
significance in the FDR method.

In SQCC, although SUVpeak showed raw p-values less than 0.05 in correlation with mutation of the Hippo 
signaling pathway, they lost significance when they were corrected by the FDR method. In SCLC, metabolic 

Table 1.   Characteristics of Study Patients (n = 137). ECOG, Eastern Cooperative Oncology Group; N/A, not 
applicable; ADC, adenocarcinoma; SQCC, squamous cell carcinoma; SCLC, small cell lung cancer; AJCC, 
American Joint Committee on Cancer; T, tumor; N, node; M, metastasis.

Characteristics n (%)

Age, years (range) 62.7 ± 10.2 (29–82)

Male 101 (73.7%)

Smoking

Smoker 51 (37.2%)

Ex-smoker 46 (33.6%)

Never-smoker 39 (28.5%)

N/A 1 (00.7%)

ECOG performance status

0 17 (12.4%)

1 102 (74.5%)

2 8 (05.8%)

3−4 1 (00.7%)

N/A 9 (06.6%)

Pathology

ADC 61 (44.5%)

SQCC 31 (22.6%)

SCLC 45 (32.8%)

AJCC TNM staging 7th

T

1 19 (13.9%)

2 54 (39.4%)

3 34 (24.8%)

4 20 (14.6%)

N/A 10 (07.3%)

N

0 36 (26.3%)

1 17 (12.4%)

2 38 (27.7%)

3 39 (28.5%)

N/A 7 (05.1%)

M

0 75 (54.7%)

1a 12 (08.8%)

1b 27 (19.7%)

N/A 23 (16.8%)
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intensity was not associated with alterations in oncogenic signaling pathways. The correlations between meta-
bolic intensity, presented as SUVpeak, and alterations in oncogenic signaling pathways are summarized in Table 3.

Discussion
We have here investigated the relationships between metabolic image features and genomic alterations, including 
oncogenic signaling pathways, from the dataset of our institution. Although the limitations of a heterogeneous 
dataset and incomplete methodology have hampered our ability to generalize our findings, some results are 
consistent with those of previous studies indicating that the FDG PET-based radiogenomic approach has the 
potential to play a significant role in cancer research and clinical practice.

In recent years, the search for relationships between imaging phenotypes and genomics, commonly called 
radiogenomics or image genomics, has emerged as a new direction in cancer research. Knowledge from this 

Table 2.   Correlation between gene mutations* and metabolic image features†. *, Consisted only of genes 
having mutation over 3 cases; †, consisted only of features showing significant correlation in FDR; ADC, 
adenocarcinoma; LN, lymph node; SQCC, squamous cell carcinoma; SCLC, small cell lung cancer; GLCM, 
gray level co-occurrence matrix; SUV, standardized uptake value; GLRM, gray level run-length matrix; 
TFCCM, texture feature coding co-occurrence matrix; NGLD, neighboring gray level dependence; TFC, 
texture feature coding.

Tumor
Mutation (number of 
related features)

Image features (FDR value)

GLCM normalized 
contrast

ADC PTCH2 (1) 0.029

SUVmax SULpeak Surface SUV SD Entropy
GLRM short run 
emphasis

TFCCM inverse 
difference moment

SQCC

ERCC2 (1) 0.037

IRS2 (2) 0.002 0.049

NOTCH1 (2) 0.029 0.033

XPO1 (1) 0.001

NGLD small number 
emphasis TFC mean convergence

SCLC
TSHR (1) 0.036

ROS1 (1) 0.048

Figure 1.   Visualization of the association between pathway alterations and clusters based on FDG PET features 
in ADC. (A) Patient clustering according to PET image features. The pathways on the right shows different 
incidence of alterations according to the clusters. (B) Heatmaps showing z-score of representative PET image 
features that were chosen based on statistical difference between clusters. MUT, mutation; NA, non applicable; 
T, texture feature; GLCM, gray level co-occurrence matrix; SUV, standardized uptake value; TFCCM, texture 
feature coding co-occurrence matrix.
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Figure 2.   Visualization of the association between pathway alterations and clusters based on FDG PET features 
in SQCC. (A) Patient clustering according to PET image features. The pathways on the right shows different 
incidence of alterations according to the clusters. (B) Heatmaps showing z-score of representative PET image 
features that were chosen based on statistical difference between clusters. CNV, copy number variation, MUT, 
mutation; NA, non applicable; T, texture feature; TFCCM, texture feature coding co-occurrence matrix; GLCM, 
gray level co-occurrence matrix; SUV, standardized uptake value; SD, standard deviation; GLSZM, gray level size 
zone matrix; NGLD, neighboring gray level dependence.

Figure 3.   Visualization of the association between pathway alterations and clusters based on FDG PET features 
in SCLC. (A) Patient clustering according to PET image features. The pathways on the right shows different 
incidence of alterations according to the clusters. (B) Heatmaps showing z-score of representative PET image 
features that were chosen based on statistical difference between clusters. MUT, mutation; NA, non applicable; T, 
texture feature; T, texture feature; GLCM, gray level co-occurrence matrix; SUV, standardized uptake value; SUL; 
SUV normalized to lean body mass.
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new approach has could lead to improved decision making in the management of cancer patients4,10,11. FDG 
PET-derived image features can reflect the metabolic status of a tumor in ways that anatomical imaging modali-
ties cannot16,17. Genomic alterations underlie a pan-cancer metabolic shift, which is one of the hallmarks of 
cancer18,19. Many key neoplastic events are controlled by a host of mutational events in multiple cancer-associated 
genes that converge to alter tumor cell metabolism19–21. Therefore, there might be some relationships between 
the characteristics of tumor FDG uptake and the alteration of cancer-associated genes and pathways. How-
ever, despite the research interest in radiogenomics, the value of using an image analysis based on tumor FDG 
uptake to predict genetic alterations has not been established. Particularly, very few studies have focused on 
FDG PET–based radiogenomics in lung cancer12–14. Nair VS et al. explored differential genome-wide expression 
across 14 different SUV histogram features in 25 patients with non-small cell lung cancer (NSCLC) to identify 
individual genes and gene expression signatures associated with prognostically relevant features12. They reported 
that 8 single genes (BIRC2, FAP, FURIN, LOC648470, LY6E, MCM6, RNF149, and OBFC1) were associated 
with 7 different SUV histogram features, and eight co-expressed gene clusters (cell adhesion, protein catabolism, 
nucleic acid processing, metalloproteinase, TP53, RB1, protein processing, embryogenesis, apoptosis, extracel-
lular matrix, and hypoxia ) were also associated with 7 different features. Gevaert O et al. also applied a radiog-
enomic approach to a cohort of 26 patients with NSCLC13. They extracted 180 image features from CT (179 
features) and PET/CT (SUVmax), and identified 243 significant pairwise correlations between image features and 
co-expressed gene clusters in NSCLC. Among them, SUVmax was associated with 4 co-expressed gene clusters. 
Crespo-Jara A et al. developed a universal genomic signature predicting the FDG uptake of 84 patients with 
diverse metastatic tumors, including 7 with lung cancer14. They found that SUVmean correlated with biological 
processes beyond glycolysis, ribosome biogenesis, DNA replication, cytoskeleton reorganization, and autophagy. 
Although those researchers have elucidated meaningful results from the data available at the time in a sophis-
ticated way, the relevance of PET image features to predicting gene alteration has not been proved. The patient 

Figure 4.   Prognostic value of the clusters in lung cancer. (A) OS differed significantly according to the 
reclassified clusters in ADC. The cluster A consists of the 1 and 9. The cluster B consists of the others (refer to 
Fig. 1). (B) In SQCC, there was no significant difference in survival according to the reclassified clusters. The 
cluster A consists of the 1, 4, 6, and 7. The cluster B consists of the 2, 3, and 5 (refer to Fig. 2). In SCLC, the 
reclassified cluster A of SCLC is the initial cluster 1 and the cluster B consists of the 2 and 3 (refer to Fig. 3), and 
there was also no significant difference in OS and PFS according to the reclassified clusters (Graph not shown, 
P = 0.194, P = 0.668, respectively). ADC, adenocarcinoma; SQCC, squamous cell carcinoma; SCLC, small cell 
lung cancer; OS, overall survival, PFS; progression free survival.
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Table 3.   Correlations between metabolic intensity and oncogenic signaling pathways according to pathology. 
*Significant correlation; ADC, adenocarcinoma; SQCC, squamous cell carcinoma; SCLC, small cell lung 
cancer; FC, fold change; FDR, false discovery rate; LOF, loss of function; CNV, copy number variation.

Pathways

ADC SQCC SCLC

p value FC FDR p value FC FDR p value FC FDR

Cell cycle

Mutation 0.465 − 0.067 0.789 0.351 0.198 0.829 0.401 − 0.015 0.681

LOF 0.927 − 0.035 0.998 0.478 − 0.083 0.875 0.389 0.036 0.681

Fusion

CNV 0.382 − 0.059 0.789 0.911 0.012 0.964 0.631 − 0.057 0.773

Hippo

Mutation 0.239 0.007 0.763 0.038* 0.193 0.616 0.303 − 0.075 0.681

LOF

Fusion

CNV

Myc

Mutation 0.295 − 0.012 0.681

LOF

Fusion

CNV 0.951 − 0.075 0.998 0.031 0.132 0.596

Notch

Mutation 0.117 − 0.009 0.530 0.676 − 0.033 0.875 0.242 − 0.100 0.675

LOF 0.998 − 0.078 0.998 0.318 − 0.080 0.829 0.107 0.228 0.596

Fusion

CNV 0.292 − 0.136 0.829 0.718 − 0.023 0.789

Nrf2

Mutation 0.254 − 0.162 0.763 0.901 − 0.011 0.964 0.529 0.417 0.711

LOF

Fusion

CNV 0.504 − 0.061 0.789 0.899 − 0.012 0.964

PI3-Kinase

Mutation 0.034* − 0.145 0.408 0.982 0.001 0.982 0.455 − 0.022 0.692

LOF 0.659 − 0.069 0.875 0.993 − 0.091 0.993

Fusion

CNV 0.434 − 0.014 0.789 0.195 0.113 0.805 0.168 0.146 0.596

RTK/RAS-Kinase

Mutation 0.329 − 0.137 0.789 0.083 0.170 0.724 0.180 0.252 0.596

LOF

Fusion

CNV 0.183 0.086 0.596

TGFβ

Mutation < 0.001 0.101 0.001* 0.479 − 0.158 0.692

LOF 0.118 − 0.161 0.529

Fusion

CNV 0.634 − 0.045 0.773

p53

Mutation 0.072 0.119 0.529 0.113 0.135 0.724 0.473 − 0.069 0.692

LOF 0.469 − 0.027 0.789 0.281 − 0.106 0.829 0.142 0.199 0.596

Fusion

CNV 0.848 − 0.048 0.998 0.694 − 0.056 0.875

β-catenin/Wnt

Mutation
LOF
Fusion
CNV

0.953 − 0.059 0.998 0.581 − 0.067 0.875 0.709 0.198 0.789

0.643 − 0.022 0.626

0.831 − 0.055 0.876
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populations included in the previous studies were too small to have sufficient statistical power. In addition, only 
a few of the many PET image features were considered12–14.

We explored differential genes and oncogenic signaling alterations across 27 PET features (SUV histogram 
features and textures features) in a cohort of 137 patients with lung cancer (61 ADC, 31 SQCC, and 45 SCLC 
patients) to identify individual genes and oncogenic signaling pathways associated with PET image features. 
One strength of the present study is that it considers a much larger study population than previous studies. 
Another is that it includes a much larger number of PET image features in its analysis. On the other hand, the 
number of genes analyzed in this study is relatively small compared with previous studies. We used data from 
a cohort of patients who underwent CancerSCAN, which targeted 83 or 381 genes, which is too few to identify 
hidden molecular mechanisms or pathways associated with tumor metabolism. In addition, mutation in a single 
gene may not be enough to guarantee an alteration in the specific pathway it belongs to, which may have led to 
misinterpretation in the present study. However, the selected target genes are associated with targeted cancer 
therapies or response to therapy in the literature and public databases22,23, Our data are, therefore, sufficient to 
identify clinically meaningful associations between genetic alterations and image features.

In this study, 41 single genes were associated with 24 PET image features in ADC. Among them, the only one 
gene, PTCH2, was arbitrarily classified according to the frequency of alteration among the study subjects. It has 
known to act as a tumor suppressor24, and showed significant association with GLCM normalized contrast in 
this study. In addition, image clusters comprising 11 features were associated with the alteration of the cell cycle 
and WNT signaling pathway. The association of PET features with single genes reported in a previous study was 
not reproduced in this study12. However, it is difficult to make a direct comparison with the result of the previous 
study because various factors that can affect the result, such as the PET image features used, the applied target 
genes, tumor segmentation method, scanner, image protocol, and analyzing strategy are all different. In SQCC, 
four major genes were associated with 6 PET image features: ERCC225, IRS226, NOTCH127, and XPO128, which 
functions as a DNA repair gene25, mediates effects of insulin and other cytokines26, plays a role in cell growth, 
division, differentiation, and apoptosis27, and mediates the nuclear export of proteins and RNAs28, respectively. 
Image clusters were associated with the p53, WNT, and cell cycle pathways. In SCLC, two major genes were 
associated with 2 PET image features: TSHR29 and ROS130, which mediates thyroid cell metabolism29 and func-
tions as a growth or differentiation factor receptor30, respectively. Image clusters were associated with the TGFβ 
signaling pathways. To the best of our knowledge, this is the first study to assess associations between genetic 
alterations and PET image features, including texture features, in SQCC and SCLC.

However, it is quite questionable whether the association between the image feature/clusters and gene muta-
tion will be reproduced in another cohort of patients. Many factors create obstacles to generalizing the findings 
of this study, but one of the biggest problems is that the image features are susceptible to various conditions 
and thus are not a robust indicator that produces consistent outcomes under different study conditions. PET 
image features are significantly affected by tumor size31, tumor segmentation method11,32, scanner, and image 
protocol33. In addition, measurement of the PET texture features is 5 times more sensitive to volume changes for 
small volumes below the proposed minimum than for those above it34. The textural features also depend on the 
conditions of image acquisition and the reconstruction method. Although there was a difference in degree, all 
such features exhibited variations according to different acquisition modes and reconstruction parameters17,35,36. 
Standardization and refinement of methodologies for producing objective and independent image features is 
required to ensure results of radiomic studies37. Consequently, unless features are obtained with a similar tumor 
size and the same segmentation method, acquisition modes, and reconstruction parameters, studies such as this 
one are difficult to compare with other studies. However, a collaboration works toward for standardization such 
as the image biomarker standardisation initiative (IBSI) has been proposed. Efforts toward standardizing all of 
these technical issues for the radiomic approach has been made6, which will facilitate the comparison of results 
between these kinds of studies and will be the basis for drawing reliable conclusions. In this study, to minimize 
the effect of PET scanners and segmentation methods, we adopted ComBat for harmonization38 recommended 
by IBSI and choose the robust features for segmentation methods11.

Even though the measurement of PET features is generally sensitive to various conditions, some indicators 
are relatively robust and can be used with some degree of certainty. SUVpeak and SUVmax, which indicate the 
metabolic intensity of the target tumor lesion, provide an observer-independent measurement and are less 
affected by conditions than other features39,40. These intensity features are related to certain genes or oncogenic 
signaling pathways and are likely to have potential as a universal surrogate marker that is reproducible even 
under different conditions. In this study, SUVpeak was associated with the TGFβ signaling pathway in ADC. This 
pathway is an important mediator of tumor invasion, and targeted inhibition of this pathway could be a new 
approach to lung cancer treatment41–43. This result is consistent with that of a previous study. Yamamoto S et al. 
conducted a differential expression analysis in a public NSCLC dataset that contained FDG PET and messenger 
RNA expression profile data (n = 26). They found that the genes which have been strongly implicated in epithelial-
mesenchymal transition (EMT), including TGF-β (P-value = 0.007) were overexpressed in their high-normalized 
SUVmax group15. The results from both studies demonstrate a strong association between increased FDG uptake 
and gene alterations related to EMT in ADC. Given that SUVmax is indicator of relatively low variability that are 
not significantly affected by other conditions, the conclusion in that TGF-β signaling alteration are more likely 
to occur in ADC patient with high metabolism is highly reliable. Of course, it should be further confirmed in 
larger size populations.

This study has several limitations. First, because of an insufficient number of enrolled study subjects, internal 
validation was not performed, which diminished the quality of the research. Second, many of extracted features 
using CGITA were not identical to those provided by IBSI, which limits the generalizability and reproducibility 
of this study. In addition, the heterogeneity of the study subjects, including the scanner, reconstruction method, 
version of CancerSCAN, and different tissue type could restrict the generalizability of our study results. Validation 
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studies with a large number of homogeneous subjects and standardized radiomic PET features are needed to 
confirm the findings of this study.

In conclusion, we found significant associations between PET image features and gene mutations in this 
study. Interestingly, the metabolic intensities of the tumor, presented as SUVpeak and SUVmax, and clusters of PET 
image features were associated with alterations in specific oncogenic signaling pathways, suggesting that it is not 
impossible to predict the presence of an alteration by using FDG PET in patients with lung cancer.

However, it is difficult to generalize our results due to the limitations given above and the methodological 
challenges of metabolic radiogenomics, including the reproducibility and reliability of the features. Further 
large-scale studies are needed to verify the findings of this study and evaluate whether PET image have predic-
tive value for genetic alteration.

Methods
Subjects.  In this study, we enrolled novel study subjects from the candidates for our previous study11. The 
process of subject selection is summarized in Fig. 5. Briefly, the study candidates were 417 patients with histo-
logically confirmed lung cancer who were enrolled in a database at the Samsung Genome Institute and who 
underwent 18F-FDG PET/CT. Gene profiles of their tumor tissue had supposed to be made using the Cancer-
SCAN next generation sequencing (NGS)-based targeted-sequencing platform designed at our institution44. All 
patients had agreed that their data could be used in other studies. Within that candidate pool, we excluded 28 
patients whose tumor tissues were obtained for genomic analysis after neoadjuvant therapy or more than 30 days 
prior to their PET/CT.

Of the remaining 389 patients, we excluded 95 patients whose CancerSCAN results failed quality control, 20 
patients with cell line sequencing data, 55 patients who cancelled the CancerSCAN, and 11 patients with cancers 
other than adenocarcinoma (ADC), squamous cell carcinoma (SQCC), or small cell lung cancer (SCLC). All PET 
scans in these patients was performed before treatment. In addition, we excluded 75 patients with small tumor 
volume because small tumor volume affects the measurement of texture features in PET images31. The minimum 
metabolic tumor volume eligible for texture feature analysis is approximately 10 cm311,45. Thus, patients with 
less than 10 cm3 of tumor volume were excluded from the analysis. Therefore, a total of 137 patients were finally 
included and divided into 3 groups by their cancer type (ADC, SQCC, and SCLC).

Figure 5.   Flowchart of patient inclusion, with reasons for exclusion and the total study population. *, These 
patients were included in the analysis for the correlation between the intensity of tumor FDG uptake and 
alterations in oncogenic signaling pathways.
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All the clinical data for the enrolled patients were collected by a review of electronic medical records. Overall 
survival (OS) was defined as the time from the first date of 1st line treatment until death from any cause, with 
censoring at the date of the final follow-up in surviving patients. Progression-free survival (PFS) was defined as 
the time from the first date of 1st line treatment to the date of disease progression, with censoring at the date of 
the final follow-up if the patient had not progressed. This study was approved by Institutional Review Board of 
Samsung Medical Center, and the requirement for written informed consent was waived. In addition, all methods 
were performed in accordance with relevant guidelines and regulations.

PET/CT imaging.  All patients were instructed to fast for at least 6 h, and blood glucose was < 200 mg/dl 
at the time of the FDG injection. PET/CT scans without intravenous or oral contrast were performed on a GE 
Healthcare (Milwaukee, WI, USA) Discovery LS (n = 41) or Discovery STe (n = 96) scanner. At 60  min after 
injecting 225–417 MBq of FDG, emission scans were acquired from the skull base to mid-thigh at 4 min per 
frame in 2D mode (Discovery LS) or 2.5 min per frame in 3D mode (Discovery STe). Whole-body spiral CT was 
performed with an 8-slice helical CT (140 keV, 40 to 120 mAs adjusted to body weight; section width = 5 mm) 
for the Discovery LS scanner and a 16-slice helical CT (140 keV, 30 to 170 mAs with AutomA mode; section 
width = 3.75 mm) for the STe scanner. Attenuation-corrected PET images (voxel size = 4.3 × 4.3 × 3.9 mm for Dis-
covery LS, 3.9 × 3.9 × 3.3 mm for Discovery STe) were reconstructed using CT data and 2D (28 subsets, 2 itera-
tions; Discovery LS) or 3D ordered-subset expectation maximization algorithms (20 subsets, 2 iterations; STe).

PET image analysis.  To investigate the association between a PET image feature and a gene mutation or 
alteration in an oncogenic signaling pathway, we extracted PET image features from the tumors for which a tis-
sue biopsy was performed using CancerSCAN.

Image feature extraction was based on a previous study and used the gradient-based segmentation method 
(‘PET Edge’) in MIM version 6.4 software (MIM Software Inc., Cleveland, OH, USA)11,46. The target tumor was 
identified by an experienced nuclear medicine physician (S.H.M) who was unaware of all clinical information 
except the target tumor site. As the physician drags the cursor out from the center of the target tumor to a point 
near the edge of the lesion, six axes interactively extend out, and the length of an axis is restricted when a large 
gradient is detected along that axis. Then, the software automatically outlines a three-dimensional volume of 
interest on the tumor. After creating gradient-based segmentation of the target tumor lesion, we extracted PET 
image features using the Chang-Gung Image Texture Analysis toolbox (CGITA, https​://code.googl​e.com/p/cigit​
a), an open-source software package implemented in MATLAB (version 2012a; MathWorks Inc., Natick, MA, 
USA)47. A total of 86 PET features available in CGITA were measured on each segment11,47: 55 texture features 
and 31 non-texture features (standardized uptake value (SUV) and intensity histogram, 25; texture spectrum, 2; 
geometry, 4; see Supplementary data 1). To minimize the effect of different PET scanners with different image 
reconstruction method (2D vs. 3D), we adopted harmonization method which is recommended by IBSI (https​
://githu​b.com/Jfort​in1/Com-BatHa​rmoni​zatio​n)38, and obtained corrected values of extracted features. Among 
those corrected 86 image features, 27 features which have shown to be less affected by segmentation methods11 
(Supplementary data 1) were selected for further analysis. The metabolic tumor volume (MTV), obtained through 
the gradient-based segmentation method, was used as a volume indicator to determine whether or not the 
measured target tumor would be included in the subject enrollment process (Fig. 5).

CancerSCAN and classification of oncogenic signaling pathway.  CancerSCAN is an NGS-based 
targeted-sequencing platform designed at our institution. The reliability of this assay was proved by a robust 
analytic validation in previous studies, where the details of experimental procedures were described22,23,44.

CancerSCAN version 1 targeted 83 genes, and version 2 targeted 381 genes. The selected target genes for this 
customized platform were curated at the request of researchers and clinicians and associated in the literature 
and public databases with targeted cancer therapies or response to therapy. SNVs, small indels, CNVs, and gene 
fusions were detected using both existing and new algorithms. The genes contained in the two versions are listed 
in Supplementary data 2. The variant calls were classified into four categories to reflect mode and functional effect 
of mutations and then condensed at gene level. The four categories include (1) MUT: miss-sense mutation, (2) 
LoF: loss of function variant including frame-shift insertion/deletion and stop-gain mutation, (3) CNV: copy 
number variation, and (4) FUSION: known driver gene fusion event.

The genes in CancerSCAN were classified into ten canonical pathways according to the mechanism and 
pattern of alterations: cell cycle, Hippo, Myc, Notch, NF-E2 p45-related factor 2 (Nrf2), phosphoinositide-
3-kinase–protein kinase (PI-3-Kinase)/Akt, receptor tyrosine kinases (RTK)-RAS, transforming growth factor-β 
(TGFβ) signaling, p53, and β-catenin/Wnt signaling, as proposed by F Sanchez-Vega et al.48. The genes corre-
sponding to those pathways are listed in Supplementary data 2. In this study, patients with alterations in any of 
the genes corresponding to a particular pathway were considered to have alterations in that pathway.

Statistical analysis.  Statistical analysis was performed using SAS version 9.4 (SAS Institute, Cary, NC, 
USA) and R 3.5.3 (Vienna, Austria; https​://www.R-proje​ct.org/).

The associations between PET image features and genetic mutations and pathway alterations were assessed. In 
comparing texture features between patients with gene alterations and those without them, a total of 137 patients 
with tumor volume ≥ 10 cm3 were enrolled. In the comparison of FDG uptake intensity between patients with a 
pathway alteration and those without one, a total of 208 patients who met all the criteria of this study except for 
tumor volume were included because PET image features that represent FDG uptake intensity, such as SUVpeak 
or SUVmax, are not much affected by tumor volume11,31,45.

https://code.google.com/p/cigita
https://code.google.com/p/cigita
https://github.com/Jfortin1/Com-BatHarmonization)38
https://github.com/Jfortin1/Com-BatHarmonization)38
https://www.R-project.org/
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The PET image features were verified to determine whether they have a normal distribution. If the values were 
not normally distributed, they were log-transformed. T-testing was used when the values of the image features 
were normally distributed; otherwise, the Wilcoxon rank sum test was used. To assess how much a quantity 
changed, we calculated log fold changes of mean PET image feature between the patients having the alteration 
and the others. Before calculating the log fold change, if either numerator or denominator equals zero, rescaling 
was applied as follows:

where X is a PET image feature, and N is the number of the subjects. To correct random events that falsely 
appear significant, false discovery rate (FDR) was calculated using Benjamini Hochberg procedure, a statistical 
approach for multiple comparisons.

We clustered the study subjects based on all PET image features using consensus clustering analysis in which 
we used hierarchical clustering algorithm and Pearson correlation as distance metric. Based on the proportion of 
ambiguous clustering (PAC) with the interval of consensus index ranging from 0.1 to 0.9, we chose the optimal 
number of clusters (K). To identify the key image features that are distinctive between clusters, statistical tests 
were used; Firstly, either ANOVA, Welch’s ANOVA or Kruskal Wallis test depending on the normality of the 
distribution and homogeneity of variance. Secondly, pair-wise t-tests were performed and image features that 
were significant in all the tests were chosen in ADC and SQCC. In SCLC, there were no image features significant 
in all the 6 tests, thus we chose image features significant in five tests instead.

We also assessed the survival value of the clusters based on PET image features. The obtained clusters were 
reclassified according to their proximity to one another, which was based on dendrogram. The clusters split off 
together from the higher branches of the dendrogram were reclassified. They were defined in Figure Legends 
(Fig. 4). Progression free survival (PFS) and overall survival (OS) according to the reclassified clusters were 
estimated using the Kaplan–Meier survival analysis method and compared using the log-rank test.

All tests were two-sided, and p-values less than 0.05 were considered statistically significant.
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