SCIENTIFIC REPORTS

natureresearch

Check for updates

OPEN

Structural dynamics of CH₃NH₃⁺ and PbBr₃⁻ in tetragonal and cubic phases of CH₃NH₃PbBr₃ hybrid perovskite by nuclear magnetic resonance

Ae Ran Lim^{1⊠}, Sun Ha Kim^{2,3} & Yong Lak Joo⁴

Understanding the structural dynamics of lead-halide perovskites is essential for their advanced use as photovoltaics. Here, the structural dynamics of the CH_3NH_3 cation and PbBr₆ octahedra in the perovskite $CH_3NH_3PbBr_3$ were studied via nuclear magnetic resonance (NMR) to determine the mechanism of the transition from the tetragonal to cubic phase. The chemical shifts were obtained by ¹H, ¹³C, and ²⁰⁷Pb magic angle spinning NMR and ¹⁴N static NMR. The chemical shifts of the ¹H nuclei in CH₃ and NH₃ remained constant with increasing temperature, whereas those of the ¹³C and ²⁰⁷Pb nuclei varied near the phase transition temperature ($T_c = 236$ K), indicating that the structural environments of ¹³C and ²⁰⁷Pb change near T_c . The spin–lattice relaxation time $T_{1\rho}$ values for ¹H, ¹³C, and ²⁰⁷Pb nuclei increased with increasing temperature and did not exhibit an abrupt change near T_c . In addition, the two lines in the ¹⁴N NMR spectra superposed into one line near T_c indicating the occurrence of a phase transition to a cubic phase with higher symmetry than tetragonal. Consequently, the main factor causing the phase transition from the tetragonal to cubic phase near T_c is a change in the surroundings of the ²⁰⁷Pb nuclei in the PbBr₆ octahedra and of the C–N groups in the CH₃NH₃ cations.

Lead-halide perovskites currently represent the most promising photovoltaic materials for the production of low-cost, high-performance solar cells^{1,2}. In recent years, researchers have succeeded in significantly improving the power conversion efficiency (PCE) of this hybrid perovskite, and rapid advances in this field led to a record-high PCE. The very important for optoelectronic heterostructures are solar cells, photodetectors, and laser diodes³⁻⁶. For this class of materials, which has the general formula $CH_3NH_3PbX_3$ (\bar{X} = Cl, Br, and I), an inorganic cage of Pb X_6 octahedra encloses an organic cation at the CH₃NH₃⁺ site⁷⁻¹². The phase transition temperatures of CH₃NH₃PbBr₃, a representative perovskite, are 148.8, 154, and 236.3 K, corresponding to a total of four crystal phases^{13,14}; with decreasing temperature, the cubic phase (I) transforms to a tetragonal phase (II) at 236.3 K, to another tetragonal phase (III) at 154 K, and finally to an orthorhombic phase (IV) at 148.8 K. In tetragonal phase II, the CH₃NH₃⁺ ions undergo isotropic reorientation, whereas in the lower-temperature phases, the reorientation of C-N axes seems to be frozen¹⁵. All the phase transitions are first-order and order-disorder type, although the highest temperature transition is close to second-order. From the high-temperature cubic phase with freely rotating CH₃NH₃ cations, this compound enters lower-symmetry tetragonal phases and finally a low-temperature orthorhombic phase with the orientation of CH₃NH₃ cations fixed at ordered positions^{16–20}. At room temperature, the structure is cubic, the space group is Pm3m, and the lattice constant a = 5.93129 Å and $Z = 1^{13}$. In this crystal structure, there exists a $CH_3NH_3^+$ cation at the centre of a cube formed by corner-sharing PbBr₆ octahedra^{18,21}, as shown in Fig. 1. Below 236 K, the crystal structure has a tetragonal and belongs to the space group I4/mcm with lattice constants a = b = 8.32 Å, c = 11.83 Å, and $Z = 4^{22}$. Throughout the transition

¹Analytical Laboratory of Advanced Ferroelectric Crystals, Department of Science Education, Jeonju University, Jeonju 55069, Korea. ²Seoul Western Center, Korea Basic Science Institute, Seoul 03759, Korea. ³Department of Chemistry, Kyungpook National University, Daegu 41566, Korea. ⁴Robert Fredrick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA. ^{See}email: aeranlim@hanmail.net

Figure 1. Crystal structure of cubic phase CH₃NH₃PbBr₃. The software used to create the Fig. is CrystalMaker Software.

from the tetragonal II phase to the tetragonal III phase at 154 K, the full width at half maximum of the Raman v_6 band shows an abrupt increase⁸. At lower temperatures, CH₃NH₃PbBr₃ undergoes a first-order structural phase transition from the tetragonal III (I4/mmm) phase to the orthorhombic IV (Pnma) phase⁹.

In a previous nuclear magnetic resonance (NMR) investigation, the temperature dependence of ⁸¹Br nuclear quadrupole resonance frequencies and ¹H spin–lattice relaxation times in the laboratory frame T_1 for $CH_3NH_3PbBr_3$ were discussed by Xu et al.²³ According to their results, the two ⁸¹Br NQR lines in phase II were reduced to one line in phase I. The discontinuity of the NQR line at this transition point implied a first-order transition. ¹H T_1 varied continuously, and no discernible change in the free induction decay was observed during the I–II transition. The phase transition had no significant effect on the motional state of the $CH_3NH_3^+$ ions. Furthermore, Baikie et al.¹³ reported that the ¹H magic angle spinning (MAS) NMR spectra showed two clear peaks corresponding to the CH_3 and NH_3 environments in the high-temperature phase, and the ¹H and ¹³C NMR spectra of $CH_3NH_3PbBr_3$ showed that the $CH_3NH_3^+$ units undergo dynamic reorientation.

Measuring the spin–lattice relaxation time in the rotating frame $T_{1\rho}$ by MAS NMR allows for the probing of molecular motion in the kHz range, whereas the spin–lattice relaxation time in the laboratory frame T_1 measured by static NMR reflects motion in the MHz range. Although the ¹H T_1 of CH₃NH₃PbBr₃ has been examined by a few research groups, the corresponding phenomena by ¹H, ¹³C, and ²⁰⁷Pb MAS NMR spectra and $T_{1\rho}$ have not been fully studied. In addition, information regarding ¹⁴N in the CH₃NH₃ cation has not yet been discussed.

In the present study, the structural dynamics of the CH_3NH_3 cation and $PbBr_6$ octahedra in $CH_3NH_3PbBr_3$ were studied in detail by NMR to resolve the phase transition mechanisms from the tetragonal phase to the higher-temperature cubic phase. The temperature dependences of the chemical shifts and spin–lattice relaxation time in the rotating frame T_{1p} were measured using ¹H MAS NMR, ¹³C cross-polarization (CP)/MAS NMR, and ²⁰⁷Pb MAS NMR with emphasis on the role of the CH_3NH_3 cation and $PbBr_6$ octahedra in $CH_3NH_3PbBr_3$. In addition, the ¹⁴N static NMR spectra of $CH_3NH_3PbBr_3$ in the laboratory frame were acquired near the phase transition temperature. The abovementioned results help in understanding the thermal stability and the structural dynamics based on the phase transition mechanism, towards the practical application of this material.

Experimental

 CH_3NH_3Br and $PbBr_2$ were dissolved in a dimethylformamide solution and heated the mixed suspension on a hot plate to obtain a transparent solution. Detailed methods for the crystal growth are given elsewhere^{21,24,25}. The $CH_3NH_3PbBr_3$ single crystals obtained here were orange in colour with a square shape.

Differential scanning calorimetry (DSC) (TA, DSC 25) was conducted at a heating rate of 10 °C/min over a temperature range from 190 to 525 K under nitrogen gas. Thermogravimetric analysis (TGA) was performed on a thermogravimetric analyser (TA Instrument) in an interval from 300 to 780 K at a heating rate of 10 °C/min. Approximately 11.15 mg of CH₃NH₃PbBr₃ was used in each experiment.

NMR measurements were carried out at 9.4 T using a Bruker 400 MHz Avance II + spectrometer at the Korea Basic Science Institute, Western Seoul Center. The ¹H, ¹³C, and ²⁰⁷Pb NMR frequencies were 400.13, 100.61, and 83.75 MHz, respectively. Powdered samples were packed in zirconia MAS rotors with Macor caps, and the MAS rate was set to 10 kHz for the ¹H MAS, ¹³C MAS, and ²⁰⁷Pb MAS NMR measurements to minimise spinning sideband overlap. The spin–lattice relaxation time in the rotating frame T_{1p} was measured using an inversion recovery pulse sequence, which employs compensating pulses. The ¹³C T_{1p} values were measured by varying the duration of the ¹³C spin-locking pulse applied after the CP preparation period. The width of the $\pi/2$ pulse used for measuring T_{1p} of ¹H and ¹³C was 3.45 µs, and that for measuring T_{1p} of ²⁰⁷Pb was 3.5 µs. In addition,

Figure 2. Differential scanning calorimetry (DSC) and thermogravi-metric analysis (TGA) of CH₃NH₃PbBr₃ (inset: color changes of CH₃NH₃PbBr₃ single crystal according to the temperature).

 ^{14}N NMR spectra of a CH₃NH₃PbBr₃ single crystal were measured with a Larmor frequency of 28.90 MHz in the laboratory frame.

Temperature-dependent NMR spectra were recorded over 180 to 430 K; the NMR spectra and relaxation times could not be measured outside this temperature range because of the limitations of the spectrometer. Sample temperatures were held constant within ± 0.5 K by controlling the nitrogen gas flow and heating current.

Experimental results

Figure 2 shows the DSC and TGA curves obtained under a nitrogen atmosphere. DSC analysis was used to determine the phase transition temperature; only one endothermic peak related to a phase transition was observed at 236 K, which is consistent with previously reported $T_{\rm C}$ values.^{13,14} The thermal stability of CH₃NH₃PbBr₃ was examined by TGA. The first occurrence of mass loss began at approximately 530 K, which represents the onset of partial thermal decomposition. The mass sharply decreased between 550 and 650 K, with a corresponding mass loss of 22% near 650 K. Optical polarizing microscopy experiments were also conducted to further understand the thermal stability at high temperatures. The colour of the crystal was orange at room temperature, as shown in the inset in Fig. 2. As the temperature increased, the state of the crystal remained the same from 400 to 500 K. Above 550 K, a slight opacity occurred at the bottom of the crystal, and at approximately 600 K, the crystal was nearly opaque.

The ¹H NMR spectrum of CH₃NH₃PbBr₃ was recorded by MAS NMR at a frequency of 400.13 MHz. Figure 3 shows the ¹H MAS NMR spectrum at 300 K, where the spinning sidebands are marked with open circles and asterisks. The two peaks in the ¹H spectrum correspond to CH₃ and NH₃ environments, with the chemical shifts at δ = 3.27 and 6.36 ppm assigned to ¹H in CH₃ and NH₃, respectively. The chemical shifts remained quasi-constant with increasing temperature, indicating that the structural environments of ¹H in the CH₃ and

Figure 4. ¹H spin–lattice relaxation times $T_{1\rho}$ for the CH₃ and NH₃ ions of CH₃NH₃PbBr₃ as a function of inverse temperature (inset: recovery plots of the ¹H MAS NMR spectrum by delay time at 300 K).

 NH_3 groups were unchanged (see the Supplementary Information). Additionally, the line width (full-width at half-maximum) of the ¹H MAS NMR signal at 300 K is approximately 1.62 ppm, which also remained nearly

constant with temperature change. The ¹H inversion-recovery curves for both CH₃ and NH₃ at each temperature were fitted to exponentials to extract T₁, The data were well fitted a single exponential, indicating that there is one dominant relaxation mechanism acting per environment. Thus, T₁, was determined by fitting the decay plots with the equation below^{26,27}.

$$P(t)/P_0 = \exp\left(-t/T_{1\rho}\right),\tag{1}$$

where P(t) is the magnetisation, t is the spin-locking pulse duration, and P_0 is the total nuclear magnetisation of ¹H at thermal equilibrium. The recovery curves of ¹H in CH₃NH₃PbBr₃ were measured for various delay times at each temperature. Figure 4 (inset) shows the recovery traces for ¹H measured for delay times ranging from 1 to 200 ms at 300 K. The intensity of the recovery traces differed with delay time. The $T_{1\rho}$ values obtained from the intensity versus delay time and shown in Fig. 4 reveal that $T_{1\rho}$ increased with temperature because proton hopping was accelerated. This is in agreement with Xu et al.²³, who reported that the ¹H T_1 increased smoothly with increasing temperature through the high-temperature phase transition. The $T_{1\rho}$ values of ¹H in CH₃ and NH₃ in the CH₃NH₃⁺ cation show similar trends with temperature and are nearly the same within the error range. The $T_{1\rho}$ values show no change near the phase transition temperature ($T_C = 236$ K). $T_{1\rho}$ increased with increasing temperature, reaching the maximum values of 592 ms and 456 ms for CH₃ and NH₃, respectively, near 330 K above the phase transition temperature, and then decreased with increasing temperature. Although the structural environment of ¹H in the CH₃NH₃ groups does not change with temperature, their molecular motion increases at high temperatures, as indicated by the $T_{1\rho}$ values. Above T_{C} the ¹H $T_{1\rho}$ value for CH₃ slightly exceed that for NH₃.

Structural analysis of the ¹³C and ²⁰⁷Pb nuclei in CH₃NH₃PbBr₃ was performed by MAS NMR, and the corresponding spectra at 300 K are shown as insets in Fig. 5. At room temperature, the ¹³C and ²⁰⁷Pb MAS NMR spectra show one signal each at chemical shifts of δ = 30.66 and 89 ppm with respect to tetramethylsilane and PbNO₃, respectively. Here, the line width for ¹³C at 300 K is narrow at 2.77 ppm, whereas that for ²⁰⁷Pb is quite broad at 206.24 ppm. Figure 5 shows the ¹³C and ²⁰⁷Pb chemical shifts of CH₃NH₃PbBr₃ measured as a function of temperature, illustrating that the ¹³C and ²⁰⁷Pb peak positions moved to higher chemical shifts upon heating. The chemical shifts near *T*_C changed, in contrast to the ¹H chemical shifts. The chemical shifts of the ¹³C and ²⁰⁷Pb signals relative to the reference signal are sensitive to the electronic environment of the nucleus. In particular, the ²⁰⁷Pb chemical shift changed more rapidly than that of ¹³C near *T*_C. From these results, the phase transition from the tetragonal to cubic phase is thought to arise from a change in the PbBr₆ octahedra.

To determine the $T_{1\rho}$ values of 13 C and 207 Pb in the rotating frame, the nuclear magnetisation was measured as a function of delay time. The signal intensities of the nuclear magnetisation recovery curves could be described by the single exponential function in Eq. (1), and the signal intensity followed this single exponential decay at all temperatures. From these results, the $T_{1\rho}$ values were obtained for 13 C and 207 Pb in CH₃NH₃PbBr₃ as a function of inverse temperature, as shown in Fig. 6. The 13 C and 207 Pb $T_{1\rho}$ values for CH₃ and PbBr₃ seem to follow a similar trend with temperature to that of the 14 H $T_{1\rho}$, where the values increase with increasing temperature and are approximately continuous near T_{C} . In addition, the 207 Pb $T_{1\rho}$ values are much lower than 13 C $T_{1\rho}$.

To obtain information concerning possible changes in the surroundings of the ¹⁴N ion, static NMR spectra of ¹⁴N (I=1) in the laboratory frame were obtained. Temperature-dependent changes in the ¹⁴N resonance frequency are attributable to alterations in the structural geometry, indicating a change in the quadrupole coupling constant of the ¹⁴N nuclei. The spectra were obtained by the solid-state echo method using static NMR at a Larmor frequency of 28.90 MHz. Two resonance signals were expected from the quadrupole interactions of the ¹⁴N nucleus with spin I = 1. The ¹⁴N NMR spectra were shown at 225 and 270 K, and the resonance frequencies referenced

Figure 5. ¹³C and ²⁰⁷Pb chemical shifts in CH₃NH₃PbBr₃ as a function of temperature (inset: ¹³C and ²⁰⁷Pb MAS NMR spectrum of CH₃NH₃PbBr₃ at 300 K).

Figure 6. ¹³C and ²⁰⁷Pb spin–lattice relaxation times T_{1p} of CH₃NH₃PbBr₃ as a function of inverse temperature.

with respect to NH_4NO_3 as a function of temperature are shown in Fig. 7. The line widths are very narrow at all temperatures. The two resonance signals for ¹⁴N, which are attributable to NH_3 , superpose into one line at the transition point of 236 K. This single ¹⁴N resonance line indicates that a phase transition takes place to a new phase with a higher symmetry than tetragonal²⁸. In tetragonal phase below T_C , the electric field gradient tensors at the N sites vary, reflecting changes in the atomic configuration around the nitrogen. But, there is no electric field gradient tensor at the ¹⁴N site in the cubic structure because of the site symmetry of m3m.

Conclusion

Using the information derived from NMR studies near $T_{\rm C}$ (= 236 K), we have probed the structural and dynamic features of CH₃NH₃PbBr₃ in detail and demonstrated its dynamic nature. The ionic dynamics of CH₃NH₃PbBr₃, with emphasis on the role of the CH₃NH₃ cation and PbBr₆ octahedra, were investigated by ¹H MAS NMR, ¹³C CP/MAS NMR, ²⁰⁷Pb MAS NMR, and ¹⁴N static NMR as a function of temperature. ¹H, ¹³C, and ²⁰⁷Pb NMR were used to identify the phase transition in CH₃NH₃PbBr₃ by detecting changes in the chemical shifts accompanying a change in crystallographic symmetry. Here, the CH₃ and NH₃ groups were distinguished based on the ¹H chemical shifts. The chemical shifts of the ¹H nuclei remained constant at all temperatures, whereas those of the ¹³C and ²⁰⁷Pb nuclei varied with temperature. The temperature dependence of the chemical shifts was sensitive to the rotation of the PbBr₆ octahedra. From these results, it is evident that the structural environments of ¹³C and ²⁰⁷Pb change near $T_{\rm C}$. The change in ²⁰⁷Pb chemical shift near $T_{\rm C}$ can be explained by the rotation of PbBr₃. This is consistent with the established nature of the phase transition. Additionally, the NMR line widths of ¹H, ¹³C, and ²⁰⁷Pb T₁p values showed a similar trend with increasing temperature, and their T₁p values were continuous near $T_{\rm C}$. These

Figure 7. The ¹⁴N resonance frequency of CH₃NH₃PbBr₃ single crystal as a function of temperature (inset: ¹⁴N NMR spectrum at tetragonal phase of 225 K and cubic phase of 270 K).

short relaxation times indicate ease of molecular motion. The TGA results also showed that CH₃NH₃PbBr₃ has a high thermal stability.

In addition, the abrupt change occurring in the resonance frequency of the ¹⁴N nuclei near $T_{\rm C}$ is attributable to a structural phase transition. The NH₃ groups in the structure are coordinated by PbBr₆, and thus atomic displacements in the environment of the ¹⁴N nuclei with temperature are correlated with PbBr₆. The electrostatic interactions governed by hydrogen-bonding interactions between the NH₃⁺ group in the CH₃NH₃ cation and the PbBr₆ octahedra play an important role in the dynamics of the CH₃NH₃ cations. Consequently, the main factor causing the phase transition from the tetragonal to cubic phase near $T_{\rm C}$ is a change in the surroundings of the ²⁰⁷Pb nuclei in the PbBr₆ octahedra and in the surroundings of C–N groups in the CH₃NH₃ cations. Based on these results, the structural dynamics within the CH₃NH₃PbBr₃ perovskite structure are expected to have a significant effect on the operation mechanism of perovskite solar cells.

Received: 6 April 2020; Accepted: 20 July 2020 Published online: 04 August 2020

References

- Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234 (2015).
- Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. *Nat. Tev. Mater.* 1, 15007 (2016).
- Al-Amri, A. M., Leung, S.-F., Vaseem, M., Shamim, A. & He, J.-H. Fully inkjet-printed photodetector using a grapheme/perovskite/ grapheme heterostructure. *IEEE Trans. Electron Dev.* 66, 2657 (2019).
- Al-Amri, A. M., Cheng, B. & He, J.-H. Perovskite methylammonium lead trihalide heterostructures: progress and challenges. *IEEE Trans. Nanotechnol.* 18, 1 (2019).
- 5. Liu, W.-W. et al. Platinum-free ternary metallic selenides as nanostructured counter electrode for high-efficiency dye-sensitized solar cell by interface engineering. ACS Appl. Energy Mater. 3, 3704 (2020).
- 6. Lin, C.-H. et al. Giant optical anisotropy of perovskite nanowire array films. Adv. Funct. Mater. 30, 1909275 (2020).
- Capitani, F. *et al.* Locking of methylammonium by pressure-enhanced H-bonding in (CH3NH3)PbBr₃ hybrid perovskite. *J. Phys. Chem.* C 121, 28125 (2017).
- Nakada, K., Matsumoto, Y., Shimo, Y., Yamada, K. & Furukawa, Y. Temperature-dependent evolution of Raman spectra of methylammonium lead halide perovskites, CH₃NH₃PbX₃ (X = I, Br). *Molecules* 24, 626 (2019).
- Swainson, I. P., Hammond, R. P., Soulliere, C., Knop, O. & Massa, W. Phase transitions in the perovskite methylammonium lead bromide, CH₃ND₃PbBr₃. *J. Solid State Chem.* **176**, 97 (2003).
- Chen, Y. et al. Introduction of nitrogen gas flow and precursor aging process to improve the efficiency of the lead acetate derived CH₃NH₃PbI₃ perovskite solar cells. Solar Energy Mater. Sol. Cells 190, 49 (2019).
- 11. Baikie, T. *et al.* A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH₃NH₃PbX₃ (X = I, Br and Cl). *J. Mater. Chem. A* **1**, 5628 (2013).
- Varadwaj, P. R., Varadwaj, A., Marques, H. M. & Yamashita, K. Significance of hydrogen bonding and other noncovalent interactions in determining octahedral tilting in the CH₃NH₃PbI₃ hybrid organic-inorganic halide perovskite solar cell semiconductor. *Sci. Rep.* 9, 50 (2019).
- 13. Baikie, T. *et al.* A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH₃NH₃PbX₃ (X = I, Br and Cl). *J. Mater. Chem. A* **3**, 9298 (2015).
- 14. Letoublon, A. *et al.* Elastic constants, optical phonons, and molecular relaxations in the high temperature plastic phase of the CH₃NH₃PbBr₃ hybrid perovskite. *J. Phys. Chem. Lett.* **7**, 3776 (2016).
- Knop, O., Wasylishen, R. E., White, M. A., Cameron, T. S. & Van Oort, M. J. M. Alkylammonium lead halides, Part 2, CH₃NH₃PbX₃ (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation. *Can. J. Chem.* 68, 412 (1990).
- 16. Ohmann, R. et al. Real-space imaging of the atomic structure of organic-inorganic perovskite. J. Am. Chem. Soc. 137, 16049 (2015).

- Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimetre-wave spectroscopy. J. Chem. Phys. 87, 6373 (1987).
- Onoda-Yamamuro, N., Matsuo, T. & Suga, H. Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). J. Phys. Chem. Solids 51, 1383 (1990).
- Weller, M. T., Weber, O. J., Henry, P. F., Di Pumpo, A. M. & Hansen, T. C. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chem. Commun. 51, 4180 (2015).
- Leguy, A. M. A. *et al.* The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. *Nat. Commun.* 6, 7124 (2015).
- Park, J.-S. *et al.* Electronic structure and optical properties of α-CH₃NH₃PbBr₃ perovskite single crystal. *J. Phys. Chem. Lett.* 6, 4304 (2015).
- 22. Zu, F. *et al.* Constructing CH₃NH₃PbI₃ and CH₃NH₃PbBr₃ perovskite thin film electronic structure from single crystl band structure measurement. *J. Phys. Chem. Lett.* **10**, 601 (2019).
- Xu, Q., Eguchi, T., Nakayama, H., Nakamura, N. & Kishita, M. Molecular motions and phase transitions in solid CH₃NH₃PbX₃ (X = Cl, Br, I) as studied by NMR and NQR. *Z. Naturforscha* 46, 240 (1991).
- 24. Saidaminov, M. I. *et al.* High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. *Nat. Commun.* **6**, 7586 (2015).
- 25. Yang, Y. *et al.* Low surface recombination velocity in solution-grown CH₃NH₃PbBr₃ perovskite single crystal. *Nat. Commun.* **6**, 7961 (2015).
- 26. Lim, A. R. Ionic dynamics of the cation in organic-inorganic hybrid compound (CH₃NH₃)₂MCl₄ (M = Cu and Zn) by ¹H MAS NMR, ¹³C CP MAS NMR, and ¹⁴N NMR. RSC Advances 6, 18656 (2018).
- 27. Abragam, A. The Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961).
- Lim, A. R. & Kim, I. G. Phase transition study by using ¹³³Cs and ²⁰⁷Pb nuclear magnetic resonance in a CsPbCl₃ single crystal. J. Phys. Soc. Japan 73, 475 (2004).

Acknowledgements

This research was supported by the Basic Science Research program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology (2016R1A6A1A03012069 and 2018R1D1A1B07041593).

Author contributions

A.R.L. designed the project and wrote the manuscript. S.H.K. performed NMR experiments. Y.L.J. suggested the idea and comment.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-70128-5.

Correspondence and requests for materials should be addressed to A.R.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020