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The closed eye harbours a unique 
microbiome in dry eye disease
Kent A. Willis1, Cameron K. Postnikoff2,3, Amelia Freeman4, Gabriel Rezonzew4, 
Kelly Nichols2, Amit Gaggar5 & Charitharth V. Lal4,5*

Dry eye affects millions of individuals. In experimental models, dry eye disease is associated with 
T helper cell 17-mediated inflammation of the ocular surface that may cause persistent damage to 
the corneal epithelium. However, the initiating and perpetuating factors associated with chronic 
inflammation of the ocular surface remain unclear. The ocular microbiota alters ocular surface 
inflammation and may influence dry eye disease development and progression. Here, we collected 
serial samples of tears on awakening from sleep, closed eye tears, during a randomized clinical 
trial of a non-pharmaceutical dry eye therapy and used 16S rRNA metabarcoding to characterize 
the microbiome. We show the closed dry eye microbiome is distinct from the healthy closed eye 
microbiome, and that the microbiome remains distinct despite daily saline eye wash upon awakening. 
The ocular microbiome was described only recently, and this report implicates a distinct microbiome 
in ocular disease development. Our findings suggest an interplay between microbial commensals 
and inflammation on the ocular surface. This information may inform future studies of the 
pathophysiological mechanisms of dry eye disease.

Dry eye disease is a common condition that affects millions of individuals worldwide1,2. Ocular surface inflam-
mation has recently been recognized as a hallmark of dry eye disease3,4. T helper type 17 (Th17) cells on the 
inflamed ocular surface mediate the long-term progression of dry eye disease in experimental models3 but this 
same pathophysiology has yet to be demonstrated in humans. In chronic dry eye, persistent inflammation may 
eventually produce lasting corneal epithelial damage4. However, the factors that incite and perpetuate inflam-
mation in dry eye disease remain unknown5. Microbial commensal organisms can alter Th17 populations in the 
host organism, both in homeostasis and when perturbed6,7. In contrast to previous belief, the human eye hosts 
a resident microbiome8–11. Culture and molecular-based swabs of the ocular surface have revealed an intrinsic 
microbiome distinct from the surrounding skin, but information about the tear microbiome is scarce12. In 
particular, information about the tear content on awakening from sleep, termed closed-eye tears, is unknown. 
Interestingly, the ocular microbiome impacts ocular surface inflammation13. Together, these findings suggest the 
ocular microbiome may cause or perpetuate the development of chronic dry eye. Here, we collected longitudinal 
samples of the bilateral closed eye tear microbiome from a randomized clinical trial for the treatment of dry eye 
disease with daily sterile saline eyewash upon awakening. We aimed to identify a distinct closed eye microbiome 
in dry eye disease. We hypothesized that the chronic dry eye microbiome, if present, would be distinct from the 
normal closed eye microbiome.

Results
Cohort.  Based on the power and pairwise sample-size estimator for permutational multivariate analysis of 
variance (PERMANOVA) application Micropower14, a low abundance 16S rRNA dataset similar to previous 
ocular microbiome studies12 would require a minimal sample size of 30 to generate a discriminatory power of 
0.8 with a significance level of 0.05. Therefore, we aimed for at least 35 subjects per study arm. Table 1 shows 
the demographics and clinical characteristics of the enrolled participants. Based on a post-enrolment exam and 
two clinical surveys, after informed consent, participants were classified as dry eye or controls (Supplemental 
S1). The resulting 36 control and 36 dry eye subjects were then stratified by clinical severity of eye disease 
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(Fig. 1 and Supplemental Table 1). The study arms were randomized to daily saline eye wash upon awakening 
or non-intervention. A baseline closed eye tear sample was collected at randomization and the final sample after 
one month, yielding 144 samples. We did not observe significant differences between the stratifications normal 
versus mild and moderate versus severe with respect to microbial ecology (Fig. 2), however clear separation was 
present between the mild and moderate samples, indicating this more granular stratification introduced a false 
dichotomy in the data. Therefore, we combined subjects stratified as none or mild into one cohort, now termed 
normal, and we combined subjects stratified as moderate or severe into another cohort, now termed dry eye 
(Fig. 3). We used this simplified stratification system for all subsequent analyses (Methods).

Sequencing data.  To investigate the bacterial microbiome of the closed dry eye, we used metabarcoding of 
the 16S rRNA gene. Sequence reads were generated using the Illumina MiSeq system (57,022 ± 47,011 counts/
sample, Methods). We assigned taxonomy using the Greengenes database15, producing 1,593 data points/sam-
ple. After excluding any reads aligned to chloroplasts or cyanobacteria, we examined the bacterial community 
composition using the remaining 1,195 data points/sample that were collectively assigned to 185 genera16. All 
tear samples had the standard > 1,000 aligned reads/sample, so we retained all samples for further analysis. We 
used a log2-transformation of cumulative sum scaling17 (log2 CSS) to normalize our dataset, consistently produc-
ing 8,700–10,000 reads per sample (Supplemental Fig. S2).

Table 1.   Participant demographics and clinical characteristics. *SD = standard deviation.

Normal eye Dry eye P value

Subjects, n 36 36

Sex 1.00

Female, n (%) 23 (64) 23 (64)

Male, n (%) 13 (36) 13 (36)

Age, y ± SD 33 ± 11 52 ± 19  < 0.0001

DEQ Score 1.2 ± 1.3 12 ± 3.3  < 0.0001

Phenol Red Thread Wetting length, mm ± SD 22 ± 5.3 19 ± 8.6 0.08

NIKBUT, s ± SD 15 ± 5.2 10.7 ± 5.2 0.0007

Corneal Staining 0.47 ± 0.8 3.6 ± 3  < 0.0001

InflammaDry Positive, n (%) 13 (36) 20 (55) 0.10

Randomization

Control, n (%) 16 (44) 20 (56)

Treatment, n (%) 20 (56) 16 (44)

Figure 1.   Subjects were allocated, stratified and randomized to treatment or control. Schematic of collection of 
closed eye tears in sterile saline, followed by 16S rRNA metabarcoding of the bacterial microbiome. Diagram of 
subject allocation and randomization. Figure generated with BioRender.
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The closed eye microbiome is distinct in dry eye disease.  In the taxonomic analysis of the closed 
eye microbiome, the microbiomes of individuals with chronic dry eye disease and those without form distinct 
communities. Dry eye microbial communities are more diverse as quantified by richness (ANOVA, f = 4.8, 
P = 7.5 × 10−5), evenness (ANOVA, f = 13, P = 2.1 × 10−12) and Shannon diversity (ANOVA, f = 12, P = 5.9 × 10−12, 
Fig. 2a). As demonstrated by principal coordinate analysis (PCoA) of Bray–Curtis dissimilarity, these communi-
ties form unique clusters as quantified by PERMANOVA (R2 = 0.21, P = 0.00033, Fig. 2b). Similarly, multivariate 
redundancy analysis (RDA, variance = 95.25, f = 3.71, P = 0.001) and canonical correspondence analysis (CCA, 
chi2 = 0.16 f = 3.64, P = 0.001) showed these communities are distinct, and this factor accounts for the majority 
of variance in the data. As quantified by two-way ANOVA adjusted for false discovery rate (FDR), univariate 
analysis of the relative abundance of bacterial genera showed individuals with dry eye disease have differences 
in the relative abundance of 113 genera, with the most significant differences in OPB56, Methylobacteriaceae, 
Bacteroidetes, Pseudomonas, and Meiothermus (all with FDR-adjusted P < 2 × 10−22, Supplemental Table 2). Simi-
larly, mixed effects regression detected the most significant differences in the abundance of OPB56, Bacteroi-
detes, Pseudomonas, Meiothermus, and Methylobacteriaceae (all with FDR-adjusted P < 3.1 × 10−20, Supplemental 
Table 3) among 49 genera with significant differences in relative abundance. Figure 2c shows relative abundance 
at the order level. To further investigate the importance of particular bacterial operational taxonomic units 
(OTUs), we used Spearman network analysis (Fig. 2d).

The closed dry eye microbiome remains distinct despite daily eye wash.  Daily eye wash on 
awakening with sterile saline is a proposed therapy for dry eye disease18. We tested if the microbial community 
composition could be normalized by the prescription of daily saline eye wash. However, the microbial commu-
nities of dry (Supplemental Fig. S3) and normal eyes (Supplemental Fig. S4) were relatively unaffected by daily 
eye wash. The diversity of subjects with dry eye remained higher than that of normal individuals (richness, t-test, 
P = 7.5 × 10−5, evenness, t-test, P = 2.8 × 10−14 and Shannon diversity, t-test, P = 6.1 × 10−14, Fig. 3a). Multivariate 
analysis of these communities also remained distinct (PCoA, PERMANOVA, R2 = 0.15, P = 0.00033, RDA, vari-
ance = 64.75, f = 5.73, P = 0.001 and CCA, chi2 = 0.11, f = 5.62, P = 0.001, Fig. 3b). Univariate analysis detected the 
most significant differences in the abundance of MLE112, Lactobacillaceae, Streptococcus, Sphingobium, Caldico-
probacter and Anaerococcus (ANOVA, P < 0.01, Fig. 3c). Core microbiome analysis highlighted key differences 
in the distribution of unique genera, and network analysis demonstrated the importance of key taxa (Fig. 3d,e).

The closed eye microbiome in dry eye disease is distinct at baseline.  To gain further insight into 
the microbial community composition of the dry eye, we narrowed our focus to examine the closed eye microbial 
composition at the time of randomization. As indicated by our more general analysis, both diversity (richness, 

Figure 2.   Patients with dry eye disease have a different closed eye microbiome. (a) Individuals with dry eye 
disease have different alpha diversity of the closed eye microbiome as quantified by the richness (ANOVA, 
f = 4.8, P = 7.5 × 10−5), evenness (ANOVA, f = 13, P = 2.1 × 10−12) and Shannon diversity (ANOVA, f = 12, 
P = 5.9 × 10−12) indices. (b) The beta diversity of the closed eye microbiome in individuals with dry eye disease is 
distinct by principal coordinate analysis (PCoA) of Bray–Curtis dissimilarity (R2 = 0.21 P = 0.00033), redundancy 
analysis (RDA, variance = 95.25, f = 3.71, P = 0.001) and canonical correspondence analysis (CCA, chi2 = 0.16 
f = 3.64 P = 0.001). (c) Relative abundance of bacterial orders. Log2(CSS), log2 transformation of cumulative-
sum scaling. Two-way ANOVA, *P = 0.01, **P = 0.001, ***P = 0.0001. (d) Spearman network analysis at the 
operational taxonomic unit level. Positive correlations with a P value < 0.05 are shown as an edge with the 
relative size determined by the importance of the taxa to the network.
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t-test, P = 0.016, evenness, t-test, P = 5.8 × 10−6 and Shannon diversity, t-test, P = 8.1 × 10−8, Fig. 4a) and multivari-
ate clustering of these communities are distinct at baseline (PCoA, PERMANOVA, R2 = 1.34 P = 0.00033, RDA, 
variance = 53.95, f = 7.12, P = 0.001 and CCA, chi2 = 0.09, f = 7.12, P = 0.001, Fig. 4b). ANOVA identified differen-
tial abundant genera (Fig. 4c). Univariate analysis using negative binomial regression identified Methylobacte-
riaceae, Pseudomonas, Bradyrhizobium and Allobaculum as the five most differently abundant genera (all with 
FDR-adjusted P < 1.1 × 10−11, Supplemental Fig. S5a and Supplemental Table 4). At the phylum level, Firmicutes 
and Bacteroidetes remained unchanged, while Verrucomicrobia (FDR P = 4.6 × 10−11) and Proteobacteria (FDR 
P = 6.0 × 10−10) showed the most significant differences. Core microbiome analysis identified 45 genera unique to 
dry eye with only 14 genera unique to the normal eye (Fig. 4d). Discriminant analysis of principal components 
at the order level revealed the abundances of orders OPB56 and Rhizobiales are important to discriminate the 
normal eye while the orders Halanaerobiales, Erysipelotrichales and Anaeroplasmatales are important to dis-
criminate dry eye (Fig. 4e). Network analysis provided further evidence of these distinct communities (Fig. 4f).

Machine learning accurately classifies dry eye samples at baseline.  To more precisely identify 
unique features with the potential to function as biomarkers for patients with dry eye, we used linear discrimi-
nant analysis of effect size. We identified 5 genera that reliably identified individuals with dry eye (Pseudomonas, 
Methylobacteriaceae, Helicobacter, Acetobacter and Stenotrophomonas) with 3 genera that reliably identified nor-
mal patients (Leuconostocaceae, Streptococcus and Calothrix, Supplemental Fig.  S5b). To further support the 
uniqueness of microbial communities in dry eye, we built a support vector machine using leave-one-out cross-
validation that could identify samples with 94% accuracy. Similarly, when we developed a random forest classi-
fier, variable importance analysis identified the prevalence of the genera Methylobacterium, Megasphaera, Para-
bacteroides, S247, Bifidobacterium, Streptococcus, Desulfovibrio, Acetobacter, Dialister and Bacillus as particularly 
useful to identify samples from individuals with dry eye (Importance > 20, Supplemental Fig. S5c).

The closed eye microbiome in dry eye disease diverges after one month.  We examined the sta-
bility of the dry eye microbiome by focusing on samples collected one month later in the same individuals. 
The dry eye microbiome remained distinct from the normal microbiome and remained consistent with the 
community composition noted at baseline (Supplemental Figs. S2, S3). Only slight divergence was noted over 
the course of a month (Fig. 5). The diversity of dry eye remained higher than that of the normal eye (rich-
ness, t-test, P = 5.2 × 10−5, evenness, t-test, P = 1.9 × 10−11 and Shannon diversity, t-test, P = 8.6 × 10−11, Fig. 5a). 
The distinct clustering of these communities on multivariate analysis also persisted (PCoA of Bray–Curtis dis-

Figure 3.   Daily eye rinse does not alter the closed eye microbiome. (a) Despite daily eye washes, the alpha 
diversity of the closed eye microbiome remains similar to baseline in individuals with and without dry eye 
disease as quantified by the richness (ANOVA, f = 9.2, P = 7.5 × 10−5), evenness (ANOVA, f = 28, P = 2.8 × 10−14) 
and Shannon diversity indices (ANOVA, f = 28, P = 6.1 × 10−14). (b) The beta diversity of the closed eye 
microbiome remains distinct in individuals with and without dry eye disease by principal coordinate analysis 
(PCoA) of Bray–Curtis dissimilarity (PERMANOVA, R2 = 0.15 P = 0.00033), redundancy analysis (RDA, 
variance = 64.75, f = 5.73, P = 0.001) and canonical correspondence analysis (CCA, chi2 = 0.11 f = 5.62 P = 0.001). 
(c) Relative abundance of bacterial genera. Log2(CSS), log2 transformation of cumulative-sum scaling. Two-way 
ANOVA, * P = 0.01, ** P = 0.001, *** P = 0.0001. (d) Core microbiome analysis showing differences in microbial 
colonization at the genus level. (e) Spearman network analysis at the operational taxonomic unit level. Positive 
correlations with a P value < 0.05 are shown as an edge with the relative size determined by the importance of 
the taxa to the network.
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similarity, PERMANOVA, R2 = 1.52, P = 0.00033, RDA, variance = 66.53, f = 8.52, P = 0.001 and CCA, chi2 = 0.10, 
f = 8.14, P = 0.001, Fig. 5b). ANOVA identified differentially abundant genera (Fig. 5c). Similarly, negative bino-
mial regression noted the greatest differences in the abundance of the genera Methylobacteriaceae, Pseudomonas, 
Azospirillum, Bradyrhizobium and Coriobacteriaceae (all with FDR-adjusted P < 7.0 × 10−18, Supplemental 
Fig. S6a, Supplemental Table 4). However, core microbiome analysis detected 76 unique genera in dry eye, 69 
shared genera and 24 genera unique to the normal eye (Fig. 5d). Similar to baseline, discriminant analysis of 
principal components at the order level identified OPB58 and Bacteroidetes as important discriminators of the 
normal eye. In individuals with dry eye, additional orders enabled further discrimination, with Flavobacteriales, 
Alteromonadales and Actinomycetes, Anaeroplasmatales and Desulfuromonadales functioning as the primary 
discriminators instead of Halanaeobiales and Erysipelotrichales (Fig. 5d).

Machine learning more accurately identifies dry eye after a month.  We used linear discriminant 
analysis of effect size to identify bacterial genera with the potential function as biomarkers and noted 10 gen-
era unique to individuals with dry eye and 9 unique to individuals with a normal eye, supporting the limited 
divergence of these communities (Supplemental Fig. S6b). We also developed a support vector machine with 
leave-one-out cross-validation that identified dry eye samples with 97% accuracy. Variable importance analysis 
of a random forest classifier noted the prevalence of Methylobacterium, Megasphaera, Parabacteroides, S247, 
Bifidobacterium, Streptococcus, Desulfovibrio and Acetobacter as important identifiers (Importance > 20, Sup-
plemental Fig. S6c).

The closed eye microbiome at baseline is unaltered by the cellular concentration of the tear 
fraction.  To ensure our microbial ecological analysis was unaltered by the cellular content of the tear frac-
tion, we compared the microbial composition of each cellular fraction collected at baseline. Three samples were 
excluded from this analysis due to incomplete data (n = 141). Community composition was similar between both 
high and low cellular fractions (Fig. 6).

Discussion
Direct crosstalk between resident microbes and host immune cells at the mucosal surface is a critical determinant 
of inflammatory diseases19. Furthermore, Th17 and T regulatory (Treg) cells are implicated in the development 
of chronic dry eye disease3 and particularly attuned to the ecology of the resident microbiota6. Therefore, the 
ocular surface microbiome may contribute to the pathogenesis of dry eye disease13. Understanding how the ocular 

Figure 4.   The closed eye microbiome in dry eye disease is distinct at baseline. (a) The alpha diversity of the 
tear microbiome remains distinct as quantified by the richness (t-test, f = 6.1, P = 0.016), evenness (t-test, f = 24, 
P = 5.8 × 10−6) and Shannon diversity (t-test, f = 23, P = 8.1 × 10−8) indices. (b) The beta diversity of the tear 
microbiome remains distinct as quantified by principal coordinate analysis (PCoA) of Bray–Curtis dissimilarity 
(PERMANOVA, R2 = 1.34 P = 0.00033), redundancy analysis (RDA, variance = 53.95, f = 7.12, P = 0.001) and 
canonical correspondence analysis (CCA, chi2 = 0.09, f = 7.12, P = 0.001). (c) Relative abundance of bacterial 
orders. Log2(CSS), log2 transformation of cumulative-sum scaling. Two-way ANOVA (***displaying only, 
P < 0.001). (d) Core microbiome analysis showing differences in microbial colonization at the genus level. 
(e) Discriminant analysis of principal components at the order level. (f) Spearman network analysis at the 
operational taxonomic unit level. Positive correlations with a P value < 0.05 are shown as an edge with the 
relative size determined by the importance of the taxa to the network.
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Figure 5.   The final closed eye microbiome in dry eye disease remains distinct. (a) The alpha diversity of 
the closed eye microbiome remains distinct after four weeks as quantified by the richness (t-test, f = 19, 
P = 5.2 × 10−5), evenness (t-test, f = 65, P = 1.9 × 10−11) and Shannon diversity (t-test f = 60, P = 8.6 × 10−11) indices. 
(b) The beta diversity of the closed eye microbiome remains distinct after four weeks as quantified by principal 
coordinate analysis (PCoA) of Bray–Curtis dissimilarity (PERMANOVA, R2 = 1.52 P = 0.00033), redundancy 
analysis (RDA, variance = 66.53, f = 8.52, P = 0.001) and canonical correspondence analysis (CCA, chi2 = 0.10, 
f = 8.14, P = 0.001). (c) Relative abundance of bacterial orders. Log2(CSS), log2 transformation of cumulative-
sum scaling. Two-way ANOVA, * P = 0.05, ** P = 0.01, *** P = 0.001. (d) Core microbiome analysis showing 
differences in microbial colonization at the order level. (e) Discriminant analysis of principal components at the 
order level. (f) Spearman network analysis at the operational taxonomic unit level. Positive correlations with a P 
value < 0.05 are shown as an edge with the relative size determined by the importance of the taxa to the network.

Figure 6.   The closed eye microbiome is unaltered by the cellular fraction at baseline. (a) The alpha diversity 
is similar as quantified by the richness (t-test, f = 1.3, P = 0.26), evenness (t-test, f = 1.8, P = 0.19) or Shannon 
diversity (t-test, f = 1.9, P = 0.17) indices. (b) The beta diversity of the closed eye microbiome is unaltered 
by the cellular fraction as quantified by principal coordinate analysis (PCoA) of Bray–Curtis dissimilarity 
(PERMANOVA, R2 = 0.00894 P = 0.124), redundancy analysis (RDA, variance = 4.82, f = 1.29, P = 0.152) and 
non-metric multidimensional scaling (NMDS, stress = 0.228). (c) Relative abundance of bacterial genera. 
Log2(CSS), log2-transformation of cumulative-sum scaling. Two-way ANOVA, *P = 0.05, **P = 0.01, ***P = 0.001. 
(d) Discriminant analysis of principal components. (e) Spearman network analysis at the operational taxonomic 
unit level. Positive correlations with a P value < 0.05 are shown as an edge with the relative size determined by 
the importance of the taxa to the network.
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microbiome influences ocular surface disease will be important for therapeutic development. In this report, we 
present initial evidence of a distinct closed eye microbiome in dry eye.

In this study, human subjects collected samples of sterile saline rinse applied to the ocular surface upon 
awakening in the morning. Using saline eye wash to collect microbiome samples is novel and less invasive than 
swabs of the ocular surface that has previously been used for the collection of tear leukocytes18,20. In a series of 
pooled samples from both eyes, the closed eye tear microbiome in individuals with dry eye disease was distinct 
from that in healthy controls. Compared to swabs, where the fibre content and limited sample area artificially 
reduce the number of detectable microbes21, saline wash may allow for a less biased sampling of the entire ocular 
surface, especially when pooled from both eyes. Furthermore, a general weakness of previous ocular microbiome 
studies is focusing on shifts in percent relative abundance to identify differences in bacterial taxa. A strength of 
our analysis is the rigorous log2 normalization of the cumulative sum scaling transformation performed prior 
to analysis. With this normalization, our data more accurately reflect true shifts in relative abundance17. Using 
untransformed data, the most significant difference in our dataset was a nearly complete substitution of Staphy-
lococcus spp. for Pseudomonas spp. in patients with dry eye. Doan and colleagues reported a similar shift in the 
unnormalized relative abundance of Staphylococcus spp. and Pseudomonas22. A more rigorous normalization 
performed on our dataset confirmed the reduction in Pseudomonas spp. but not in Staphylococcus spp. In addi-
tion, 48 other genera may warrant further investigation.

Previous research has focused on the open eye microbiome12, while we focused on the closed eye microbiome. 
Every night during sleep, inflammatory species move into the closed eye tear film23,24, perhaps in response to 
entrapped microbiota12,25. If microbial abundance increases in this situation, differences in bacterial community 
composition could become more pronounced in the closed eye microbiome than in the open eye. This differ-
ence could lead to the closed eye producing more reliable markers of disease states for diagnostic development. 
Alternatively, this difference could help determine whether anti-inflammatory mechanisms in the closed eye are 
sufficient to maintain a healthy ocular microbiome.

Graham and colleagues explored the microbiome of dry eye using culture and broad 16S rRNA-based PCR23. 
Due to considerable differences in next generation sequencing and bioinformatics techniques in the last decade 
as well as our different sampling methods, directly comparing our 16S rRNA-based characterizations of the 
ocular microbiome is difficult. Nevertheless, our analysis does support their findings of increased bacterial 
diversity in patients with dry eye disease23. Although we identified a broader number of genera than was feasible 
when Graham and colleagues23 performed their analysis, we confirmed their identification of several genera in 
dry eye, including Streptococcus, Staphylococcus, Corynebacterium and Propionibacterium. They nevertheless 
detected more colony forming units in patients with dry eye than in controls using culture-based techniques. 
These techniques are biased in low biomass samples because of the limited growth of some species in culture12. 
Coagulase negative Staphylococcus spp. were the most commonly identified taxa via culture, and their PCR-based 
analysis showed the microbiome remained stable over three months. Another culture-based pilot study identified 
similar increased abundances of Staphylococcus aureus, coagulase negative Staphylococcus, Corynebacterium and 
Propionibacterium in chronic dry eye24. We also provided in-depth analysis of population dynamics and demon-
strated possible divergence of microbial diversity and community structure of normal and dry eyes over time.

Increased bacterial diversity is considered favourable, as more diverse communities are often more resistant to 
perturbation25. However, mounting evidence suggests the ocular microbiome deviates from this trend, likely due 
to lysozyme and antimicrobial compounds in tears26. In dry eye disease, our results suggest increased microbial 
diversity is a hallmark of disease. Consistent with the behaviour of the ocular microbiome in other pathological 
conditions12, this finding may represent breakdown of the microbe-oriented homeostatic mechanisms of the 
host. This finding may also suggest increased diversity results from the incorporation of pathobionts into this 
community. Alternatively, the altered ecology may result from changes within the ocular surface of the dry eye 
that support establishment of a wider diversity of microbes in this environment. These additional species may 
not be harmful but instead highlight the dynamic biome within the human eye. The evidence may also suggest 
the immune system of the closed eye cannot regulate the ocular surface microbiome during sleep. In the closed 
eye, preliminary evidence suggests higher numbers of neutrophils with an enhanced degranulation response 
in dry eye disease18,20, indicating a dysregulated immune response. This dysregulation may permit increased 
microbial diversity. The reverse could also be true: enhanced microbial diversity may induce a greater inflam-
matory response.

This dataset consistently demonstrates the microbial communities in dry eye disease are distinct and remain 
distinct even with daily saline eye wash. We asked subjects in the treatment arm to self-administer saline eye 
wash immediately upon awakening. We hypothesized this time may represent the point of maximum difference 
since microbes likely accumulate on the ocular surface overnight. However, we did not observe reduced bacterial 
diversity with saline eyewash, with dry eye communities becoming more similar to control eye communities with 
treatment. Instead, the communities slightly diverged: the microbial communities in dry eye remained different 
from those in healthy eyes. Thus, the mechanisms of microbial accumulation on the ocular surface may be more 
complex than moisture content or tear clearance. Intrinsic immune or mechanical alterations in dry eye disease 
may foster differences in commensal abundance, potentially explaining how altered bacterial communities on 
the ocular surface contribute to dry eye disease.

Our study has a few potential limitations. Our assessment of the microbiome of the ocular surface is based 
upon 97% homologous OTU clustering using Illumina MiSeq for the bacterial 16S rRNA gene and as such as 
some intrinsic limitations. The first, is that based on this technology, only relative abundance of the specific 
OTUs can be determined. In future studies it may be informative to utilize shotgun metagenomic sequencing or 
spike-in methods with standardized microbial communities to have a better understanding of absolute microbial 
abundance. In addition, patients with dry eye were older than their disease-free counter parts. This may warrant 
further exploration in future studies.
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Future studies may more accurately localize the innate microbes of the eye by examining ocular swabs and 
the tear microbiome. Serial sampling throughout a day may demonstrate diurnal variation in these bacterial 
communities. However, aside from certain antibacterial medications20, most human microbiome studies are 
observational by necessity. Gnotobiotic animals are often useful in unravelling causality in host-microbe inter-
actions and could be the next step27,28, especially to explore interactions between the ocular microbiome and 
host Th17 and Treg cells in dry eye disease. Building on these experiments may include identifying changes in 
microbial metabolites or exploring how the gut microbial communities influence ocular development and dis-
ease. Finally, aside from one study that examined the virome29–31, most studies of the ocular microbiome have 
focused exclusively on bacteria. The fungal microbiome of the normal eye was described only recently22 and 
may warrant further investigation in dry eye disease. As performed recently for the gut32 and lung33, modelling 
the initial succession of multi-kingdom microbial communities in newborns may identify ecological factors in 
the ocular microbiome.

The ocular microbiome potentially hosts a distinct core microbiome that may be perturbed in eye disease34. 
Our study provides novel insight into the closed eye microbiome in dry eye disease. Th17 cells are sensitive to 
changes in the microbiome6,7 in experimental dry eye disease3. Therefore, increased microbial abundance in dry 
eye may promote the development of dry eye disease by altering T cell subpopulations on the ocular surface. 
More research is needed to reveal whether an altered microbiome drives the development of dry eye disease.

Methods
Participants.  This study was performed in accordance to the Declaration of Helsinki under the supervision 
of the Institutional Review Board of the University of Alabama at Birmingham (UAB), Birmingham, AL, USA. 
We performed a secondary analysis of the closed eye microbiome from a prospective, randomized controlled 
trial of the efficacy of daily eye wash to ameliorate inflammation in individuals with dry eye disease (ClinicalTri-
als.gov NCT03332342). Informed consent was obtained from all participants prior to enrolment. Participants 
were selected based on the results of an optometric exam and two clinical surveys, the Dry Eye Questionnaire 
5 (DEQ5)35 and the Ocular Surface Disease Index (OSDI)36. Exclusion criteria included pregnancy, contact lens 
use within the past three months, glaucoma treatment, current tobacco use, systemic dry-eye-associated inflam-
matory disease, the use of any form of anti-inflammatory therapy for dry eye treatment in the last three months, 
other antimicrobial or anti-inflammatory medications in the last month (Supplemental Fig. S1). Subjects were 
asked to refrain from any artificial tear use for the duration of the study. Stratification into normal and dry eye 
was driven primarily by symptoms, as measured by the DEQ5 score, with further stratification among both 
groups determined by phenol red thread wetting length37, non-invasive ketatograph tear break-up time (NIK-
BUT) and the InflammaDry test (Quidel; San Diego, CA, USA. Supplemental Table 1). Dry eye subjects needed 
to have a DEQ5 score of greater than or equal to 6, and present with a positive dry eye result with the phenol 
red thread (< 10 mm), NIKBUT (< 10 s), or inflammadry (positive). Dry eye subjects also had to endorse the 
sensation of dry eye or have a previous diagnosis of dry eye disease. Equal-weight randomization to either daily 
preservative-free sterile saline eye wash or control was performed using REDCap (Research Electronic Data 
Capture; Nashville, TN, USA)38.

Eyewash treatment.  Subjects were trained on the first visit to perform a daily eye wash. Briefly, as 
described previously18,39,40, subjects were provided one 50  mL sterile centrifuge tube, and two 10  mL sterile 
polypropylene syringes (BD Biosciences; San Jose, CA, USA) with 5 mL of sterile saline per syringe. Immediately 
after awakening, subjects were instructed to wash their eyes by dispensing the saline gently across the ocular 
surface, with the runoff collected in a sterile Eppendorf tube. Runoff from both eyes was collected to produce a 
pooled sample of both eyes collected into the same tube. Subjects in the treatment group completed daily therapy 
for approximately 28 days.

Sample collection.  We utilized the power and pairwise sample-size estimator for PERMANOVA applica-
tion Micropower14, as implemented at https​://fedem​att.shiny​apps.io/shiny​MB/, to estimate the minimum num-
ber of samples to produce a power of 0.8 to detect a difference with a significance level of 0.05 via PERMANOVA. 
We processed the collected eyewash samples immediately after they were dropped off by study subjects. Pooled 
tear collections were centrifuged at 270×g, and the supernatant was aliquoted into 1.5 mL microcentrifuge tubes 
and stored at − 80 °C. If more than one million cells were recovered in the pooled tear collection, supernatant 
aliquots were spiked with cells from the precipitate to increase the potential yield of microbiome analysis by 
normalizing the cellular fraction.

Illumina MiSeq metabarcoding.  In the Microbiome Core at UAB, microbial genomic DNA was isolated 
and PCR was used with unique bar-coded primers to amplify the V4 region of the 16S rRNA gene to create a 16S 
amplicon library of the samples. The PCR products were sequenced using the NextGen Illumina MiSeq System 
(Illumina Inc.; San Diego, CA, USA). The sequence data covered the 16S rRNA V4 region with a PCR product 
length of ~ 255 bases and 250 base paired-end reads. The raw dataset is available at the NCBI Sequence Read 
Archive: https​://www.ncbi.nlm.nih.gov/biopr​oject​/59716​8.

Bioinformatics.  Sequences were grouped into OTUs using QIIME v1.941. We assigned taxonomy using the 
Ribosomal Database Project classifier (threshold 0.8) against the Greengenes database14,15. We then imported 
these processed sequence reads into Calypso v8.8442for further processing and data analysis. After excluding 
any OTUs assigned to chloroplasts or cyanobacteria, we a priori determined to exclude any samples with < 1,000 
reads/sample from downstream analysis. We then utilized cumulative sum scaling17to normalize the relative 

https://fedematt.shinyapps.io/shinyMB/
https://www.ncbi.nlm.nih.gov/bioproject/597168
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abundance and performed a log2-transformation of the resulting data, centring the taxonomic counts to 0 and 
scaling to a range of − 2 to 2 with a variance of 1. For alpha diversity analysis, samples were rarefied to a depth 
of 7,804 reads/sample. Alpha diversity was then quantified using the richness, evenness and Shannon diversity 
indices43, testing for significant differences with ANOVA adjusted for FDR. For beta diversity, we visualized 
the data using PCoA, RDA, CCA or NMDS44. We used PERMANOVA to determine significant differences 
in beta diversity45. Relative abundance was quantified using ANOVA adjusted by FDR for multiple groups or 
negative binomial regression (DESeq2 function) for binary comparisons. For Spearman network analysis, we 
displayed positive correlations with an FDR-adjusted P < 0.05 as an edge. Relative size of the point represents the 
importance of the taxa to the resulting network. In addition, we used core microbiome analysis (of the 300 most 
abundant taxa), linear discriminant analysis of effect size, and discriminant analysis of principal components to 
select significant features. For analyses with two groups, we developed machine learning classifiers using support 
vector machine and random forest algorithms.
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