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The application of deep learning 
based diagnostic system to cervical 
squamous intraepithelial lesions 
recognition in colposcopy images
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Xiaodong Cheng2, Xing Xie2, Jian Wu4, Xinyu Wang2,3 & Weiguo Lu2,3*

Background Deep learning has presented considerable potential and is gaining more importance 
in computer assisted diagnosis. As the gold standard for pathologically diagnosing cervical 
intraepithelial lesions and invasive cervical cancer, colposcopy-guided biopsy faces challenges in 
improving accuracy and efficiency worldwide, especially in developing countries. To ease the heavy 
burden of cervical cancer screening, it is urgent to establish a scientific, accurate and efficient 
method for assisting diagnosis and biopsy. Methods The data were collected to establish three deep-
learning-based models. For every case, one saline image, one acetic image, one iodine image and the 
corresponding clinical information, including age, the results of human papillomavirus testing and 
cytology, type of transformation zone, and pathologic diagnosis, were collected. The dataset was 
proportionally divided into three subsets including the training set, the test set and the validation 
set, at a ratio of 8:1:1. The validation set was used to evaluate model performance. After model 
establishment, an independent dataset of high-definition images was collected to further evaluate the 
model performance. In addition, the comparison of diagnostic accuracy between colposcopists and 
models weas performed. Results The sensitivity, specificity and accuracy of the classification model to 
differentiate negative cases from positive cases were 85.38%, 82.62% and 84.10% respectively, with 
an AUC of 0.93. The recall and DICE of the segmentation model to segment suspicious lesions in acetic 
images were 84.73% and 61.64%, with an average accuracy of 95.59%. Furthermore, 84.67% of high-
grade lesions were detected by the acetic detection model. Compared to colposcopists, the diagnostic 
system performed better in ordinary colposcopy images but slightly unsatisfactory in high-definition 
images. Implications The deep learning-based diagnostic system could help assist colposcopy 
diagnosis and biopsy for HSILs.

Ranking as the second most common cancer in the female reproductive system, cervical cancer still manifests 
high morbidity and mortality in developing countries including China, imposing a strong impact on the body 
health and quality of life of women1. Fortunately, studies have demonstrated that high-risk human papilloma-
virus (HPV) infection can be the definite etiology of cervical cancer2–5, making it possible to detect 80.7–98.7% 
of cervical intraepithelial neoplasia (CIN) early through screening combined with HPV testing and cytology6–8. 
As the gold standard for diagnosing cervical cancer and its precancerous lesions, colposcopy-guided biopsies 
play a key role in the early detection of cervical cancer.

In clinical practice, many factors affect the accuracy of cervical biopsies including the experience of the col-
poscopist, the location, size and depth of the lesions, and the menstrual status of the woman. Even by experienced 
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colposcopists, the sensitivity of colposcopy varies from 81.4% to 95.7% to detect CIN, with a specificity of 34.2% 
to 69%9–13. Improving the accuracy of colposcopy is a key issue in the management of CIN.

Based on artificial intelligence and deep learning, computer assisted medical diagnosis can efficiently and 
scientifically deal with a large quantity of clinical data and achieve comparable performance on various medi-
cal tasks. Studies have suggested that medical artificial intelligence and computer assisted diagnosis can help 
detect lesions and improve diagnosis accuracy by using deep learning and medical image processing technology 
plus some possible physiological and pathological knowledge14–16. Studies in optical coherence tomography17, 
radiology18, computerized tomography scan19, colonoscopy20 and pathologic slides15 have indicated that computer 
algorithms can approach and even surpass the diagnostic accuracy of clinicians after training a large number of 
medical images in a convolutional neural network (CNN).

Early in 2009, Acosta et al. 21 used K-NN algorithm to automatically distinguish normal and abnormal cervi-
cal tissue in aceto-white pattern, and gained a sensitivity of 71% and the specificity of 59%. Years later, Asiedu 
et al.22 achieved the sensitivity, specificity, and accuracy of 81.3%, 78.6%, and 80.0% to distinguish CIN+ and 
benign tissues apart. Liming Hu et al.23 established a cohort and followed up for 7 years, using images shot 
by cervicography, to train and validate deep learning algorithm and gained higher accuracy compared to pap 
smear. Besides, Bing Bai et al.24 used K-means algorithm to automatically segment cervical region, indicating 
that cervical segmentation was feasible.

In all previous studies, only cervical acetic acid images were collected for training and validation. In the 
present study, we collected a quantity of both acetic images and iodine images with clinical information, and 
utilized them to train three models to separately classify, segment cervical squamous intraepithelial lesions 
(SILs) and detect high-grade squamous intraepithelial lesions (HSILs) to assist colposcopy-guided biopsy. Fur-
thermore, an independent dataset of cases with high-definition colposcopy images was collected as a whole to 
evaluate the accuracy of the models for the second time. The performance of the models in the two datasets was 
compared with that of clinical colposcopists. The aim of the study was to establish a novel colposcopy diagnostic 
system to efficiently and accurately recognize and detect HSIL in colposcopy images and to assist colposcopists 
in diagnosis and biopsy.

Results
The basic information of the modelling dataset.  After enrolment, 22,330 cases were selected for 
model training and evaluation including 10,365 normal cases, 6,357 LSIL cases and 5,608 HSIL cases. Repre-
sentative images of normal cases, LSIL cases and HSIL cases are presented in Fig. 1. The distributions of age, 
HPV infection status, cytology results and TZ type are presented in Fig. 2A. 

The ResNet model can simply classify colposcopy images into two categories.  In the classifica-
tion model, one acetic image, one iodine image, age, HPV testing result, cytology result and TZ type were used 
as input indices. Pathology diagnoses were used as the output indices. Of those, 10,365 normal cases, 6,357 LSIL 
cases and 5,608 HSIL cases were proportionally divided into the training set, the test set and the validation set at 
a ratio of 8:1:1. The final result of the valid set is listed in Table 1.

The area under the curve (AUC) of the classification model reached 0.93 in the validation set (Fig. 2B), pre-
senting a sensitivity of 85.38%, a specificity of 82.62% and an accuracy of 84.10%. In addition, the positive pre-
dictive value (PPV) and the negative predictive value (NPV) of the model were 85.02% and 83.03% respectively.

The U‑Net model can precisely segment the lesions in the cervix.  In total, 11,198 acetic images 
and 11,198 iodine images were separately input into the segmentation model. Since the U-Net model was trained 
at the pixel level after annotation, the segmentation model outputs a prediction area consisting of pixels that 
may possibly be the SIL at the end. Figure 3 presents the ground truth area (right) and the predicted area (left) 
in both acetic images and iodine images. The representative results showed high consistency between the two 
areas. Representative failed images were shown in Fig. S1. Most of the missed lesions were finally pathologically 
diagnosed as LSIL, and the reason of misdiagnosed lesions was not clear.

In acetic images, the recalls of normal pixels and SIL pixels were 96.14% and 84.73%, respectively, and the 
DICE of normal pixels and SIL pixels were 97.53% and 61.64% respectively. The average accuracy of the U-Net 
model in acetic images was 95.59%. The results in the iodine model were almost the same. The recalls of normal 
and SIL pixels were 96.03% and 87.78% respectively, and the DICE of normal and SIL pixels were 97.58% and 
63.80% respectively, with a total accuracy of 95.70% in iodine images.

The MASK R‑CNN model can detect HSIL lesion.  In total, 22,396 images of 11,198 cases were utilized 
in the detection model. Nevertheless, the acetic images and the iodine images were separately trained. Finally, 
several rectangular prediction frames are presented with the confidence coefficient to be HSIL. The distribution 
of IoU and the mean IoU of prediction frames in acetic images and in iodine images were shown in Fig. 4. To 
control the biopsy number, only the top 3 confidence HSIL prediction frames were adopted as the final results. 
More specifically, circular labels of fixed diameter were utilized to mark the most suspicious area to assist biopsy 
(Fig. 5). Representative failed images were shown in Fig. S2.

The results of the validation set with 1,120 cases are listed in Table 2 (in acetic images) and Table 3 (in iodine 
images). The recalls to detect HSIL in acetic images and in iodine images were 84.67% and 84.75%, respectively. 
The PPV for HSIL was 19.98% in acetic images and 21.22% in iodine images. Putting LSIL and HSIL together, 
the detection model can recall 82.55% and 82.45% of SIL in acetic mages and iodine images respectively, with a 
PPV for SIL of 62.09% and 64.41%.
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Figure 1.   The representative acetic and iodine images of the normal, LSIL and HSIL case.

Figure 2.   (A) a. The cytology distribution of the modeling dataset used in the research. b. The HPV status 
distribution of the modeling dataset used in the research. c. The age distribution of the modeling dataset used in 
the research. d. The TZ type distribution of the modeling dataset used in the research. (B) The ROC curve of the 
validation set of the modeling dataset using the classification model.
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Table 1.   The prediction result of the classification model in valid set. *Negative represents the pathologic 
normal cervix. Positive represents the pathologic results of LSIL + .

Pathology prediction Negative* Positive* Total

Negative* 856 175 1,031

Positive * 180 1,022 1,202

Total 1,036 1,197 2,233

Figure 3.   The representative the prediction (left) and groud truth (right) of the valid set using the acetic and 
iodine segmentation model.

Figure 4.   (A) The distribution of IoU in detection model in the valid set of ordinary images. (B) The mean IoU 
in detection model in the valid set of ordinary images.
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Figure 5.   The representative original image, rectangle prediction frame, and circular prediction frame of the 
acetic image (left) and the iodine image (right) of the valid set using the detection model.

Table 2.   The prediction of HSIL in the detection model in acetic images.

Pathology prediction Normal LSIL HSIL Total

Normal 0 297 113 410

LSIL 0 0 0 0

HSIL 1,184 1,315 624 3,123

Total 1,184 1,612 737 3,533
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At the patient level, the HSIL cases were regarded as “hit” when at least one HSIL lesion was accurately 
predicted. The detection model could “hit” 439 HSIL cases in all 503 HSIL cases in the validation set through 
acetic images and could “hit” 445 HSIL cases through iodine images. The sensitivity to predict HSIL cases was 
87.27% and 88.47%, respectively.

The validation results in high‑definition images.  After selection, 5,384 cases were enrolled in the 
independent dataset from a total of 9,060 cases. All the images were shot by a high-definition electronic colpo-
scope including 3,375 normal cases, 1,246 LSIL cases and 763 HSIL cases. The distributions of age, the results of 
HPV testing and cytology, and the TZ types are presented in Fig. 6A.

In the classification model, the sensitivity, specificity and accuracy in differentiating positive cases and nega-
tive cases in high-definition images were 73.37%, 58.16%, and 63.83%, respectively (Table 4). The PPV and 
NPV were 51.07% and 78.58%, respectively, with an AUC of 0.7127 (Fig. 6B). As a comparison, the sensitivity, 
specificity and accuracy of five colposcopy experts in women’s hospital, school of medicine, Zhejiang University 
to differentiate positive cases and negative cases were calculated and are presented in Table 5. The ROC curve 
of the experts was shown in Fig. 6B with an AUC of 0.715. Expert 1 and expert 2 were senior colposcopists with 
more than 10 years of experience, expert 3 and expert 4 were intermediate colposcopists who had almost 5 years 
of experience in colposcopy, and expert 5 was a senior colposcopist with 1 year of experience in colposcopy. 
From Table 5, we concluded that the performance of the classification model in ordinary images was much better 
than that of all five colposcopists, while the performance in high-definition images was comparable to that of 
intermediate and junior colposcopists. And the AUC of the experts were almost the same as that of the classifica-
tion model in high-definition images, and were lower than that of the classification model in ordinary images.

In the segmentation model, the total accuracy, normal recall and SIL recall were 94.32%, 96.84%, 85.35% 
in the high-definition acetic images and 94.52%, 94.92%, 85.87% in the high-definition iodine images. The 

Table 3.   The prediction of HSIL in the detection model in iodine images.

Pathology prediction Normal LSIL HSIL Total

Normal 0 311 120 431

LSIL 0 0 0 0

HSIL 1,119 1,358 667 3,144

Total 1,119 1,669 787 3,575

Figure 6.   (A) a. The cytology distribution of the validation dataset used in the research. b. The HPV status 
distribution of the validation dataset used in the research. c. The age distribution of the validation dataset used 
in the research. d. The TZ type distribution of the validation dataset used in the research. (B) The ROC curve of 
the validation dataset using the classification model and the ROC curve of the colposcopists.

Table 4.   The prediction result of the classification model in validation dataset. *Negative represents the 
pathologic normal cervix. Positive represents the pathologic results of LSIL + .

Pathology prediction Negative* Positive* Total

Negative* 1963 535 2,498

Positive* 1,412 1,474 2,886

Total 3,375 2,009 5,384
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detection model, detected 84.76% and 82.61% HSIL regions in high-definition acetic images and iodine images, 
respectively, with a PPV for HSIL of 20.62% and 20.56%. The distribution of IoU and mean IoU of high-definition 
images were shown in Fig. 7. Moreover, the model could “hit” 691 cases through high-definition acetic images 
and 685 cases through high-definition iodine images among 763 HSIL cases. The prediction sensitivity at the 
patient level reached 90.56% in acetic images and 89.78% in iodine images. In Table 6, experts presented a higher 
HSIL biopsy accuracy of 22.22–30.57% than the detection model in ordinary images and high definition images. 
Compared to colposcopists, the biopsy number taken in each case using the detection model was slightly higher 
(2.79 vs. 2.39).

Discussion
Studies of deep learning in colposcopy images are quite limited, and most of them focused only on the classifica-
tion of the acetic images collected from the existing database. Tao Xu et al.25 combined the pap test result, HPV 
test result, age, PH value and the cervicography observation result with the acetic image to output the result and 
gained a sensitivity of 87.83% and a specificity of 90%. However, this kind of algorithm could only be realized 
on the basis of an accurate cervicography observation result, representing less clinical value. A research study in 
Germany enrolled 198 women who had received colposcopy examination and biopsied and extracted 211 CIN1 

Table 5.   The comparison of clinical colposcopists and the classification model.

Sensitivity Specificity Accuracy PPV NPV

Expert1 61.40% 84.31% 75.38% 71.43% 77.37%

Expert2 68.87% 75% 72.84% 59.96% 81.58%

Expert3 50.47% 70.34% 71.78% 57.91% 83.36%

Expert4 75% 63.32% 67.88% 56.72% 79.80%

Expert5 70% 43.48% 51.51% 35% 76.92%

Average of experts 70% 72.92% 71.83% 60.61% 80.33%

Results in ordinary images 85.38% 82.62% 84.10% 85.02% 83.03%

Results in high definition images 73.37% 58.16% 63.83% 51.07% 78.58%

Figure 7.   (A) The distribution of IoU in detection model in high-definition images. (B) The mean IoU in 
detection model in high-definition images.

Table 6.   The accuracy of colposcopy-guided biopsy by colposcopists and the accuracy of detection model.

HSIL accuracy SIL accuracy Average biopsy number per case

Expert1 25.11% 66.01% 2.49

Expert2 24.35% 66.88% 2.36

Expert3 29.89% 68.38% 2.31

Expert4 30.57% 70.64% 2.42

Expert5 22.22% 66.67% 2.7

Average of experts 27.5% 67.97% 2.39

Results in ordinary images 21.22% 64.41% 2.79

Results in high definition images 20.62% 48.12% 2.63
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annotations and 164 CIN2+ annotations. The deep learning model reached an accuracy of 80%, a sensitivity of 
85% and a specificity of 75%26. A research study in Japan27 collected 485 colposcopy images and divided them 
into three categories of atypia, carcinoma in situ and invasive cervical cancer. The final accuracy of the deep 
learning model was 50%, which was higher than the accuracy of 33% in random classification. The research also 
demonstrated that the classification of CIN2+ with CIN1 was more significant in clinical practice. Another study 
collected 330 patients who received colposcopy guided biopsy to train a CNN model to identify HSIL images. 
The sensitivity, specificity and accuracy were 82.3%,79.7% and 80.0% , respectively, with an AUC of 0.82628.

All the above studies enrolled a limited number of colposcopy cases and focused only on the classification 
task. Our classification model gained a sensitivity of 85.38% with an acceptable specificity of 82.62%, which per-
formed better than the above studies. In addition, with an AUC of 0.9261, the classification model we established 
qualified for primary triage in colposcopy.

Research on the accuracy of clinical experts in colposcopy varies greatly. Prajakta Adsul et al. calculated the 
colposcopy diagnosis and the biopsy pathologic results in 1,482 subjects and found that the agreement rate of the 
two results was only 65.5%, and the colposcopists would always underestimate the lesions29. Margaret E. Baum 
et al. compared the diagnostic accuracy of different colposcopy operators and found that the nurse practitioners 
obtained the highest accuracy of 92%, and the accuracies of R2, R3 and R4 residents were 77%, 75% and 73%, 
respectively, with an average accuracy of 77%30. A meta-analysis of 86 studies demonstrated that the average 
sensitivity of colposcopists was 96% and the average specificity was 48%, with an AUC of 0.8 to differentiate 
normal and abnormal cases; the average sensitivity, specificity and AUC were 85%, 69% and 0.82 to distinguish 
HSIL cases from LSIL cases and normal cases, respectively31. In conclusion, the diagnostic accuracy of colposcopy 
relied greatly on the experience of operators, and the accuracy of most colposcopists remained below 80%. The 
classification model used in this article achieved an accuracy of 84.10% in ordinary images, which was higher 
than the accuracy of colposcopists in the literature and the accuracy of the five experts in Women’s Hospital.

For the high-definition images, the diagnostic accuracy was 63.83%, lower than that in ordinary images. 
Tracing back, we found that the ordinary images and the high-definition images had different distributions of 
standard deviation and variance in the image features including brightness, contrast, RGB colour, saturation 
and other factors we may not focus on now. The higher saturation and brighter colour in high definition images 
might lead to the highlight of acetic white and iodine nonstaining areas in normal cases, which might be mis-
taken with LSIL cases, accounting for the unsatisfactory performance of the classification model. Besides, the 
detection model could “hit” approximately 88% of HSIL patients in ordinary images and approximately 90% of 
HSIL patients in high-definition images. The better performance may also be attributed to the highlighting of 
lesions with high saturation and brightness.

Our study combined the multimodal classification model, segmentation model, and detection model to build 
a comprehensive system to cope with colposcopy images and to assist diagnosis and biopsy for HSIL for the 
first time. The ordinary images enrolled in the study were shot by three main colposcope brands, including the 
electronic colposcope and the photoelectric colposcope. All three types of images presented perfect receptivity 
to our models. Besides, in the high definition images shot by another two electronic colposcopes, the models 
we established could also reach the diagnostic accuracy equal to the junior experts and presented better ability 
to detect HSIL.

Nevertheless, more investigations need to be carried out in the future. A large number of images from col-
poscopes of various brands, especially high-definition images, were required to improve the existing models. A 
prospective, large-scale, multicentre clinical trial needs to be carried out to evaluate the clinical value.

Methods
Data resource.  All the colposcopy images of the modeling dataset were collected in women’s hospital, school 
of medicine, Zhejiang University from August 2013 to March 2019. Those who met the following conditions 
were excluded: without complete clinical and pathological information (age, result of HPV testing and cytology); 
without biopsies; pathologically diagnosed as invasive cervical cancer or glandular intraepithelial lesions; with 
poor-quality colposcopy images (blur, over-reflection, incomplete cervix exposure, severe bleeding, lesions cov-
ered by vaginal discharge). For each qualified case, her colposcopy images including saline image, acetic image 
and iodine image at the magnification of 7.5 were collected, as well as the corresponding clinical data including 
patient’s age, results of HPV testing and cytology, type of transformation zone (TZ),and pathologic diagnosis. 
All the colposcopy images were from ordinary electronic colposcope and photoelectric integrated colposcope 
(hereafter called ordinary images).The flowchart of case collection was shown in Fig.  8A. The research was 
approved by the Medical Ethics Committee of Women’s Hospital, School of Medicine, Zhejiang University, and 
written informed consent was obtained from all subjects. All the methods were performed in accordance with 
the relevant guidelines and regulations.

Women with different ages may manifest different degrees of reliability in HPV infection status and colpos-
copy impression. They are also applied to different screening strategies32. Thus, the ages of the patients were 
divided into three groups for better management (Table 7).

HPV testing was performed by food and drug administration (FDA) approved techniques, including Hybrid 
Capture 2 (HC2) hr-HPV DNA Test33 (Qiagen, Gaithersburg, MD), Cobas 4,800 Test34 (Roche Molecular system 
Inc, Pleasanton, CA), Cervista HPV HR Test35 (Hologic Inc., Madison, WI), and Aptima HPV Assay36 (Hologic 
Gen-Probe Inc., San Diego, CA).

The results of HPV testing were divided into negative and positive (Table 8).
The cytology diagnoses were divided into six categories, according to the Bethesda 2014 classification 37 

(Table 9).
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Figure 8.   (A) The flowchart of case collection. (B) The representative acetic image and iodine image after 
annotation. (C) The diagram of the classification model. (D) The diagram of the segmentation model. (E) The 
diagram of the detection model.

Table 7.   The coding method of age.

Age Meaning Code

Group A The age of the patient is between 20 and 25,including 20 Yes is marked as 1, otherwise as 0

Group B The age of the patient is between 25 and 55,including 25 Yes is marked as 1, otherwise as 0

Group C The age of the patient is between 55 and 66,including 55 Yes is marked as 1, otherwise as 0

Table 8.   The coding method of HPV result.

HPV result Meaning Code

HPV negative HPV negative HPV negative is marked as 1, otherwise as 0

HPV positive High Risk HPV positive using whichever methods mentioned above HPV positive is marked as 1, otherwise as 0
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TZ types were divided into three categories according to the International Federation for Cervical Pathology 
and Colposcopy (IFCPC) colposcopy terminology38 (Table 10).

The pathological diagnoses were divided into normal, low-grade squamous intraepithelial lesion (LSIL, 
including the condylomatous variant), high-grade squamous intraepithelial lesion (HSIL) based on the 2014 
World Health Organization (WHO) Classification of Tumors of the Female Genital Tract39.

The independent validation dataset of colposcopy images and the corresponding age, HPV testing results, 
cytology results, type of transformation zone and pathologic diagnosis were collected in order to better evaluate 
the established models. All cases were collected in women’s hospital, school of medicine, Zhejiang University 
from March 1st, 2019 to September 12nd 2019. And all colposcopy images were from high definition electronic 
colposcope (hereafter called high definition images). The exclusion criterions were the same as above.

The retrospective study was approved by the Medical Ethical Committee of Women’s Hospital, School of 
Medicine, Zhejiang University. (No. 20180059).

Data pre‑process.  One acetic image and one iodine image of each qualified case were kept and resized 
into 512*512 pixels. All the resized images of the modeling dataset were divided into 100 categories by K-means 
algorithm and randomly relocated into three sets of the training set, the valid set and the test set with the ratio 
of 8:1:1. Normal images, LSIL images and HSIL images were relocated separately so that they would be equally 
distributed into the three sets. Only the valid set was calculated to evaluate the performance of models. Patho-
logically diagnosed lesions were annotated by labelme40 software in every acetic image and every iodine image 
(Fig. 8B).

Text information including age, results of HPV testing and cytology, and TZ type were coded by the methods 
represented in Tables 1 to 4. As an example, a 45 year-old patient with HR-HPV positive and ASCUS cytology 
result, type 3 TZ, her texting code is 01001010000001.

Transfer learning model.  In order to get high efficiency, a pretrained deep learning model was obtained by 
training a ResNet41 model from a database called ImageNet, which contains more than 1 million images of over 
1,000 categories. On that basis, colposcopy images were input to fine-tune multi-modal ResNet classification 
model, U-Net42 segmentation model and Mask R-CNN43 detection model, which use the pre-trained ResNet 
model as backbone.

Multi‑modal ResNet classification model to simply classify the images into two groups.  Two 
ResNet-50 models were used for acetic image and iodine image, respectively. Cervix regions were firstly extracted 
due to other undesired information on the acetic and iodine images such as text, equipment and non-cervix tis-
sues. Since clinical diagnosis were often made after a long comparison of the acetic and the iodine images, fus-
ing the acetic image features and iodine image features during the training process can better capture cervical 
lesions and to offer a more scientific diagnosis. In the end, the coded non-image information of age, HPV testing 
result, cytology result and TZ type were input into the model and integrated with the fused image features. All 
the images will be classified into two groups: the negative group which means no squamous intraepithelial lesion 
(SIL, including LSIL and HSIL) in the cervix and the positive group which means one or more SIL were found 
in the cervix (Fig. 8C).

For classification model, the input image was scaled to 512 on the shorter edge. We used BCE loss with posi-
tive weith of 10. Batch size was set to 16. SGD optimizer was used with learning rate 1e−4, weight decay 1e−4 

Table 9.   The coding method of cytology result.

TCT result Meaning Code

NILM Negative for Intraepithelial Lesion or Malignancy Yes is marked as 1, otherwise as 0

ASCUS Atypical Squamous Cells of Undetermined Significance Yes is marked as 1, otherwise as 0

LSIL Low-grade Squamous Intraepithelial Lesion Yes is marked as 1, otherwise as 0

ASC-H Atypical Squamous Cells- cannot exclude a High-grade lesion Yes is marked as 1, otherwise as 0

HSIL High-grade Squamous Intraepithelial Lesion Yes is marked as 1, otherwise as 0

SCC Squamous Cell Carcinomas Yes is marked as 1, otherwise as 0

Table 10.   The coding method of TZ type.

Age Meaning Code

Type 1 TZ The squamous columnar junction can be fully visualized without the help of equipment Yes is marked as 1, otherwise as 0

Type 2 TZ The squamous columnar junction can be fully visualized with the help of equipment Yes is marked as 1, otherwise as 0

Type 3 TZ The squamous columnar junction cannot be fully visualized, even with the help of equip-
ment Yes is marked as 1, otherwise as 0
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and momentum 0.9. Learning rate was multiplied with 0.9 when training loss was no longer reduced during 10 
epochs.

U‑Net segmentation model to segment the lesions apart from the normal areas.  Same as the 
classification model, the U-Net model was also fine-tuned on the basis of the transfer-learning ResNet model. 
The colposcopy images were resized to 512*512 pixels, and each pixel was labeled as “1” for “lesion” or “0” for 
“normal” according to the annotations made by the colposcopy experts. In the end, all the lesions will be high-
lighted, representing the possible biopsy sites (Fig. 8D).

Taking every pixel as the object, recall and dice were calculated to evaluate the two models using the follow-
ing formula: Recall = true positive pixels/ predicted positive pixels. DICE = 2*true predicted pixels/(predicted 
positive pixels + true positive pixels).

For segmentation model, the input image was scaled to 512 on the shorter edge. Focal loss was used. Batch size 
was set to 8. SGD optimizer was used with learning rate 1e-2, weight decay 1e-4 and momentum 0.9. Learning 
rate was multiplied with 0.9 when training loss was no longer reduced during 10 epochs.

Mask‑R‑CNN detection model to offer the final HSIL biopsy sites.  Based on the transfer-learning 
ResNet model, the Mask R-CNN model detected lesion regions on colposcopy images according to the ground 
truth of delineating bounding boxes on existing segmentation annotation. Compared to the corresponding 
ground truth bounding boxes, the predicted ones offered by the detection model were considered positive when 
their Intersection over Union (IoU) value is more than 0.5. The loU is defined as the area of the intersection 
divided by the area of the union of a predicted bounding box (Bp) and a ground truth box (Bgt): loU = area 
(Bp ∩ Bgt)/area (Bp ∪ Bgt). In order to decrease the biopsy number, the model chose only the top 3 possible HSIL 
predicted bounding boxes in the premise of acceptable accuracy (Fig. 8E).

For detection model, the input image was scaled to 600 on the shorter edge. Batch size was set to 4. SGD 
optimizer was used with learning rate 2e−3, weight decay 1e−4 and momentum 0.9. We trained the model for 
80 k iteration and learning rate was divided by 10 on 50 k, 70 k iteration.

For all the three models, we applied random color, random contrast, random saturation, and random hue 
transformation.
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