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Genome‑wide analysis 
of diamondback moth, Plutella 
xylostella L., from Brassica crops 
and wild host plants reveals 
no genetic structure in Australia
Kym D. Perry1,2*, Michael A. Keller1 & Simon W. Baxter3*

Molecular studies of population structure can reveal insight into the movement patterns of mobile 
insect pests in agricultural landscapes. The diamondback moth, Plutella xylostella L., a destructive 
pest of Brassica vegetable and oilseed crops worldwide, seasonally colonizes winter canola crops in 
southern Australia from alternative host plant sources. To investigate movement, we collected 59 
P. xylostella populations from canola crops, Brassica vegetable and forage crops and brassicaceous 
wild host plants throughout southern Australia in 2014 and 2015 and genotyped 833 individuals using 
RAD-seq for genome-wide analysis. Despite a geographic sampling scale > 3,000 km and a statistically 
powerful set of 1,032 SNP markers, there was no genetic differentiation among P. xylostella 
populations irrespective of geographic location, host plant or sampling year, and no evidence for 
isolation-by-distance. Hierarchical STRU​CTU​RE analysis at K = 2–5 showed nearly uniform ancestry in 
both years. Cluster analysis showed divergence of a small number of individuals at several locations, 
possibly reflecting an artefact of sampling related individuals. It is likely that genetic homogeneity 
within Australian P. xylostella largely reflects the recent colonization history of this species but is 
maintained through some level of present gene flow. Use of genome-wide neutral markers was 
uninformative for revealing the seasonal movements of P. xylostella within Australia, but may provide 
more insight in other global regions where the species has higher genetic diversity.

Mobile insect pests regularly colonize annual crops from alternative host plant sources1–3. Protecting crops from 
attack by these pests is difficult for pest managers due to the unpredictable nature of seasonal outbreaks, par-
ticularly when insecticide resistant genotypes are present4,5. For mobile insect pests, dispersal among crop and 
non-crop host plant resources influences both the seasonal dynamics and genetic background of pest populations, 
with direct consequences for pest management6–9. Molecular studies of population structure and gene flow can 
potentially provide insight into patterns of insect movement in agricultural landscapes10,11.

The diamondback moth, Plutella xylostella L., is the most destructive pest of brassicaceous crops 
worldwide12,13. It attacks Brassica vegetable crops throughout tropical and temperate regions14 and in recent 
decades has become a significant pest of canola crops in temperate regions4,15–18. The propensity of P. xylostella 
to evolve insecticide resistance rapidly and a lack of alternative control options has led it to evolve resistance 
to most pesticides4. Within Australia, P. xylostella has been a major pest of Brassica vegetable crops since the 
late 1800s19 and a sporadic but damaging pest of canola crops since the 1990s following a dramatic expansion 
of canola production18. Approximately 3 million hectares of canola is grown annually under a Mediterranean 
climate in southern Australia20, providing vast host resources for P. xylostella from crop planting in autumn to 
maturity in late spring. Intermittent outbreaks of P. xylostella in canola during spring cause substantial crop 
losses18,21. Commercial Brassica vegetable crops are grown continuously in horticultural areas surrounding the 
major urban centres in each Australian state, occupying a total area less than 1% of total canola plantings22. 
Other host plants for P. xylostella include Brassica forage crops grown during spring and summer as stock feed, 
and a diversity of introduced and native wild brassicaceous species distributed over vast areas and proliferated 
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by rainfall. In Brassica vegetable crops, limited P. xylotella dispersal and intense insecticide use targeting this 
insect can lead to elevated levels of insecticide resistance in local P. xylostella populations6,22,23. In canola-growing 
areas, the highly seasonal availability of host plants compels P. xylostella to move regularly among crops and 
other brassicaceous host plants, which tends to homogenise levels of insecticide resistance24. Estimating gene 
flow among local populations of P. xylostella between host plant types and identifying source populations of P. 
xylostella that seasonally infest Australian canola are essential to facilitate forecasting of seasonal pest pressure 
and inform insecticide resistance management13,18,19.

Various molecular markers have been used to investigate population structure in P. xylostella, including 
allozymes, ISSRs, microsatellites and mtDNA. Plutella xylostella populations from different continents are clearly 
differentiated19,25,26, but a lack of genetic structure among populations within parts of Asia10,27,28, the USA29,30 and 
Australasia19,31 implies regular intermixing at an intra-continental level. Many population genetic studies of P. 
xylostella have been difficult to interpret due to limited sampling32 and few studies have sampled at a sufficient 
spatiotemporal scale or resolution to investigate movement at a landscape scale. However, two studies successfully 
identified the seasonal migration pathways of P. xylostella in China through extensive field sampling and analysis 
of both microsatellite markers and geographic variation in mtDNA haplotype frequencies10,28. Inferences from 
genetic data were corroborated by light trapping33.

Within Australia, Endersby et al.19 found no differentiation at six microsatellite loci among 17 populations 
across Australia and one from New Zealand, despite a sampling scale spanning > 5,000 km. These Australasian 
populations were clearly differentiated from populations collected in Asia and Africa19. Australian P. xylostella 
has low genetic diversity consistent with a founder effect19,26,31,34,35. Present levels of gene flow among Australian P. 
xylostella populations remain to be resolved because genetic homogeneity could reflect co-ancestry18, and because 
the statistical power of six microsatellites to detect weak population structure was uncertain. Furthermore, 
inconsistent patterns of population structure reported among P. xylostella collected from eastern Australia25,36 
may reflect the presence of a cryptic species, Plutella australiana, among analysed samples35,37.

The revolution in massively parallel sequencing technologies38 and associated genotyping methods has 
facilitated genome-wide genetic marker sets and brought unprecedented resolution to questions of population 
structure39,40. Restriction-site-associated DNA sequencing (RAD-seq)41 enables sequencing of targeted short 
regions across the genome, allowing simultaneous discovery and genotyping of single nucleotide polymorphisms 
(SNPs) in model and non-model species42,43. The ability to sequence orthologous regions across multiple indi-
viduals at high sequencing coverage makes it possible to confidently genotype SNPs and generate high density 
markers for population genetic studies40,44. Microsatellites remain popular for population genetic studies due to 
high polymorphism45, but can be outperformed by large SNP panels in resolving population structure46,47, with 
several examples in insects48,49. RAD-seq has genotyped thousands of SNPs in P. xylostella50 and resolved species-
level nuclear divergence between cryptic Australian Plutella species35, suggesting potential for this method to 
provide insight into the movement patterns of P. xylostella.

Here, we examined whether geographic, host plant-related or temporal population genetic structure exists 
among geographically distinct populations of P. xylostella in Australia. Samples were collected from canola 
crops, Brassica vegetable crops, Brassica forage crops and wild brassicaceous plant species throughout southern 
Australia and in two consecutive years to facilitate temporal comparisons. After molecular species identifica-
tion, P. xylostella individuals were genotyped across genome-wide sites using RAD sequencing for population 
genetics analysis.

Results
Sample collection.  Plutella species were collected from different Brassica host plants and locations 
throughout southern Australia in 2014 and 2015 (Fig. 1). After species identification using PCR-RFLP, 909 P. 
xylostella individuals from 60 locations, 32 in 2014 and 28 in 2015, were retained for analysis (Table 1). In total, 
29 populations were collected from canola crops, 15 from Brassica vegetable crops, three from Brassica forage 
crops and 13 from brassicaceous weeds. Of these, 52 populations were collected in spring and seven in autumn. 
Seven locations were sampled in both 2014 and 2015 to facilitate a temporal analysis, of which five locations were 
Brassica vegetable crops from the major Brassica vegetable production areas in each Australian state (Fig. 1). Sex 
was determined for the 681 pupal individuals (82% of all individuals) but not larvae. The overall sex ratio was 
not different from 1:1 (364 males, 317 females, χ2

= 3.2438 , p = 0.0717) and most populations had a reasonably 
balanced sex ratio (Table 1).

Read filtering and variant calling.  RAD-seq was performed for 909 P. xylostella individuals from 60 
collection locations, including 15 individuals randomly selected from different library pools and sequenced 
as technical duplicates to check the robustness of genotype calls. Illumina sequencing yielded 2.36 billion raw 
sequence reads after de-multiplexing. Following read trimming and filtering, mapping, genotype calling and 
hard-filtering, we excluded 50 individuals with greater than 60% missing data, which was largely due to low 
sequencing depth (Supplementary Fig. S1), then excluded the 15 technical duplicates and a population with 
only two individuals remaining. Nine individuals with unusually high levels of polypmorphism and investigated 
using mtDNA amplicon sequencing were found to be contaminated and were excluded. Genotyping and hard-
filtering steps were then repeated for the remaining 833 individuals across 59 population samples, including 434 
individuals from 31 populations collected in 2014 and 399 individuals from 28 populations collected in 2015. 
Hard-filtering retained 590,086 confidently-called (GQ � 30) variant and invariant sites at a mean depth of 33.4 
per individual, and a subset of 1,032 widely-dispersed (to avoid linkage bias) bi-allelic SNP variants at a mean 
depth of 34.0 per individual, for downstream analyses. In reference-aligned SNP datasets with read depth > 30, 
genotyping error rates are expected to be < 0.0151. The datasets for 2014 and 2015 were analysed separately.
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For the 15 technical duplicates, the VCF output from HaplotypeCaller was hard-filtered using our param-
eters to retain the 30 samples and a set of 1,473 widely-dispersed bi-allelic SNP variants. Principal components 
analysis showed that sample pairs group closely together, indicating that genotype calls were highly consistent 
(Supplementary Fig. S2).

Genetic diversity statistics.  Population genetic diversity was estimated using the 590,086 variant and 
invariant sites. The mean observed heterozygosity per population averaged 0.0092 ± 0.0002 SD (range = 0.0088, 
0.0097) across the 59 populations and showed little variation across populations collected from different years 
(2014, n = 31 and 2015, n = 28), host plant types (canola, n = 30, Brassica vegetable crops, n = 15, Brassica for-
age crops, n = 2, and wild brassicas, n = 12) or seasons (autumn, n = 7 or spring, n = 52). In general, observed 
heterozygosity was lower than expected as shown by mostly positive FIS values, suggesting some inbreeding 
(Tables 2, 3, Supplementary Fig. S3). The population from Southend 2015 had reduced gene diversity and fewer 
private sites relative to other populations. Across the 1,032 SNPs, observed heterozygosity and gene diversity 
within each year showed reasonable agreement (Tables 2, 3, Supplementary Fig. S3), indicating allele frequencies 
at these loci are in Hardy–Weinberg proportions. Again, for this marker set, the Southend 2015 population had 
the lowest genetic diversity among populations, contributing to a negative FIS value. 

Power analysis.  The power analysis indicated that our SNP marker loci had a high level of statistical power 
to detect even weak population structure. The 1,032 SNP loci had 100% probability of detecting true FST values 
of 0.0027 or 0.0056 (Supplementary Table S1), corresponding to the estimated global FST values for the 2014 and 
2015 datasets.

Population differentiation.  The global estimates of FST calculated using 1,032 SNPs were not significantly 
different from zero in either 2014 ( FST = 0.0027 , 99% CL = −  0.0043, 0.0107) or 2015 ( FST = 0.0056 , 99% 
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Figure 1.   Geographic locations of 59 P. xylostella populations collected in Australia in 2014 and 2015 and 
sequenced using RAD-seq. Collections from different Brassica host types are represented by different colours. 
Canola is grown in dryland cropping areas of southern Australia, represented in grey shading.
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Location1 Collection date Coordinates Host plant

No. sequenced2

Total

Boomi NSW Sep-2014 28.76° S 149.81° E Canola 10 7 3

Ginninderra NSW Oct-2015 35.19° S 149.05° E Canola 14 6 8

Henty NSW Oct-2014 35.60° S 146.95° E Canola 16 9 7

Narromine NSW Sep-2014 32.22° S 148.03° E Canola 16 7 3

Richmond NSW Oct-2015 33.60° S 150.71° E Cabbage 16 7 9

Werombi NSW Nov-2014 33.99° S 150.64° E Brassica vegetables 10 5 4

Werombi NSW Oct-2015 34.00° S 150.56° E Kale 9 4 5

Bundaberg QLD Oct-2014 24.80° S 152.26° E Canola 12 7 3

Bundaberg QLD Sep-2015 24.80° S 152.26° E Canola 16 5 10

Dalby QLD Sep-2014 27.28° S 151.13° E Canola 14 6 8

Gatton QLD Oct-2014 27.54° S 152.33° E Broccoli 14 6 5

Gatton QLD Nov-2015 27.54° S 152.33° E Broccoli 14 7 7

Warwick QLD Oct-2015 28.21° S 152.11° E Canola 14 8 6

Calca SA Apr-2014 33.02° S 134.28° E Sand rocket, wall rocket 9 4 1

Cocata SA Sep-2014 33.20° S 135.13° E Canola 16 4 7

Colebatch SA Feb-2015 35.97° S 139.66° E Brassica forage 12 4 5

Cowell SA Sep-2014 33.66° S 137.16° E Canola 16 6 0

Keith SA Oct-2014 36.09° S 140.29° E Canola 12 5 6

Littlehampton SA Sep-2015 35.06° S 138.90° E Brussels sprouts 9 3 3

Loxton SA Sep-2014 34.37° S 140.72° E Canola 16 8 8

Mallala SA Sep-2015 34.38° S 138.50° E Canola 15 9 6

Millicent SA Apr-2015 37.61° S 140.34° E Canola 9 2 0

Minnipa SA Oct-2015 32.81° S 135.16° E Canola 16 8 6

Moonaree SA Aug-2014 31.99° S 135.87° E Ward’s weed 16 0 0

Mt Hope SA Sep-2014 34.14° S 135.33° E Canola 16 7 6

Mt Hope SA Sep-2015 34.20° S 135.34° E Canola 16 7 9

Padthaway SA Oct-2015 36.56° S 140.43° E Canola 14 9 5

Picnic Beach SA Apr-2014 34.17° S 135.27° E Sea rocket 8 0 2

Redbanks SA Oct-2014 34.49° S 138.59° E Canola 15 3 6

Southend SA Apr-2015 37.57° S 140.12° E Sea rocket 16 8 8

Tintinara SA Oct-2015 35.97° S 139.66° E Brassica forage 16 8 8

Virginia SA Oct-2014 34.64° S 138.54° E Broccoli 16 4 1

Virginia SA Sep-2015 34.64° S 138.54° E Cabbage 16 10 5

Walkers Beach SA Sep-2014 33.55° S 134.86° E Sea rocket 16 7 6

Walkers Beach SA Mar-2015 33.55° S 134.86° E Sea rocket 16 8 8

Walkers Beach SA Sep-2015 33.55° S 134.86° E Sea rocket 12 6 6

Wirrabara SA Oct-2014 32.99° S 138.31° E Canola 15 5 3

Wokurna SA Sep-2015 33.67° S 137.96° E Wild radish 16 9 4

Wurramunda SA Apr-2014 34.30° S 135.56° E Volunteer canola 16 9 7

Deddington TAS Nov-2014 41.59° S 147.44° E Kale 12 6 6

Deddington TAS Nov-2015 41.59° S 147.44° E Cauliflower 16 5 7

Launceston TAS Nov-2014 41.47° S 147.14° E Wild mustard 16 9 7

Cowangie VIC Oct-2015 35.10° S 141.33° E Canola 15 7 5

Ouyen VIC Sep-2014 35.00° S 142.31° E Canola 15 9 5

Werribee VIC Oct-2014 37.94° S 144.73° E Cauliflower 16 2 3

Werribee VIC Nov-2015 37.94° S 144.73° E Cauliflower 13 7 6

Yanac VIC Sep-2014 36.06° S 141.25° E Canola 12 6 6

Boyup Brook WA Sep-2014 33.64° S 116.40° E Canola 15 5 3

Dalyup WA Oct-2015 33.72° S 121.64° E Wild radish 16 9 7

Esperance WA Sep-2014 33.29° S 121.76° E Canola 12 2 1

Esperance WA Oct-2015 33.79° S 122.13° E Canola 15 7 8

Gingin WA Dec-2014 31.28° S 115.65° E Red cabbage 16 10 6

Kalannie WA Sep-2015 30.00° S 117.25° E Canola 16 8 8

Manjimup WA Dec-2014 34.18° S 116.23° E Chinese cabbage 9 5 4

Manjimup WA Nov-2015 34.18° S 116.23° E Brassica vegetables 13 3 9

Continued
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CL = − 0.0019, 0.0138), indicating a lack of genetic differentiation among populations within years. Pairwise 
FST values were generally very low, ranging from 0.0065 to 0.0178 (mean 0.0029  ±  0.0040 SD) in 2014 and 
− 0.0077 to 0.0344 (mean 0.0054 ± 0.0075 SD) in 2015 (Fig. 2). After correction for multiple comparisons (2014: 
n = 465 comparisons, 2015: n = 365 comparisons), no pairwise FST values were significant at the target α = 0.05 
level, indicating a lack of genetic differentiation among P. xylostella populations collected within a single year. 
The highest pairwise FST values were associated with the Southend 2015 population, ranging from 0.0221 to 

Table 1.   Summary of P. xylostella collections from Australia. 1 Australian states: NSW New South Wales, QLD 
Queensland, SA South Australia, TAS Tasmania, VIC Victoria, WA Western Australia. 2 Total includes males 
and females (pupae) and unknown sex (larvae)

Location1 Collection date Coordinates Host plant

No. sequenced2

Total

Narrogin WA Oct-2015 32.96° S 117.33° E Canola 13 7 6

Narrogin WA Oct-2015 32.95° S 117.32° E Wild radish, volunteer canola 16 8 8

Northampton WA Sep-2014 28.16° S 114.63° E Canola 16 9 4

Walkaway WA Sep-2014 28.94° S 114.83° E Canola 16 3 4

Table 2.   Population statistics for all 590,086 confidently-called variant and invariant sites, and a subset of 
1,032 hard-filtered SNP loci, for 31 P. xylostella populations collected from Australia in 2014. N, number 
of individuals genotyped per locus; HO , observed heterozygosity; HS , gene diversity; FIS , Nei’s inbreeding 
coefficient.

Population

All variant and invariant sites 1,032 SNP variants

N Sites Site depth SNPs Indels Private sites HO HS FIS N Site depth HO HS FIS

Boomi NSW 9.5 562,586 38 8,590 1,653 16 0.0090 0.0095 0.0398 9.3 38 0.2096 0.2057 − 0.0204

Henty NSW 15.3 564,870 33 8,418 1,618 14 0.0092 0.0096 0.0496 14.5 33 0.2042 0.2052 0.0048

Narromine NSW 15.0 553,119 30 8,216 1,558 18 0.0093 0.0097 0.0382 13.8 31 0.2077 0.2055 − 0.0081

Werombi NSW 9.3 550,438 26 8,086 1,518 16 0.0095 0.0097 0.0179 8.4 28 0.2120 0.2074 − 0.0244

Bundaberg QLD 11.3 557,174 38 8,338 1,578 16 0.0091 0.0096 0.0451 10.7 38 0.2050 0.2030 − 0.0105

Dalby QLD 13.5 567,483 36 8,495 1,630 16 0.0093 0.0096 0.0402 12.9 36 0.2095 0.2086 − 0.0020

Gatton QLD 12.9 543,911 28 7,938 1,491 12 0.0095 0.0096 0.0152 12.0 29 0.2160 0.2030 − 0.0459

Calca SA 8.3 546,958 40 8,250 1,588 30 0.0095 0.0099 0.0354 7.5 40 0.2208 0.2205 − 0.0076

Cocata SA 15.0 553,050 37 8,119 1,560 13 0.0093 0.0097 0.0367 13.9 37 0.2014 0.2031 0.0040

Cowell SA 15.1 557,172 32 8,276 1,578 17 0.0094 0.0098 0.0378 13.8 32 0.2112 0.2094 − 0.0077

Keith SA 10.8 532,878 24 7,599 1,434 18 0.0097 0.0098 0.0104 9.3 26 0.2172 0.2065 − 0.0385

Loxton SA 15.3 564,013 42 8,590 1,639 22 0.0091 0.0096 0.0540 15.0 42 0.1965 0.2022 0.0182

Moonaree SA 15.2 560,304 33 8,354 1,595 17 0.0094 0.0097 0.0385 14.0 34 0.2142 0.2082 − 0.0207

Mt Hope SA 15.2 560,623 37 8,262 1,593 14 0.0092 0.0096 0.0459 14.3 37 0.1986 0.2014 0.0067

Picnic Beach SA 7.5 550,986 44 8,125 1,561 33 0.0097 0.0099 0.0128 6.4 44 0.2233 0.2144 − 0.0400

Redbanks SA 13.2 519,055 36 7,591 1,417 17 0.0091 0.0096 0.0536 12.9 36 0.2084 0.2056 − 0.0106

Virginia SA 15.3 564,927 32 8,437 1,620 16 0.0092 0.0097 0.0467 14.5 33 0.2087 0.2063 − 0.0072

Walkers Beach SA 15.2 560,602 35 8,371 1,599 21 0.0091 0.0097 0.0518 14.8 35 0.2002 0.2018 0.0013

Wirrabara SA 13.6 536,022 38 7,888 1,512 13 0.0091 0.0096 0.0541 13.1 38 0.2031 0.2021 − 0.0032

Wurramunda SA 15.3 565,796 41 8,630 1,651 20 0.0091 0.0095 0.0427 15.1 41 0.2001 0.2030 0.0117

Deddington TAS 11.0 539,076 25 7,792 1,454 17 0.0097 0.0098 0.0171 9.6 26 0.2182 0.2109 − 0.0292

Launceston TAS 15.1 557,084 33 8,318 1,602 15 0.0093 0.0097 0.0406 14.1 34 0.2110 0.2072 − 0.0120

Ouyen VIC 14.2 557,715 34 8,246 1,589 18 0.0094 0.0097 0.0350 13.2 34 0.2082 0.2061 − 0.0072

Werribee VIC 15.2 560,377 35 8,411 1,599 17 0.0092 0.0097 0.0507 14.4 35 0.2093 0.2096 0.0024

Yanac VIC 11.6 569,684 39 8,534 1,638 17 0.0090 0.0096 0.0520 11.2 39 0.1984 0.2044 0.0168

Boyup Brook WA 14.4 566,791 35 8,510 1,630 14 0.0092 0.0096 0.0365 13.8 35 0.2089 0.2031 − 0.0219

Esperance WA 11.2 550,595 33 8,156 1,551 30 0.0095 0.0097 0.0182 10.1 34 0.2128 0.2069 − 0.0289

Gingin WA 15.2 559,983 35 8,353 1,590 14 0.0089 0.0096 0.0710 14.8 35 0.1959 0.2014 0.0160

Manjimup WA 8.4 553,540 27 8,188 1,551 14 0.0095 0.0096 0.0107 7.7 28 0.2061 0.2043 − 0.0173

Northampton WA 15.4 568,041 38 8,558 1,646 16 0.0090 0.0095 0.0543 15.0 38 0.1949 0.2007 0.0158

Walkaway WA 15.2 560,808 38 8,311 1,591 16 0.0090 0.0096 0.0619 14.9 39 0.1978 0.2026 0.0207
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0.0344 (mean 0.0265 ± 0.0035 SD, n = 27 comparisons), indicating allele frequencies in this population were 
the most divergent from other populations (Fig. 2). AMOVA analysis using 1,032 SNPs indicated a lack of any 
spatial, temporal or host-plant related genetic structure among populations (Table 4). In model A, where popu-
lations were divided into years and Brassica host types, > 99% of variance was found within populations with 
negligible variance among populations explained by year or host type. Similarly, in model B, where seven loca-
tions were sampled in both years, > 99% of variance was found within populations. These results precluded 
interpretation of whether there was more spatial or temporal variance among populations.

Under isolation by distance, geographic and genetic distances should be positively correlated52. Populations 
were collected across geographic distances of up to 3,756 km (Northampton WA/Bundaberg QLD) in 2014 (mean 
distance 1,323 ± 960 SD km) and 3,624 kilometres (Manjimup WA/Bundaberg QLD) in 2015 (mean distance 
1,263 ± 917 SD km). Given the vast sampling scale, we expected higher FST values at greater geographic distances 
between population pairs, however heat maps revealed no such pattern (Fig. 2). Mantel tests confirmed a lack 
of genetic isolation by distance in both 2014 (Mantel’s r = 0.1136, p = 0.1316) and 2015 (Mantel’s r = − 0.0901, 
p = 0.8222) datasets, indicating that P. xylostella populations in close proximity or separated by thousands of 
kilometres were equally differentiated.

Population structure was explored using two different individual-based clustering approaches. First, STRU​
CTU​RE analysis was performed using the widely-dispersed 1,032 SNPs and analysing 2014 and 2015 populations 
separately. We first determined the predicted optimal values for K, then examined bar plots for several K values 
to assess hierarchical population structure. In 2014, the data most likely formed two genotypic clusters, with the 
delta K method and mean likelihood value both producing an optimal at K = 2 (Supplemementary Fig. S4). At 
this K value, bar plots showed that most individuals shared nearly uniform ancestry across the major genotypic 
cluster regardless of geographic location (Fig. 3). A second genotypic cluster was largely associated with three 
individuals from Esperance, which showed 98.7%, 98.7% and 56.5% cluster assignment, while of the remaining 
396 individuals, only 17 individuals were greater than 1% (1.0 to 9.3%) admixed across this cluster. At K = 3 

Table 3.   Population statistics for all 590,086 confidently-called variant and invariant sites, and a subset of 
1,032 hard-filtered SNP loci, for 28 P. xylostella populations collected from Australia in 2015. N, number 
of individuals genotyped per locus; HO , observed heterozygosity; HS , gene diversity; FIS , Nei’s inbreeding 
coefficient.

Population

All variant and invariant sites 1,032 SNP variants

N Sites Site depth SNPs Indels Private sites HO HS FIS N Site depth HO HS FIS

Goulburn NSW 13.3 559,574 33 8,318 1,574 15 0.0090 0.0096 0.0545 12.9 34 0.1948 0.1985 0.0153

Richmond NSW 15.2 560,841 37 8,349 1,595 14 0.0089 0.0096 0.0634 14.9 38 0.1983 0.1994 0.0005

Werombi NSW 8.5 556,788 42 8,473 1,605 13 0.0088 0.0094 0.0438 8.3 42 0.2033 0.2008 − 0.0127

Bundaberg QLD 14.5 536,071 25 7,777 1,472 16 0.0095 0.0097 0.0371 13.3 26 0.2131 0.2065 − 0.0247

Gatton QLD 12.7 533,431 27 7,674 1,438 18 0.0095 0.0098 0.0365 11.4 28 0.2129 0.2116 − 0.0019

Warwick QLD 13.2 555,382 33 8,328 1,590 20 0.0092 0.0097 0.0461 12.3 33 0.2012 0.2020 − 0.0015

Colebatch SA 11.5 565,070 31 8,449 1,612 17 0.0091 0.0096 0.0445 11.0 32 0.2023 0.2036 0.0019

Littlehampton SA 8.4 551,419 38 8,463 1,616 19 0.0091 0.0097 0.0495 8.2 38 0.2039 0.2068 0.0005

Mallala SA 13.9 545,678 28 8,012 1,526 20 0.0093 0.0096 0.0350 13.1 29 0.2090 0.2060 − 0.0133

Millicent SA 8.1 532,566 32 8,054 1,539 15 0.0089 0.0096 0.0607 7.8 32 0.2020 0.2033 0.0010

Minnipa SA 15.3 563,734 34 8,433 1,608 17 0.0091 0.0095 0.0506 14.6 34 0.2063 0.2061 − 0.0004

Mt Hope SA 14.9 551,211 30 8,117 1,542 18 0.0093 0.0097 0.0417 13.4 31 0.2164 0.2101 − 0.0211

Padthaway SA 12.6 529,583 30 7,804 1,488 16 0.0091 0.0096 0.0513 12.0 30 0.2042 0.2061 0.0005

Southend SA 15.3 563,465 34 8,365 1,597 6 0.0093 0.0091 − 0.0131 14.4 34 0.2099 0.1953 − 0.0598

Tintinara SA 14.6 539,118 25 7,853 1,499 14 0.0096 0.0097 0.0278 13.4 26 0.2093 0.2026 − 0.0202

Virginia SA 15.4 567,767 35 8,548 1,648 15 0.0092 0.0096 0.0485 14.9 35 0.2053 0.2058 − 0.0023

Walkers Beach SA 15.3 564,509 36 8,455 1,627 15 0.0091 0.0094 0.0407 14.8 36 0.1968 0.1958 − 0.0067

Walkers Beach SA 11.3 557,146 26 8,246 1,564 15 0.0095 0.0098 0.0276 10.4 27 0.2099 0.2064 − 0.0137

Wokurna SA 15.1 558,036 33 8,246 1,579 19 0.0094 0.0097 0.0379 14.0 34 0.2120 0.2105 − 0.0098

Deddington TAS 15.3 565,674 40 8,492 1,630 16 0.0091 0.0096 0.0544 15.0 40 0.2022 0.2044 0.0054

Cowangie VIC 14.4 565,260 35 8,457 1,612 19 0.0092 0.0096 0.0445 13.7 35 0.2100 0.2083 − 0.0051

Werribee VIC 11.9 538,661 25 7,878 1,469 16 0.0093 0.0097 0.0416 11.0 27 0.2091 0.2050 − 0.0176

Dalyup WA 15.3 562,709 32 8,452 1,624 17 0.0092 0.0097 0.0459 14.4 32 0.2027 0.2048 0.0017

Esperance WA 13.5 532,826 27 7,718 1,460 20 0.0096 0.0098 0.0239 12.2 28 0.2109 0.2043 − 0.0262

Kalannie WA 15.3 564,388 33 8,410 1,614 17 0.0091 0.0096 0.0496 14.6 34 0.2046 0.2065 0.0009

Manjimup WA 12.3 556,387 36 8,274 1,567 18 0.0091 0.0096 0.0517 12.0 37 0.2007 0.2032 0.0095

Narrogin WA 11.9 541,517 29 7,947 1,512 16 0.0094 0.0097 0.0376 11.1 30 0.2115 0.2104 − 0.0048

Narrogin WA 15.1 557,879 34 8,284 1,582 18 0.0090 0.0096 0.0579 14.7 35 0.1969 0.2011 0.0125
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and K = 4, no significant additional population structure was detected, with the additional genotypic clusters 
associated with two individuals from Boyup Brook and two individuals from Cocata (Supplementary Fig. S5).

In 2015, the delta K method produced an optimal at K = 2 and weaker secondary modes at K = 3 and K = 5 
while the highest log-likelihood occurred at K = 5 (Supplementary Fig. S4). The modes at K = 3 and K = 5 indicate 
sub-structure in the data. At K = 2, most individuals shared nearly uniform ancestry across the major genotypic 
cluster regardless of geographic location (Fig. 3). The second genotypic cluster was predominantly associated 
with individuals from Southend, where 10 individuals showed 31.7 to 99.4% cluster assignment. At higher K 
values, further geographic structure was identified. At K = 3, two clusters were mainly associated with Southend 
(cluster A, 7 individuals with 26.1–98.6% assignment; cluster B: 10 individuals with 33.2–99.5% assignment) 
(Supplementary Fig. S5). At K = 4, the additional cluster was mainly associated with individuals collected from 
Walkers Beach in both autumn and spring 2015, showing a consistent pattern at both time points. At K = 5, the 
additional cluster was mostly represented by three individuals from Werombi. To further examine hierarchical 
structure, we reanalysed the 2015 data after removing Southend. This resulted in a weak delta K optimal at K = 3, 
but showed the same clustering pattern as the full 2015 dataset at K = 5 and is not presented.

Individual-based PCA analysis identified clustering patterns consistent with the STRU​CTU​RE analysis. In 
both years, eigenvalues for the first principle component (PC) were not strongly different from eigenvalues for 
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Figure 2.   Heat maps showing pairwise comparisons of genetic distance measured as Weir and Cockerham’s 
(1984) FST (top panels) and geographic distance in kilometres (bottom panels) among P. xylostella populations 
collected from Australia in 2014 (left panels) and 2015 (right panels). Within each year, populations on x and 
y-axes are sorted geographically from north-western to north-eastern Australia in an arc following the southern 
coast. Visual comparison of the FST and geographic distance heat maps within each year shows no congruence 
between genetic and geographic distance among population pairs in 2014 or 2015.
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other PCs, indicating no clear axis of variance in the data, and individuals across different geographic popula-
tions clustered together to a high degree (Fig. 4). In both years, PCA identified the most divergent individuals 
consistent with those in the STRU​CTU​RE analysis. In 2014, three individuals from Esperance and two individu-
als from Cocata clustered distinctly along separate PC axes. In 2015, two groups of individuals from Southend 
clustered distinctly along the two PCs axes, and three individuals from Werombi formed an identifiable cluster 
along the vertical PC axis.

Discussion
In successful invading species, colonizing populations often exhibit reduced genetic diversity compared to their 
population of origin53. Previous molecular studies found a lack of genetic structure19 or inconsistent patterns of 
genetic structure25,36 among Australian populations of P. xylostella, and low genetic diversity implied a bottle-
neck during colonization19,31. To elucidate the movement patterns of P. xylostella in Australian canola cropping 
systems, we performed a comprehensive study of genetic structure among P. xylostella populations from crop 
and non-crop brassicaceous host plants throughout southern Australia. The study design included extensive 
field sampling to reflect the dispersal ecology of the species, molecular species identification, minimisation of 
sex bias, and a powerful SNP marker set derived from RAD-seq.

Table 4.   Analysis of molecular variance under two hierarchical model structures. In Model A, all 59 
populations collected from four Brassica host types in 2014 and 2015 were analyzed and variance was 
partitioned among years, among host within years and among populations within host. In Model B, 
populations from seven locations sampled in both 2014 and 2015 were analyzed and variance was partitioned 
among years and among locations within years.

AMOVA summary

Source df SS MS Est. var. %

Model A

Year 1 141.844 141.844 0.015 0.013

Host 5 651.478 130.296 0.049 0.043

Population 52 6,487.275 124.755 0.902 0.798

Error 774 86,712.706 112.032 112.032 99.145

Total 832 93,993.302 112.998 100.000

Model B

Year 1 102.038 102.038 − 0.162 − 0.154

Location 12 1,409.908 117.492 0.923 0.875

Error 181 18,947.900 104.685 104.684 99.278

Total 194 20,459.846 105.445 100.000

K = 2

K = 2
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2015
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Figure 3.   Proportional assignment to genotypic clusters, K, based on STRU​CTU​RE analysis of P. xylostella 
individuals from Australia in 2014 and 2015. Individuals are represented by vertical bars and genotypic clusters 
are represented by different colours. Individuals collected each year were analysed separately and in both years 
the data most likely formed two genotypic clusters. Top panel: Analysis at K = 2 for 434 individuals collected 
from 31 locations in 2014. Bottom panel: Analysis at K = 2 for 399 individuals collected from 28 locations 
in 2015. Within years, bar plots show a high degree of genotypic admixture across individuals regardless of 
geographic location, as shown by sharing of blue-coloured bars, with a second genotypic cluster represented by 
red-coloured bars shared predominantly by several individuals at a single location.
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Genome-wide analysis revealed a distinct lack of genetic structure among Australian P. xylostella populations, 
irrespective of geographic location, host plant, or sampling year. This pattern was temporally stable at seven 
locations sampled in both 2014 and 2015. Our findings based on SNPs were highly consistent with those based 
on six microsatellites19. Our SNP-based estimates of global FST within Australia were 0.0027 in 2014 and 0.0056 
in 2015, compared to 0.0051 from microsatellites19. In both studies, > 99% of genetic variance occurred within 
populations with negligible variance explained by different locations or host plants. There was no evidence for 
isolation by distance, implying that any two populations, whether separated by distances of only several km or 
> 3,000 km, may be equally differentiated. Australian P. xylostella forms a single homogeneous population across 
bi-allelic neutral SNP markers.

Cluster analysis confirmed the overall lack of genetic divergence among populations. In both years, STRU​
CTU​RE analysis identified K = 2 as the most likely number of genotypic clusters. This is a common result among 
studies employing the delta K method54, because K = 1 cannot be obtained and because K = 2 often represents 
the top level of hierarchical population structure. At K = 2, a small number of divergent samples were identified 
at single geographic locations, including Esperance in 2014 and Southend in 2015. In 2015, at K values � 3, two 
genotypic clusters occurred predominantly within the Southend population. Do these admixture patterns reflect 
genetic isolation? STRU​CTU​RE sorts groups into Hardy–Weinberg linkage populations under the assumption of 
independent loci55,56. Among all populations, Southend had the lowest gene diversity, the fewest private sites and 
the highest FST values in pairwise population comparisons. Notably, this population was collected from a small 
and isolated patch of sea rocket consisting only of several large plants. It is likely that cluster patterns reflect an 
artefact of sampling related individuals at Southend57,58. In hierarchical STRU​CTU​RE analysis of 2014 and 2015 
samples, additional genotype clusters at successively higher K values occurred in a small number of individuals 
from single locations as STRU​CTU​RE simply grouped the next most related samples at each hierarchical level. 
These results highlight the need for caution when samples of related individuals are present, to avoid false infer-
ences of population structure.

There is no evidence to suggest divergent samples represent interspecific hybrids of P. xylostella and the 
sympatric species, P. australiana. Although these species can hybridize in laboratory crosses, whether hybridi-
zation occurs in the wild is unknown35. Whole genome analysis of 29 Plutella individuals found no evidence 
for widespread introgression between these two species59. In our study, all Esperance and Southend individuals 
exhibited levels of heterozygosity across > 550,000 variant and invariant genome-wide loci that were similar to 
other P. xylostella. We would expect substantially higher heterozygosity if individuals were interspecific hybrids 
or if DNA samples were contaminated. PCA analysis of P. xylostella from Esperance 2014, Southend 2015 and five 
other locations, together with five P. australiana populations from Perry et al.35, showed clear species groupings 
and no evidence of introgressed individuals (Supplementary Fig. S6).

Genetic variation within a species is shaped by historical and contemporary evolutionary processes7,60. 
Because genetic homogeneity among Australian P. xylostella could reflect common ancestry18, present gene 
flow patterns are not clear from our data. Considering the vast size of the continent, it seems unlikely that P. 
xylostella forms a panmictic population in Australia in the sense that interbreeding is completely random. Saw 
et al.31 reported a small degree of sub-population structure among P. xylostella from 14 Australian locations based 
on geographic variation in frequencies of the dominant mtDNA haplotype. Insecticide resistance profiles of P. 

outhend SA

bi NSW

2015

Eigenvalues

2014

Eigenvalues

Figure 4.   Principal components analysis of P. xylostella individuals collected from Australia in 2014 and 2015. 
Individuals are represented by small circles colour-coded by geographic population. Two populations with the 
most divergent individuals in each year are labelled.
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xylostella can vary spatially when the intensity of insecticide use differs across locations and host plant types, 
indicating that gene flow is often insufficient to overwhelm the effects of local selection on frequencies of resist-
ance alleles6,29. Mo et al.23 found that P. xylostella moves over limited distances within actively growing Brassica 
vegetable crops where suitable host plants are continuously available. There is little propensity to emigrate during 
summer when crops are irrigated and the surrounding landscape is dry. Limited movement in these crops can 
lead to functional isolation of sub-populations, whereby resistance is selected by the insecticide spray regimes of 
individual farmers. Local selection, rather than spread of resistance alleles through gene flow, largely explained 
variation in levels of resistance to synthetic pyrethroids among Australian P. xylostella populations6.

Genetic differentiation indices are likely to over-estimate rates of gene flow, to the extent that genetic uni-
formity among P. xylostella reflects a genetic bottleneck and range expansion during colonization of Australia61. 
Although outgroups from other continents were unavailable for comparison, our recent data support the view 
that P. xylostella within Australia displays reduced genomic diversity compared to populations elsewhere. Austral-
ian P. xylostella, including 47 individuals from our study, were previously shown to exhibit 1.5-fold lower levels of 
heterozygosity across the nuclear genome relative to the endemic congeneric species, P. australiana35. Similarly, 
a study of microsatellite variation reported lower nucleotide diversity within P. xylostella populations from Aus-
tralia than populations from Kenya and Indonesia19. Plutella xylostella exhibits lower mtDNA haplotype diversity 
within Australia26,31,34,35 than within parts of Asia, Africa, Europe and North America10,26–28,31,34,62. Analysis of 
mtDNA in 102 Australian P. xylostella individuals, including 44 individuals from our study, identified only five 
closely-related COI haplotypes (613 bp) and two dominant shared haplotypes35. Reduced diversity across the 
genome is strong evidence for a bottleneck63. By contrast, a recent global study of P. xylostella whole genomes 
reported unexpectedly high levels of SNP diversity within populations from the Oceania region, including Aus-
tralia, New Zealand, Vanuatu and Samoa, compared to populations from putative historical source regions in 
the Americas, Europe, Africa and Asia64. Whether loci under selection may explain this pattern warrants further 
study. Plutella xylostella within Australia and New Zealand appears to have been founded by a small number of 
females derived from an ancestral lineage in southern Asia26,31,34,35,64.

It is likely that genetic homogeneity across the Australian P. xylostella distribution is maintained by some 
level of ongoing gene flow. RAD-seq markers revealed weak but significant genetic differentiation among field 
and laboratory-reared Australian P. xylostella populations ( F0 to F6)50 but not wild populations ( F0 , this study), 
implying that intermixing prevents divergence. Neutral bi-allelic SNPs failed to reveal the scale, frequency 
and timing of gene flow. Even very few migrants per generation can eliminate genetic differentiation among 
populations65,66, especially where genetic diversity is low. If a small founding P. xylostella population originally 
colonized Australia31, its present distribution throughout Australia demonstrates past gene flow at a continental 
level. This is consistent with the wide distribution of two shared haplotypes and with P. xylostella being a migra-
tory species4,13. Within Australia, there is ample indirect evidence of P. xylostella dispersal, including the seasonal 
widespread colonization of winter-grown canola crops18,67 and detection of moth flights in light trapping and 
pheromone trapping studies19,37,67–69. In canola-growing areas remote from Brassica vegetable production, the 
annual canola cropping cycle of crop planting, senescence and harvest forces P. xylostella to disperse regularly 
between crops and wild brassicaceous host plants in the landscape. This tends to homogenise the insecticide 
resistance profiles of P. xylostella across Australian canola-growing regions, and among canola crops and Bras-
sica weeds within each region24.

Gene flow creates potential for the spread of resistance alleles within and among Australian Brassica cropping 
systems. For certain newer insecticide chemistries, elevated resistance levels occur in P. xylostella within inten-
sively sprayed Brassica vegetable crops relative to insects from canola crops or weeds6. Emigration of resistant 
moths from these cropping areas could contribute to the risk of P. xylostella insecticide resistance in canola crop-
ping systems. Conversely, seasonal flights of P. xylostella moths into Brassica vegetable crops during spring32,68, 
perhaps originating from senescing canola crops or weeds, could dilute resistance levels if immigrants are more 
susceptible, and provide opportunities for rotation strategies to manage resistance. Insecticide-resistant P. xylos-
tella genotypes can persist locally in Australian canola-growing areas where summer-active brassicas occur67. 
Evidence for large-scale gene flow among Australian P. xylostella suggests insecticide resistance alleles arising in 
one location could readily spread to other locations. These alleles may be selected to a high frequency in local 
areas if insecticides are used repeatedly70.

Neutral genome-wide SNPs were uninformative in identifying the dispersal patterns of P. xylostella in Aus-
tralia, confirming previous conclusions19. Whether larger marker sets derived from massively parallel sequencing 
can provide insights into seasonal migration of P. xylostella in other global regions, where the species displays 
higher genetic diversity, remains to be evaluated.

Methods
Sample collection.  Immature life stages (larvae or pupae; rarely, eggs) of Plutella species were collected 
between March 2014 and December 2015 throughout agricultural areas of southern Australia (Fig. 1). The dry-
land cropping areas of Australia experience climatic conditions most likely to support year-round persistence 
of P. xylostella67,71, and therefore represent the gene pool. Four brassicaceous P. xylostella host plant types were 
sampled: canola crops, Brassica vegetable and forage crops, and wild brassicaceous species (Fig. 1). The wild 
species were wild radish, Raphanus raphanistrum, turnip weed, Rapistrum rugosum, sea rocket, Cakile maritima, 
Ward’s weed, Carrichtera annua, and mixed stands of sand rocket, Diplotaxis tenuifolia and wall rocket, D. mura-
lis (Table 1). In both years, most sampling was temporally restricted to periods in autumn (March to April) and 
spring (September to October) to minimise potential for migration to affect genetic structure7. Spring sampling 
corresponds to population peaks of P. xylostella in crops while autumn sampling corresponds to population 
troughs at the end of the summer/autumn non-cropping period, when host plants and the insect are often locally 
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rare. Several locations were sampled in both years to allow temporal comparisons. At each location, � 25 individ-
uals were collected from multiple plants across a representative area to minimise sampling of related individuals, 
either using a sweep net in canola crops, Brassica forage crops and wild host plants, by hand in Brassica vegetable 
crops, or by beating plants over a collection tray for sea rocket. To eliminate parasitised individuals, each popula-
tion was reared separately in a ventilated plastic container on leaves of the original host plant for 1–2 days and 
thereafter on cabbage leaves. Non-parasitised pupae or late-instar larvae were fresh frozen at − 80 °C.

DNA isolation and species identification.  For each population, 16 individuals were sequenced where 
possible after removing parasitised individuals. To avoid biases due to sex-linked markers72, we visually deter-
mined the sex of individual pupae (but not larvae) by examining external genital morphology73 under a dis-
secting microscope, then male and female individuals were selected to achieve a balanced sex ratio within each 
population where possible. Genomic DNA was isolated by homogenising whole individuals using a TissueLyser 
II (Qiagen) followed by two phenol and one chloroform extractions according to Zraket et al.74. DNA was treated 
with RNase A, then precipitated and resuspended in TE buffer. To distinguish P. xylostella from P. australiana, 
species identification was performed using a PCR-RFLP assay35 and P. xylostella individuals were retained for 
analysis.

RAD‑seq library preparation and sequencing.  Libraries were prepared for restriction-site-associated 
DNA sequencing (RAD-seq) according to a protocol modified from Baird et al.41 as described in Perry et al.35. 
Genomic DNA was quantified using a Qubit 2.0 fluorometer (Invitrogen) and 200ng digested with 10 units 
of high fidelity Sbf1 in Cutsmart buffer (NEB) for 1 h at 37 °C, then heat inactivated at 80 °C for 20 min. One 
microlitre of P1 adapter (100nM) with a 6-base molecular identifier (MID) (top strand 5 ′-TCG​TCG​GCA​GCG​
TCA​GAT​GTG​TAT​AAG​AGA​CAGxxxxxxTGCA-3 ′  , bottom strand 5 ′-[P]xxxxxxCTG​TCT​CTT​ATA​CAC​ATC​
TGA​CGC​TGC​CGA​CGA-3 ′  , x represents sites for MIDs) were then added using 0.5µ L T4 DNA ligase (Pro-
mega), 1nM ATP and Cutsmart buffer. Sixteen individuals with unique P1 adapters were pooled per library. 
To minimise sequencing biases or batch effects, individuals from each population were randomised across 2–4 
(usually 4) libraries and each library was sequenced across 2–4 sequencing lanes. Library pools were sheared 
using a Bioruptor sonicator (Diagenode), ends repaired using a Quick Blunting Kit (NEB), adenine overhangs 
added then P2 adapters (top strand 5 ′-[P]CTG​TCT​CTT​ATA​CAC​ATC​TCC​AGA​ATAG-3 ′  , bottom strand 5 ′
-GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACAGT-3 ′  ) ligated, then (majority of libraries) size-selected 
(300–700 bp) on agarose gel to remove primer dimer. DNA purification between steps was performed using 
a MinElute PCR purification kit (Qiagen). Library amplification was performed using KAPA HiFi Hotstart 
Readymix (Kapa Biosystems) and Nextera i7 and i5 indexed primers with PCR conditions as described in Perry 
et al.35: 95 °C for 3 min, two cycles of 98 °C for 20 s, 54 °C for 15 s, 72 °C for 1 min, then 15 cycles of 98 °C for 
20 s, 65 °C for 15 s, 72 °C for 1 min followed by a final extension of 72 °C for 5 min. Libraries were size-selected 
(300–700 bp) on agarose gel and purified using a minElute Gel Extraction Kit (Qiagen). Illumina paired-end 
sequencing was performed across seven lanes using HiSeq2500 (100 bp) or NextSeq500 (75 bp) at the Australian 
Genome Research Facility (AGRF). Additionally, 16 individuals from a separate sequencing run as described in 
Perry et al.50 were included in downstream analysis.

Read filtering and variant calling.  Sequence read quality was examined using FastQC75. As Nextseq 
reads had low quality base calls within restriction sites (a common problem when using fixed-length MIDs on 
this platform, which cause low sequence diversity and cluster signal in this region), we opted to remove restric-
tion sites from all reads for downstream analysis. Sequence reads were de-multiplexed using RADtools version 
1.2.442 allowing one base MID mismatch, then TRIMMOMATIC v0.3276 was used to remove restriction sites, 
adapter sequences, a thymine base from reverse reads introduced by the P2 adapter, and quality filter using 
the ILLUMINACLIP tool with parameters: TRAILING:10 SLIDINGWINDOW:4:15 MINLEN:40. Paired reads 
were aligned to the P. xylostella reference genome (accession number: GCF_000330985.1) using STAMPY ver-
sion 1.0.2177 with –baq and –gatkcigarworkaround options and expected substitution rate set to 0.03 to reflect 
our expectations of sequence divergence from the reference strain. Duplicate reads were removed and individual 
sample BAM files merged using PICARD version 1.7178. Genotypes were jointly called for all individuals using 
the Genome Analysis Tool Kit version 3.3-079,80 HaplotypeCaller tool. We determined that base quality score 
recalibration using bootstrapped SNP databases was inappropriate for this dataset as it globally reduced quality 
scores. The variant call set was hard-filtered using VCFtools version 0.1.12a81. After iteratively testing multiple 
filtering parameter sets, we removed indels and retained confidently called bi-allelic SNPs (GQ � 30) genotyped 
in at least 80% of individuals with a minimum genotype depth of 5, minQ � 400, average site depth of 12–100, 
minimum minor allele frequency of 0.01 and in Hardy–Weinberg equilibrium at an alpha level of 0.05. To avoid 
closely-linked sites, we retained only SNPs separated by a minimum of 2,000 bp using the VCFtools—thin func-
tion. In order to estimate population-level genetic diversity, from the output of GATK HaplotypeCaller we gen-
erated a set of all confidently-called (GQ �  30) variant and invariant sites and hard filtered to remove sites 
within repetitive regions and retain sites genotyped in at least 80% of individuals with an average site depth of 
12–100. The filtered VCFs were converted to other file formats for downstream analysis using PGDSpider ver-
sion 2.1.1.282 and custom R scripts83.

Genetic diversity.  The R package hierfstat84 was used to calculate within-population gene diversity ( HS) , 
observed heterozygosity ( HO ) and the inbreeding coefficient ( FIS ) according to Nei85. Population means for 
site depth and number of SNPs, indels and private sites were calculated using the –depth function and vcfstats 
module in VCFtools version 0.1.12a81.
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Population differentiation.  To examine population differentiation, a global estimate of FST86 with boot-
strapped 99% confidence intervals ( 104 bootstrap iterations) was calculated in R package diveRsity87. Pairwise 
FST values for all population pairs were calculated and significance of differentiation determined using exact G 
tests ( 104 MCMC burnins, 103 batches, 104 iterations per batch) in GENEPOP v4.688 after correction for multiple 
comparisons using the Bonferroni–Holm correction method89,90. Isolation by distance among populations52 was 
investigated separately for 2014 and 2015 datasets. We used R91 to construct heat maps and visually inspected 
the congruence between pairwise matrices of untransformed geographic distances in kilometres and genetic 
distances, FST , for corresponding population pairs. Significance of the regressions of pairwise linearized genetic 
distances92 onto log-transformed geographic distances was determined using a Mantel test with 104 permuta-
tions in R package ade4 version 1.7-693. Geographic distances were calculated using R package geosphere version 
1.5-794. Analysis of molecular variance (AMOVA) was performed using the pegas implementation in R package 
poppr version 2.7.195. The data were analysed under two hierarchical model structures. In model A, all individu-
als were analysed together and populations were grouped into sampling years and Brassica host types. In Model 
B, a temporal analysis was performed for locations sampled in both 2014 and 2015, to investigate whether vari-
ance was greater among years within locations or vice versa.

Population structure.  Two individual-based clustering approaches were used to investigate population 
structure. First, Bayesian clustering was implemented in the program STRU​CTU​RE version 2.3.455. Variant data 
were converted from VCF to STRU​CTU​RE file format using PDGSpider version 2.1.1.282. For all runs, we used 
a burnin length of 5× 10

5 followed by a run length of 106 MCMC iterations and performed fifteen independent 
runs for each K value, where K is the number of genotypic clusters, using a different random seed for each run, 
assuming the locprior model with correlated allele frequencies and � set to 1. As preliminary runs showed that 
most structure was identified at low K values, we analysed K-values from 1 to 10 in both years. The optimal value 
of K was estimated using the delta K method96 implemented in STRU​CTU​RE HARVESTER97 and inspection 
of the likelihood distribution for each model. Q-matrices were aligned using CLUMPP version 1.1.298 and visu-
alised using DISTRUCT version 1.199. To further explore clustering, we performed individual-based principal 
components analysis (PCA) separately for 2014 and 2015 datasets using R package adegenet version 2.0.1100,101, 
using scaled and centred allele frequencies and imputing missing data by taking the mean of population allele 
frequencies.

Power analysis.  The statistical power of the SNP marker set to detect population structure was assessed using 
POWSIM version 4.1102. This program allows the user to test the likelihood of loci of detecting genetic differ-
entiation for pre-defined values of FST . For the dataset, 1,000 simulations were performed over a range of FST 
values from 0.001 to 0.01 assuming an effective population size of 5,000. The number of subpopulations, sample 
sizes and allele frequencies from our data were used and the generations of drift varied to achieve the target FST . 
As POWSIM currently handles a maximum of 30 populations, for the 2014 dataset the number of subpopula-
tions was set to this value. The null hypothesis of genetic homogeneity was tested using Fisher’s exact test and a 
Chi-square test.

Accession codes.  RAD sequences are available from the Sequence Read Archive under accession 
PRJNA471964.
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