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Frontoparietal structural properties 
mediate adult life span differences 
in executive function
Zai-Fu Yao1, Meng-Heng Yang2, Kai Hwang3,4 & Shulan Hsieh   2,5,6 ✉

Executive function (EF) refers to a set of cognitive functions that support goal-directed behaviors. 
Recent findings have suggested that the frontoparietal network (FPN) subserves neural processes 
that are related to EF. However, the FPN structural and functional network properties that mediate 
age-related differences in EF components remain unclear. To this end, we used three experimental 
tasks to test the component processes of EF based on Miyake and Friedman’s model: one common EF 
component process (incorporating inhibition, shifting, and updating) and two specific EF component 
processes (shifting and updating). We recruited 126 healthy participants (65 females; 20 to 78 years 
old) who underwent both structural and functional MRI scanning. We tested a mediation path model of 
three structural and functional properties of the FPN (i.e., gray matter volume, white matter fractional 
anisotropy, and intra/internetwork functional connectivity) as mediators of age-related differences in 
the three EF components. The results indicated that age-related common EF component differences 
are mediated by regional gray matter volume changes in both hemispheres of the frontal lobe, which 
suggests that structural changes in the frontal lobe may have an indirect influence on age-related 
general elements of EF. These findings suggest that the FPN mediates age-related differences in specific 
components of EF.

Aging is associated with the deterioration of executive function (EF)1,2. EF (also known as cognitive control) 
describes processes needed for goal-directed behaviors and can be partitioned into several component func-
tions3,4. An influential framework, the Unity and Diversity model introduced by Miyake et al. (2000)4, identified 
three dissociable components of EF, including updating-specific EF (temporarily keeping information accessible 
for processing), shifting-specific EF (switching between different tasks), and inhibition-specific EF (withholding 
intended responses) components. These three EF components are moderately correlated (i.e., unity), suggesting 
that a common process supports all EFs but are also divisible (i.e., diversity) and can be partitioned into subcom-
ponents, which indicates that each specific component EF engages a distinct neurocognitive process3,4. Further 
analyses by Miyake’s group revealed that variances in inhibition task performance can be explained mostly by 
a “common” EF factor that also explains a large proportion of performance variances in other EF tasks3,5,6. This 
suggests that there is likely no specific EF component for inhibition.

In regard to aging, studies have found that behavioral performances on tasks that recruit these component 
EFs decline with age. For instance, aging has been associated with decreased working memory capacity7,8, pro-
longed task-switching cost9,10, and decreased motor inhibition11,12. However, there are also individual differences 
in age-related declines in EF. Some older adults show mild cognitive decline, while others display more significant 
cognitive impairment than others of the same age13. These individual differences suggest that other factors medi-
ate the relationship between aging and EF and that these mediating factors may predict individual differences. 
One candidate mediating factor is brain structural properties. Elderly adults show increased variability in cortical 
thickness14–16, and cognitive decline emerges after the manifestation of a substantial pathology of the white mat-
ter (WM)17,18. Another candidate factor is the functional network organization. The ability of one brain region 
to transmit information to another distant brain region can be estimated by the integrity of structural connec-
tivity19, which itself can be estimated by fractional anisotropy (FA). The strength of functional connectivity can 
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be estimated by the correlation between signals recorded from different brain regions. Evidence has suggested 
that both structural connectivity and functional connectivity mediate age-related differences in EF. For example, 
functional connectivity between the putamen and occipitoparietal regions mediates age-related declines in Stroop 
task performance20, and the thickness of cortical regions and the averaged FA values of white matter regions 
mediate the relationship between age and EF21. A recent study also found that functional connectivity between 
sensorimotor regions mediates age-related differences in composite measures across digit-symbol coding, Stroop, 
and verbal fluency tasks22.

EF tasks are known to modulate frontal and parietal activities23–25. Specifically, studies that putatively test spe-
cific EFs, such as updating-specific EF26,27, shifting-specific EF28–32, and inhibitory-specific EF27,33,34, have consist-
ently reported increased frontal and/or parietal activities. This reliable relationship between EF and frontoparietal 
activities strongly suggests that frontoparietal properties may mediate age-related declines in EF. The findings 
from one of our earlier studies support this notion35. In this earlier study35, we examined the relationships among 
multimodal neuroimaging measures, age, and component EFs based on Miyake’s Unity and Diversity model. 
Specifically, we used a joint independent component analysis (jICA) to derive, across the whole brain, joined 
multimodal components that integrated information from gray matter (GM) volume, FA (a measure of struc-
tural connectivity), and amplitude of low-frequency fluctuation (a measure of the spontaneous neural activity 
in specific regions) in a given region. We then examined the relationships of these measures between age and 
EFs. The results showed significant age-related differences in all EF estimates (common EF, updating-specific EF, 
and shifting-specific EF). These age-related differences were associated with joined multimodal components that 
encompassed the frontal and parietal regions.

While our earlier study35 found significant correlations between frontoparietal properties and EF and between 
EF and age, we did not explicitly test for whether frontoparietal properties mediated age-related declines in EF. 
Furthermore, jICA cannot separate the specific contributions from GM volume, structural connectivity, and 
functional connectivity. We do not know if all multimodal imaging measures share the same mediation effect on 
age-related changes in EF or if each individual imaging property has differential mediating effects. As such, the 
current study aimed to address these unanswered questions from results reported in Yang and colleagues (2019)35, 
using mediation models to test if and which structural and network properties of the frontoparietal cortices 
mediate age-related changes in EF. In addition, although there are a few multimodal mediation studies examining 
the effects of age on tasks measuring EF36–38, to the best of our knowledge, none of these prior studies were based 
on Miyake’s EF model. For example, Hedden et al.21 incorporated multimodal imaging measures in a mediation 
model, but they probed only one aspect of EF, such as memory. Therefore, we sought to examine whether the 
aforementioned age-related declines in structural and functional brain changes are similarly dissociable depend-
ing upon the EF component process being tested.

In this study, we used the Unity and Diversity model to measure behavioral performances in three EF tasks 
(i.e., the task-switching paradigm, the 2-back task, and the stop-signal task) and derived common EF (general 
EF component incorporating inhibition, shifting, and updating), the shifting-specific EF (as measured by per-
formance in the task-switching paradigm), and the updating-specific EF (as measured by performance in the 
2-back task) components3,4,6,39. To validate the common EF component, the inhibition-specific EF component 
was also calculated to examine the association among EF components. We tested a mediation path model21,40,41 
that included age as the independent variable, EF measures as the dependent variables, and the following mul-
timodal neuroimaging measurements as mediators: structural property (GM volume), structural connectivity 
(WM integrity, as measured by FA), and functional network properties (as measured by graph-theoretic inter- 
and intra-network functional connectivity metrics; details are described in the Methods section). The mediation 
model enabled us to test whether the combined indirect effects of the total potential mediators controlled both 
collinearities among variables and mediation effects, meaning that any significant indirect effects are independ-
ent42. Furthermore, we were particularly interested in the specific indirect effects that the brain imaging measures 
had on EF components. Our goals were to determine which structural and network properties of the frontopari-
etal cortices mediate age-related differences in EFs. Specifically, we investigated whether age-related changes in 
structural and functional brain network properties in the frontoparietal cortices are similar across EF component 
processes or whether changes with aging are specific to the EF component process being tested.

Results
The relationship between age and behavioral results.  Task switching paradigm: switch cost.  The 
average switch cost was 78.69 ± 112.83 ms. We observed a significant correlation between switch cost and 
age (r = −0.20, p = 0.025). The mean accuracy rate for all repeat trials in the single blocks was 98.01 ± 1.52%; 
for repeat trials in the mixed blocks, it was 95.82 ± 2.32%, while for switch trials in the mixed blocks, it was 
92.75 ± 3.21%.

2-back task: d’.  The mean accuracy in the 2-back task was 80.71 ± 12.73%. The results of the n-back tasks are 
reported based on the signal detection theory. A significant correlation was observed between age and the 2-back 
d’ (r = 0.41; p = 3.00E-06), suggesting poorer 2-back task performance with increasing age.

Stop-signal task: Stop-signal reaction time (SSRT).  The mean stop inhibition rate (stop success rate) was 
53.38 ± 0.15%, and the mean SSRT was 241.28 ± 113.29 ms. SSRTs were significantly correlated with age (r = 0.37; 
p = 2.496E-05), suggesting a poorer stopping performance with increasing age. SSRTs were not correlated with 
the mean RT in the correct go trials (r = −0.09; go-trial RT: 658.61 ± 12.13 ms; mean accuracy rate: 90.39 ± 3.3%), 
which is consistent with the “horse-race” model43 that assumes process independence between go trials and stop 
trials.
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Executive function components based on Miyake et al. ’s (2000) model: Age association with common EF and spe-
cific (shifting and updating-specific) EF.  Based on Miyake et al. ’s (2000) model, we calculated one common and 
two specific EF components, that is, shifting and updating. The results indicated that these EF components are 
significantly correlated with age (common EF: r = 0.29, p = 1.242E-03; updating-specific EF: r = 0.32, p = 2.750E-
04; shifting-specific EF: r = −0.21, p = 1.934E-02) (see Fig. 1a-c). To validate the common EF component, the 
inhibition-specific EF component was also calculated and reported (see Fig. 1d). Correlation analysis among 
EF components found that the common EF component was significantly correlated with shifting-specific EF 
(r = 0.555, p < 0.0001), updating-specific EF (r = 0.46, p < 0.0001), and inhibition-specific EF (r = 0.559, 
p < 0.0001) components. There was neither a significant correlation between the updating-specific EF and the 
shifting-specific EF components (r = −0.28, p = 0.757) nor a correlation between the inhibition-specific EF and 
shifting-specific EF components (r = 0.006, p = 0.95). However, a significant correlation was found between the 
inhibition-specific EF and updating-specific EF components (r = −0.228, p = 0.011).

Age differences in brain measures across different modalities.  Age was significantly correlated with 
four brain measures in two modalities (GM volume, WM FA), as displayed in Fig. 2. There was no significant 
association between age and either PC or WMD scores within frontal and parietal lobules. All other correlations 
between age and brain measures were significant negative correlations (r range: −0.36 ~ −0.69), indicating that 
increased age was associated with lower values of WM FA and GM volumes.

Brain measures as mediators of age-cognition relationships.  We tested a parallel mediation model 
of structural and functional brain measures within the frontal and parietal regions mediating the relationship 
between age and the unity and diversity EF components of Miyake and Friedman. The results of the media-
tion analyses in terms of each EF component are summarized in Figs. 3–5. The results of the mediation analy-
ses showed no significant total indirect effect of the brain-mediation model on all age-related EF components. 
Specifically, the 95% bias-corrected confidence interval based on 5000 bootstrap samples showed that the total 
indirect effect did not reach significance with the common EF (r = 0.05, p = 0.50 [95% CI = −0.0889~0.1810]), 
shifting-specific EF (r = 0.07, p = 0.61 [95% CI = −0.1689~0.3354]), and updating-specific EF (r = 0.05, p = 0.60 
[95% CI = −0.1255~0.2361) components. Nonetheless, a significant specific indirect effect on the common 
EF component was found in GM volumes of the left (r = 0.41, p = 0.02 [95% CI = 0.1060~0.7988]) and right 
(r = −0.36, p = 0.04 [95% CI = −0.7787~ −0.0676]) frontal lobules.

Figure 1.  Scatterplots with lines of best fit (±CI) showing age (x-axis) against each of the common and specific 
components of executive function (y-axis): (a) updating-specific EF; (b) common EF; (c) shifting-specific EF; 
(d) inhibition-specific EF; r denotes pearson’s r value (with p value); CI = confidence interval; EF = executive 
function.
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Discussion
In this study, we aimed to determine which functional and structural brain properties within the frontal and 
parietal regions mediate age-related differences in common and specific components of EF. Given the substantial 
evidence that has implicated the frontoparietal cortices in EF23–25,35, we focused specifically on the properties 
of the frontoparietal cortices. We selected our EF tasks based on Miyake’s model, which distinguishes three EF 
components3,4,6,44,45: common EF, updating-specific EF, and shifting-specific EF. This study attempted to extend 
our recent study35 showing significant correlations among EF, the frontoparietal cortices, and age. Specifically, 
we sought to determine whether the structural and network properties of the frontoparietal cortices mediate 
age-related changes in EF and, further, to determine whether the mediation effect was selective for a specific EF 
component or whether it was a generalized pattern for all EF components.

Previous studies have reported that EF deteriorates with age46–48. Consistent with the multifaceted nature of 
EF, we found that all components of Miyake’s EF model exhibited age-related declines across the adult life span. 
Of all EF components, we found that only the common EF component was significantly mediated by imaging 

Figure 2.  Correlation between age and all brain measures. SLF = superior longitudinal fasciculus; F-P = fronto-
parietal lobules; L = left; R = right; PC = participation coefficient; WMD = within-module degree. Bonferroni 
correction sets the significance level of 0.00625 to correct for the false- discovery bias inherent in multiple-
comparison testing.

Figure 3.  Mediation model of age, brain measures, and common EF. Solid lines indicate significant paths 
(p < 0.05), and the dashed line indicates non-significant paths. Path values indicate standardized beta weights 
and p values. CI indicates the 5000 samples bootstrapped with 95% confidence intervals for the indirect 
and total effects. SLF = superior longitudinal fasciculus; L = left; R = right; F-P = fronto-parietal lobules; 
PC = participation coefficient; WMD = within-module degree.
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measures of GM volume in the frontal lobe of both hemispheres. Specifically, the common EF component was 
not only related to response inhibition, based on Miyake’s EF model3,6 but also represented a generalized mech-
anism that contributes to inhibition, updating and shifting EF. Common EF is interpreted as the ability to main-
tain task goals and use goal-related information to bias lower-level processing3,49 and is likely an underlying 
common and required process that supports general elements of EF components. Based on Miyake’s model, it 
is probable that the common EF components are intercorrelated among each other. Correlation results from 
our study also showed that the common EF component significantly correlated with other EF components (i.e., 
inhibition-specific, updating-specific, and shifting-specific), indicating that the common EF component supports 
shared abilities among EF processes. The correlation among EF components means that the components possibly 
share similar relationships that change at the same time but do not necessarily interact with the same sequential 
relationships50. Therefore, both variables interact with the same variable, the identify of which remains unknown 

Figure 5.  Mediation model of age, brain measures, and updating-specific EF. Solid lines indicate significant 
paths (p < 0.05), and the dashed line indicates non-significant paths. Path values indicate standardized beta 
weights and p values. CI indicates the 5000 samples bootstrapped with 95% confidence intervals for the indirect 
and total effects. SLF = superior longitudinal fasciculus; L = left; R = right; F-P = fronto-parietal lobules; 
PC = participation coefficient; WMD = within-module degree.

Figure 4.  Mediation model of age, brain measures, and shifting-specific EF. Solid lines indicate significant 
paths (p < 0.05), and the dashed line indicates non-significant paths. Path values indicate standardized beta 
weights and p values. CI indicates the 5000 samples bootstrapped with 95% confidence intervals for the indirect 
and total effects. SLF = superior longitudinal fasciculus; L = left; R = right; F-P = fronto-parietal lobules; 
PC = participation coefficient; WMD = within-module degree.
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based on correlation analyses. The inclusion of a mediator necessarily increased the minimum distance between 
both variables, enabling the mediated effects to be investigated as a directionality relationship between variables51. 
The findings from our study, with the application of mediation, suggested that an age-related difference in the 
general elements of EF (i.e., a common EF component) may be influenced by GM atrophy, particularly the density 
of cell bodies in both hemispheres of the frontal region.

The associations between GM imaging measures and age-related cognitive performance changes have been 
evident in previous studies with large sample sizes52–55, possibly indicating the early sign of age-related decline. 
For example, a recent study55 found that an age-related difference in EF was associated with GM volume but not 
thickness. These findings found GM volume loss in widespread brain regions was associated with diverse tasks 
that measure EF performance52,54,55. These observations, coupled with our findings, indicate that associations 
among EF components and the frontoparietal cortices may exist. Specifically, frontal GM volume reductions play 
a role in mediating changes in age-related general elements of EF. These putative mechanisms also clarify our 
earlier work35, which found that joint components in the frontal regions contributed to the age-related common 
cognitive control construct.

Unlike our earlier work35 using a whole-brain data-driven approach that fused multimodal brain imaging 
measures to search for potential multimodal markers of age-associated EF component decline, this study exam-
ined the role of structural and network metrics in frontoparietal cortices that mediate age-associated changes in 
EF components. As previous technical guidelines have suggested56–59, mediation is better used to test whether a 
hypothesis explains the indirect effect of an independent variable on a dependent variable. Moreover, the investi-
gation of multimodal brain networks in the frontoparietal cortices derived from brain imaging data allows us to 
investigate the topological organization of the human brain60. Nonetheless, the results revealed no specific indi-
rect effect of WM integrity and the functional network properties (i.e., internetwork and intranetwork connection 
strength) of the frontoparietal cortices, suggesting that differences in age-associated EF components may not be 
influenced by age through WM integrity and the functional network properties of the frontoparietal cortices. 
Furthermore, there were no significant mediation effects of multimodal imaging measures in the frontoparietal 
cortices in terms of the shifting and updating-specific EF components, reflecting the diversity in EF component 
development in the adulthood lifespan. Based on the Unity and Diversity model introduced by Miyake et al. 
(2000), these EF components (i.e., shifting and updating-specific EF) were distinct from the common EF compo-
nent. Please note, although we did not observe that WM integrity and functional network properties mediated 
age-related decline in common EF, this does not suggest that they did not play any role. Here, we can only infer 
that GM played a more critical role than the other two imaging properties based on the results of mediation mod-
els, and this finding also adds additional information to our earlier findings.

In summary, our study indicates that GM imaging measures of frontal lobules mediate age-related differences 
in common EF but not in shifting-specific and updating-specific EF. Furthermore, the left frontal GM volume 
explains an age-related difference in the common EF component. Our study successfully detected the relation-
ships among three different imaging metrics and the multifaceted components of EF. Our approach can be used 
to explore other multivariate relationships between brain imaging measures and cognition. The findings from 
this study suggest that changes in GM volume may be attributed to age-related EF decline, as changes in GM 
volume reflect the loss of cell density. EF comprises diverse cognitive skills that are crucial for daily functioning. 
Our findings go beyond those of previous investigations of age-related cognitive decline. We demonstrate that the 
inclusion of different brain imaging measures may help to reveal—years before the symptoms appear—markers 
for the early detection and identification of those who are at risk of age-related cognitive decline. Moreover, future 
studies can utilize multimodal brain imaging measures that may offer more accuracy in terms of predicting an 
individual’s cognitive performance.

Methods
Participants.  We recruited 183 participants from Tainan city, Taiwan, by using online advertisements and 
bulletin boards. Participants were the same as those reported in our earlier work35. Before formal testing, all par-
ticipants completed cognitive assessments, including the Montreal Cognitive Assessment (MoCA) to screen for 
cognitive impairment61 and the Beck Depression Inventory-II (BDI-II62) to screen for depression. Participants 
were excluded from subsequent analysis if their MoCA scores were ≤25 (n = 30) or if their BDI-II scores were 
≥14 (n = 7). To mitigate potential confounds, we added gender, education, and BDI-II scores as covariate vari-
ables for the following analysis. In addition, sixteen participants were excluded due to MRI technical problems 
(e.g., head-motion-induced artifacts) or failure to complete the entire experiment (e.g., feeling uncomfortable 

age group 
(year) n

Female (% of 
total sample)

MoCA 
Mean(SD)

Education 
Mean(SD)

BDI_II 
Mean(SD) age Mean(SD)

20–30 34 41.18% 28.59(±0.96) 16.26(±1.29) 4.97(±3.66) 24.27(±2.93)

30.01–40 15 40.00% 28.07(±1.33) 15.93(±1.79) 6.00(±4.57) 33.72(±3.09)

40.01–50 15 46.67% 27.93(±1.10) 13.89(±2.56) 5.73(±3.51) 44.85(±2.95)

50.01–60 28 64.29% 27.57(±1.23) 14.61(±2.57) 4.82(±4.11) 54.84(±3.15)

60.01–70 24 58.33% 27.79(±1.35) 14.00(±2.47) 4.29(±4.31) 65.08(±2.37)

70.01–80 10 20.00% 27.10(±0.99) 14.20(±2.53) 3.10(±3.11) 73.53(±2.61)

Table 1.  Demographic information and behavioral assessment scores of 126 participants. Note: SD = standard 
deviation; MoCA = Montreal Cognitive Assessment; BDI-II = Beck Depression Inventory II.
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during the long period of scanning and asking to leave the scanning room). After the exclusion of those who 
failed to meet the criteria, the remaining 126 right-handed participants reported no prior history of mental dis-
orders or neurological disease. The mean age (± standard deviation, SD) of the 126 participants (74 females) was 
46.32 ± 17.40 years (range 20–78). The mean BDI-II score was 5.14 ± 0.32. See Table 1 for participants’ age range 
distribution and demographic information. The experimental design procedure is shown in Fig. 6.

The research protocol followed the Research Ethics rules of research of National Cheng Kung University 
under the governance framework of the Human Research Ethics Committee and with respect to the Declaration 
of Helsinki to protect the participants’ right to codetermination. Participants provided their informed consent 
before joining the study and were awarded 1,500 NTD after completing the study.

Cognitive tasks.  Task-switching paradigm.  Task-switching abilities were measured by a paradigm modified 
from Karayanidis et al. ’s study63. The procedure was identical to that of our earlier work (for details, refer to Yang 
et al.35). The visual stimuli were displayed using Presentation software on a 17-inch monitor with a 1024 × 768 
resolution. There were two cuing conditions, namely, informative and noninformative. The informative cuing 
condition (i.e., informed task conditions contained two color cues that informed of the forthcoming task; hot 
(e.g., orange or red) and cold (e.g., green or blue) were associated with a letter or number classification task, 
respectively). To reduce the effects of repeatedly presenting physically identical cues, these color cues were not 
repeated in successive trials. The target stimuli were presented in white, whereas the background was presented 
in black. For the noninformative cuing conditions (i.e., noninformed task conditions), the cues were presented in 
gray (the background was in black), which provided no inforrmation regarding the forthcoming task type. The 
target stimuli were presented in either hot (red or orange) or cold (blue or green) colors (similar to the informa-
tive cue colors). In this study, we restricted the analyses to informative cue conditions so that we could focus on 
pure switch cost effects.

Specifically, the stimuli were composed of an incongruently mapped bivalent Chinese letter–Arabic number 
pair or a neutral pair. Chinese letters were composed of eight Chinese letters from the Ten Celestial Stem system 
(i.e., Tiangan). Tiangan is a Chinese system of ordinals, which is the literal meaning of the Chinese counting 
system that is similar to the English alphabet. The participants were instructed to respond using either the left 
or right index finger mapped to first-half/second-half or odd/even for Chinese-letter and Arabic-number tasks, 
respectively. Both cue-task mapping and hand-task mapping conditions were counterbalanced. The probability 
of a switch between conditions was set at 50%, with no more than four mixed-repeat or switch trials in succession 
during mixed-task blocks.

Each participant sat in a chair and stared at the center of a computer screen that had been placed at a distance 
of 100 cm. A cue and a target were presented in each trial. The cue stimuli were presented for 600 ms, followed 
by a cue-target interval of 1000 ms. The target was presented either for 5000 ms or until a response was given. 
The interval between a given response to the next target was 1600 ms. The participants were told to respond by 
pressing the button as quickly and as accurately as possible. Each error was responded to with immediate auditory 
feedback, and the next trial was postponed by 1000 ms. Performance measures, including mean reaction time 
(RT) and the error rate, were reported after each block of trials was completed. The participants first practiced six 
types of blocks: (1) one single-task block of 16 trials with number stimuli; (2) one single-task block consisting of 
16 trials with Chinese letters; (3) two blocks of 32 trials with a mixed informed task per block; and (4) two mixed 
blocks of 32 trials with noninformed task per block. The experiment consisted of 12 blocks: (1) two single-task 
(Arabic number’s odd/even task) blocks; (2) two single-task (Chinese-letter’s first-half/second-half task) blocks; 

Figure 6.  Schematic of experimental procedure and pipeline analysis. (a) Study design for performing 
experiments. (b) Pipeline analysis for brain imaging measures. (c) Pipeline analysis for mediation model.

https://doi.org/10.1038/s41598-020-66083-w


8Scientific Reports |         (2020) 10:9066  | https://doi.org/10.1038/s41598-020-66083-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

(3) four mixed informed task blocks; and (4) four mixed noninformed task blocks. Each block consisted of 70 
trials. The entire experiment lasted for 30 to 40 minutes depending on individual response differences. We calcu-
lated the switch cost by subtracting the average RT of the repeat trials in the mixed-task blocks from the average 
RT of the switch trials in the mixed-task blocks64.

2-back task.  The participants were asked to complete a 2-back working memory task from Jaeggi et al.’s study65. 
The procedure was identical to that from our earlier work (for details, refer to Yang et al.35). In this task, the stim-
uli were presented within a 3-by-3 grid in each trial. One of the grid squares was randomly assigned to be filled 
with blue. The grid square with blue appeared in a random position within the 3-by-3 grid. For the 2-back test, 
participants were instructed to memorize the position of the blue grid square shown in the previous two trials 
and to compare it to the position of the blue grid square in the current trial. If the blue grid square has appeared 
in the same location, participants pressed the “F” button using their left index finger. If the blue grid square has 
appeared in a different location, participants pressed the “J” button using their right index finger. The grid stim-
ulus was presented for 500 ms and was followed by an interstimulus interval (ISI) for 2000 ms. The participants 
were asked to respond before the next trial. The participants completed one practice block with feedback and then 
completed three formal blocks (21 trials per block). The entire experiment lasted for 30 to 40 minutes.

We calculated performance sensitivity (d’) as an index of 2-back task performance66, which was based on the 
hit rate (H) and false-alarm (F) rate, using the formula d’ = Z(H) − Z(F) (Z denotes the z score of the normal 
distribution.). This sensitivity index, d’, distinguished better performance from poorer performance by discrim-
inating targets from nontargets during the performance of the task. To better delineate the relationship between 
age and brain structure/function, we transformed d’ into negative values to suggest that a higher d’ value (i.e., 
less negative) would indicate worse performance. Thus, behavioral performance showed similar trends to ease 
interpretation.

Stop-signal task.  The stop-signal task was a modified version of Logan and Cowan’s paradigm67. The procedure 
was identical to that from our earlier work (for details, refer to Yang et al.35). The participants were asked to stare 
at the visual stimulus presented on the display screen and respond to the presented target “O” or “X” by using 
their left or right index fingers to press either the “z” or “/” button, respectively. The background of the screen was 
white, while the target stimulus was presented in black. The target stimulus “O” or “X” (2 cm in size and at a visual 
angle of 0.64°) was displayed in the middle of the screen for 100 ms. The participants were told to react to the 
stimulus as quickly and as accurately as possible. An auditory stimulus (i.e., a “beep” sound of 968 Hz) lasting for 
100 ms could be delivered during the task and served as a “stop” signal. All participants were instructed to ignore 
this sound in the first practice session so that they could familiarize themselves with the process of responding to 
the stimuli as quickly and accurately as possible. During the second practice session, the participants were told 
to immediately cease their intended action when they heard the “beep” sound (auditory stop signal). During the 
practice session, the auditory stop signal was delivered at a frequency of 500 Hz for 300 ms after the onset of the 
presented stimulus. Importantly, the participants were informed to not hold their responses while they waited for 
the auditory stop signal. The formal session, which started after the practice session, comprised five blocks of 140 
trials consisting of 40 stop trials and 100 go trials. We varied the stop-signal delay (SSD) according to participant 
responses during the stop trials. In each stop trial, the SSD was randomly chosen from one of two interleaved 
staircases, each starting with a value of 150 or 350 ms. If participants successfully withheld their motor response, 
then the SSD of the next stop trial would increase by 50 ms. Conversely, if participants did not withheld their 
response, the SSD would decrease by 50 ms in the next stop trial. The SSD ranged from 0 to 800 ms. The purpose 
of the staircase procedure was to ensure that the successful stopping rate was maintained at at least 50% of all 
stop trials. The interstimulus interval (ISI) ranged from 1300 to 4800 ms. The total duration for completing this 
task was 30 minutes. The stop-signal reaction time (SSRT) was calculated by subtracting the median SSD from 
the median RT of the go trials43. The argument could also be made to employ other commonly used methods 
such as the integration method. However, the integration method assumes that SSRT is a constant, which may 
be more susceptible to violations of the assumptions of the independent horse-race model than other estimation 
methods68,69.

Computing common and specific executive function components.  Based on Miyake and 
Friedman’s (2012) procedures, we computed the Z value for each task performance measure (i.e., updating [mon-
itoring and changing working memory content], shifting [flexible changes between task sets or goals], and inhi-
bition [overriding withholding habitual or prepotent responses]) of each participant. To validate the common 
EF component, the inhibition-specific EF component was also calculated in a manner similar to other specific 
EF components (i.e., updating- and shifting-specific components) by regressing out the SSRT against switching 
cost and 2-back d’. Correlation analyses among the EF-specific components was also conducted. These three z 
scores were averaged for each participant’s task performances (i.e., stop-signal task, task-switching paradigm, 
and 2-back task) to create a composite score reflecting a common (i.e., unity) executive function component 
(common EF component) and two specific executive function components (i.e., updating and shifting-specific 
EF components). Accordingly, the function of inhibition was then seen as “common” EF and has been shown to 
influence performance on all three EF tasks3,6. For each specific (i.e., diversity) EF component, we regressed out 
the performance of the targeted task against the other two tasks’ performance, thereby yielding a specific residual. 
Specifically, for a shifting-specific EF, we regressed out the switching cost against SSRT and 2-back d’, while for the 
updating-specific EF, we regressed out the 2-back d’ against the switch cost and SSRT.
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9Scientific Reports |         (2020) 10:9066  | https://doi.org/10.1038/s41598-020-66083-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

Image acquisition and processing.  The image acquisition parameters were identical to those in our ear-
lier work (for details, refer to Yang et al.35). A GE MR750 3 T scanner (GE Healthcare, Waukesha, WI, USA) 
installed in the Mind Research and Imaging Center at National Cheng Kung University (NCKU) was used to 
acquire all brain imaging data. High-spatial-resolution T1-weighted images were scanned with a fast spoiled gra-
dient echo (fast SPGR) sequence (166 axial slices; repetition time (TR): 7.6 ms; echo time (TE): 3.3 ms; flip angle: 
12°; field of view (FOV): 22.4 × 22.4 cm2; matrices: 224 × 224; slice thickness: 1 mm). The entire scanning time 
(to completion) lasted 218 seconds.

We scanned the resting-state functional images using a gradient-echo planar imaging (EPI) pulse sequence 
(TR/TE/flip angle, 2000 ms/30 ms/77°; matrices, 64 × 64; FOV, 22 × 22 cm2; slice thickness, 4 mm; voxel size, 
3.4375 × 3.4375 × 4 mm). The total scan time was 490 seconds. We discarded the first five dummy scans to miti-
gate T1 equilibrium effects. During the session involving resting-state image scanning, we asked the participants 
to stay awake with their eyes open and to fix their gaze on the white cross sign on the screen. The entire scanning 
session lasted for 8 minutes. This procedure reflects recent evidence70 showing that eyes open and fixated produce 
more reliable results for controlling experimental variability across participants.

Diffusion tensor imaging (DTI) was carried out using a spin-echo echo planar sequence (TR/
TE = 5500 ms/62~64 ms, 50 directions with b = 1000 s/mm2, 100 × 100 matrices, slice thickness = 2.5 mm, voxel 
size = 2.5 × 2.5 × 2.5 mm, number of slices = 50, FOV = 25 cm, NEX = 3). The total scan time was 924 sec-
onds. A reversed-phaseencoding DTI (TR/TE = 5500 ms/62~64 ms, 6 directions with b = 1000 s/mm2, 100 × 
100 matrices, slice thickness = 2.5 mm, voxel size = 2.5 × 2.5 × 2.5 mm, number of slices = 50, FOV = 25 cm, 
NEX = 3) was also acquired for top-up correction in the DTI preprocessing. The total scan time was 198 seconds. 
The acquisition parameters for the reversed-phase-encoding DTI were identical to the DTI, with the only differ-
ence being the number of directions as six. The reason for choosing fewer numbers of reversed-phase-encoded 
directions was to avoid motion artifacts induced by participant discomfort resulting from long imaging times in 
the elderly participants.

DTI processing.  We used the FMRIB Software Library (FSL v5.0.9; www.fmrib.ox.ac.uk/fsl)71 to process 
all DTI data. The preprocessing steps were identical to those of earlier work (for details, refer to Yang et al.35).  
First, we used the dcm2nii tool implemented in MRIcron (https://www.nitrc.org/projects/mricron/) to con-
vert diffusion-weighted images from DICOM to NIFTI format. We used TOPUP71,72 and EDDY73 to reduce 
motion-related artifacts caused by susceptibility-induced distortions, eddy currents, and head movements. A 
single image without diffusion weighting (b0; b value = 0 s/mm2) was extracted from the concatenated data, and 
nonbrain tissue was removed using the FMRIB brain extraction tool (BET)74 to create a brain mask used for sub-
sequent analyses. To derive the FA measure, DTIFIT75 was applied to fit a tensor model at each voxel of the data71.

To investigate the integrity of WM tracts, the tract-based spatial statistics (TBSS) implemented in FSL was 
applied76. FA images were slightly eroded, and end slices were zeroed to remove likely outliers from the diffusion 
tensor fitting. The images were then nonlinearly aligned (i.e., tbss_2_reg in FSL) to each other, and the most rep-
resentative FA image was chosen. This target image was subsequently affine-transformed to 1-mm MNI space. FA 
images were transformed to 1-mm MNI space by combining nonlinear and affine registration. A skeletonization 
procedure was then performed on the group-mean FA image. The result was thresholded at FA > 0.2 to identify 
areas that most likely belonged to WM tracts.

Fiber tract processing.  After whole-brain TBSS, binary masks based on the probabilistic Johns Hopkins 
University (JHU) white-matter tractography atlas in FSL77,78 were created with a probability threshold of 5%. This 
tractography atlas allowed us to define white matter tracts and perform quantifications. To investigate the specific 
tracts within the frontal and parietal cortices, we adopted the atlas-based segmentation strategy. The superior 
longitudinal fasciculus (SLF) white matter tract was selected in each hemisphere defined by a previous study79,80. 
The underlying anatomical connectivity between the frontal and parietal cortices is thought to be mediated by 
the SLF, an associative white matter tract81,82. The average values of FA were computed for this SLF tract for 
each participant. Additional probabilistic tractography analysis was also conducted to derive FA values to ensure 
the validity of representative results of SLF tracts, and details are reported in Supplementary Methods S1 and 
Supplementary Tables S1–S4.

GM volumetry.  Regional GM volumes were estimated by FreeSurfer 5.3 (http://surfer.nmr.mgh.harvard.
edu/)83 with an automated surface-reconstruction scheme described in previous well-established studies84–87. 
The recon-all flag -3T, a command implemented in FreeSurfer with an N3 bias field correction parameter, was 
deemed to be more appropriate for 3 T MRI88. Regions of interest (ROIs) were extracted using neuroanatomical 
labels in the Desikan-Killiany Atlas89 (https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation) to map 
on a cortical surface model. GM volumes in each ROI of FreeSurfer’s atlas were extracted from output aseg.stats 
and aparc.stats files.

GM regions of interest, based on our initial hypothesis, were selected from the frontal lobe collapsed over the 
right and left hemispheres as defined by in the Desikan-Killiany Atlas89, which included the frontal pole (FPol), 
superior frontal (supF), rostral middle frontal (roMF), caudal middle frontal (cauMF), lateral orbital frontal 
(latOF), pars orbitalis (paORB), pars triangularis (paTriG), pars opercularis (paOPC), caudal anterior cingulate 
cortex (dACC), medial orbitofrontal (medOF) and rostral anterior cingulate cortex (rACC)90,91. The GM regions 
of interest in the parietal lobe spanned the right and left hemispheres and included the superior parietal (supP), 
inferior parietal lobe (IPL), postcentral gyrus (PoG), supramarginal gyrus (SMg), precuneus (Pc), posterior cin-
gulate cortex (PCC), and isthmus cingulate cortex (ICC)15,92,93.
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Functional resting-state MRI preprocessing.  In this study, functional images were preprocessed using 
CONN toolbox 18a (www.nitrc.org/projects/conn) and SPM 8 (http://www.fil.ion.ucl.ac.uk/spm) implemented 
in MATLAB (MathWorks, Inc., Natick, MA, USA). We also employed a recent preprocessing protocol94. The 
specific preprocessing steps were as follows: nuisance covariates including movement parameters (six parameters 
rigid body estimates) and averaged WM and CSF signals were regressed out after slice timing and motion rea-
lignment procedures. T1 images were first coregistered to the mean EPI image and then transformed to the MNI 
template. These coregistration parameters were applied to every functional volume. Additional frame-to-frame 
displacements at the subject level detected by “head motion censoring” (e.g., global-signal z-value threshold> 
5 or the censoring of volumes whose framewise displacement (FD) power> 0.5 mm and one volume after the 
motion corrupted volume) were included as a covariate at the preprocessing level95. Then, a bandpass filter 
(0.008–0.1 Hz) was simultaneously applied to nuisance covariates and fMRI data96. Last, the functional data were 
spatially smoothed with an 8-mm Gaussian kernel.

Functional connectivity (FC) analysis.  The identification of large-scale functional networks was based 
on a Schäfer atlas97 that contains a cortical parcellation of 400 nodes of interest that are categorized into 17 func-
tional networks97,98. This atlas has been shown to be more homogeneous97 than 4 previously published parcella-
tions99–104. We utilized this cortical area parcellation (to be referred to as nodes) and selected only those nodes 
within the frontal and parietal lobules for the graph-theoretic analysis. Specifically, nodes of interest were defined 
using the anatomical mask for the GM analysis described in the GM volumetry section to select ROIs and those 
used for structural connectivity analysis. Graph-theoretic measures were further used to characterize each node’s 
topological properties105. Graph-theoretic metrics provide quantitative measures of network properties106–108, 
which allowed us to directly test the relationship between brain network properties and EFs. For each individ-
ual, we calculated two graph-theoretic brain network metrics related to the functional role of individual nodes 
within the frontal and parietal lobules. Specifically, we computed the participation coefficient (PC), a measure 
of internetwork connections and a within-module degree z-score (WMD), which is a measure of intranetwork 
connections109. PC and WMD were used to define different types of nodes that are important for network com-
munication. PC is a network metric that indicates the distribution of a node’s connections across modules in a 
brain functional network, whereas WMD quantifies the degree to which a node is connected with other nodes 
within the same module. For example, if a node has a high WMD, then it can be considered a provincial hub; 
if it has a high PC, it is classified as a connector hub. Detailed methods of calculation and definition to esti-
mate these components can be found in previous well-established studies110,111. PC and WMD were averaged 
across frontal-parietal nodes before being entered into the model. We only included nodes within the frontal and 

Figure 7.  Eight structural and functional brain measures within frontal-parietal lobules. Left column indicates 
2 white matter tracts, including SLF (L(left)/R(right), selected from diffusion tensor imaging maps (JHU white-
matter tractography atlas) provided in the FMRIB Software Library (FSL); Middle column indicates the gray 
matter regions of the frontal and parietal lobe based on FreeSurfer-defined regions (Desikan-Killiany atlas); 
Right column indicates nodes for the functional connectivity networks of two matrices (i.e. participation 
coefficient, (PC) and within-module degree (WMD)), FPN, derived from the Yeo et al.’s (2011) network 
partitioning scheme. SLF = superior longitudinal fasciculus; F-P = fronto-parietal lobules, FPol = frontal 
pole, supF = superior frontal, roMF = rostral middle frontal, cauMF = caudal middle frontal, latOF = lateral 
orbital frontal, paORB = pars orbitalis, paTriG pars = triangularis, paOPC = pars opercularis, dACC = caudal 
anterior cingulate cortex, medOF = medial orbitofrontal, and rACC = rostral anterior cingulate cortex; supP = 
the superior parietal, IPL = inferior parietal lobe, SMg = supramarginal gyrus, PoG = postcentral gyrus, Pc = 
precuneus, posterior cingulate (pCC), isthmuscingulate.
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parietal lobules in our mediation model (see Supplementary Table S5 for coordinates of each node of interest) to 
examine the mediating role of these brain regions in age-related differences in EF.

Statistical analysis.  This study tested the potential mediating effects of structural and functional brain 
measures within the frontal and parietal lobules on the relationship between age and Miyake and Friedman’s unity 
versus diversity of higher-level EF (i.e., common EF, updating-specific EF, and shifting-specific EF). Correlation 
and regression analyses were performed using SPSS v22 (IBM, Armonk, New York). Structural and functional 
brain measures within the frontal and parietal lobules included GM regional volumes, WM tract FAs, and intra/
internetwork connection strength as calculated with PC and WMD scores. The procedures of the statistical anal-
yses were as follows: (1) we first standardized all the variables (including independent, mediating, and depend-
ent variables) into z scores using the data transformation function in SPSS and then examined the relationship 
between age and each EF score by conducting Pearson correlation and linear regression analyses in SPSS; (2) the 
correlation analyses were first performed among EF components, and then a correlation between age and each of 
the brain measures within frontal and parietal lobules was performed; and (3) mediation effects of brain imaging 
measures on the relationship between age (as an independent variable) and each of the three EF components were 
then examined, which resulted in a total of 3 mediation models. In the correlation analysis and each mediation 
model, gender, education level, and BDI-II scores for each individual were included as covariate variables to 
mitigate potential confounds. For the mediation analysis, we used Mplus version 8 112 to build a mediation path 
model without any latent variables. This estimated both the direct and indirect effects on all three EF components 
(see Fig. 6c). The model was estimated using maximum likelihood estimation and bootstrapping methods58. The 
significance of indirect effects was assessed with a 95% confidence interval. To estimate confidence intervals, 
we used a bias-corrected method with the percentile bootstrap estimation approach, which ran 5000 bootstrap 
iterations that were implemented59. Adopting a two-tailed p < 0.05, we rejected the null hypothesis if the interval 
did not include zero. In particular, the rationale of the bootstrapping approach over other traditional approaches 
of mediation analysis is its improved sensitivity for estimating indirect effects113. To interpret the results, if the 
CI included zero, we concluded that the indirect effect was not significant because zero suggests no relationship 
between the mediator and dependent variable. Conversely, the CIs that did not include zero suggested that there 
was a significant relationship40. Standardized coefficients are reported after the data were transformed to z-scores 
and before entry into the model. In each of the 3 mediation analyses, all 8 brain measures (Fig. 7) were simulta-
neously entered into each of the models.

Ethical statement.  All of the experimental methods in this study were carried out in accordance with the 
Declaration of Helsinki and the rule of research in the University, and were approved by the Human Research 
Ethics Committee of the National Cheng Kung University, Tainan, Taiwan to protect the participants’ right. All 
participants signed the informed consent form before participating in the experiments.
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