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Real-time Inference and Detection 
of Disruptive EEG Networks for 
Epileptic Seizures
Walter Bomela1, Shuo Wang2, Chun-An Chou3 ✉ & Jr-Shin Li1 ✉

Recent studies in brain science and neurological medicine paid a particular attention to develop 
machine learning-based techniques for the detection and prediction of epileptic seizures with 
electroencephalogram (EEG). As a noninvasive monitoring method to record brain electrical activities, 
EEG has been widely used for capturing the underlying dynamics of disruptive neuronal responses 
across the brain in real-time to provide clinical guidance in support of epileptic seizure treatments in 
practice. In this study, we introduce a novel dynamic learning method that first infers a time-varying 
network constituted by multivariate EEG signals, which represents the overall dynamics of the brain 
network, and subsequently quantifies its topological property using graph theory. We demonstrate 
the efficacy of our learning method to detect relatively strong synchronization (characterized 
by the algebraic connectivity metric) caused by abnormal neuronal firing during a seizure onset. 
The computational results for a realistic scalp EEG database show a detection rate of 93.6% and a 
false positive rate of 0.16 per hour (FP/h); furthermore, our method observes potential pre-seizure 
phenomena in some cases.

The human brain is undoubtedly one of the most complex dynamic systems known to mankind, which consists 
of billions of interconnected neurons1. The connectivity patterns across different brain regions could convey 
evidences for advancing and supporting the understanding of cognitive and behavioral functions2–5. In the past 
decades, many research studies have been devoted to discovering the process and mechanisms that govern the 
communication between neurons; in particular, how and why neuronal networks are formed for various neuro-
logical disorders. Epilepsy is one of the most common central nervous system disorders, following Alzheimer’s 
disease and stroke. According to recent statistics6, nearly 4% of people across different ages are diagnosed with 
epilepsy and suffer from epileptic seizure occurrence and recurrence during their lifetimes. Epileptic seizures 
develop with a sudden abnormal surge of electrical activities of pathological, synchronous neuronal firing in 
all brain regions or some parts. Seizures can be controlled with medications and/or invasive surgeries in 70% of 
diagnosed patients7. However, prompt detection or even prediction of seizure onsets remains a critical and chal-
lenging task to date because of its high variation patterns of occurrence and manifestation from one individual 
to another. To this end, a lot of efforts have been given to developing subject-specific, data-driven methodologies 
aiming at ultimately improving individualized seizure onset detection and prediction8. Electroencephalography 
(EEG) recordings in high temporal resolution, regardless of arguable evidence of poor spatial resolution and low 
signal-to-noise ratio (SNR), are useful amongst neuroimaging techniques allowing clinicians to collect and mon-
itor global neuronal activity information in the brain of epileptic patients.

Epileptic EEG signals are in the form of multiple non-linear, non-stationary time series and represent the 
underlying dynamics of the brain system and interactions among neurons. To monitor and detect abnormal and 
excessive firing during seizure onsets, there have been a variety of data analysis techniques proposed for extract-
ing informative biomarkers or connectivity patterns from EEG signals, including linear time-frequency analysis 
(e.g., Fourier transformation, wavelet transformation)9–11 and non-linear methods (e.g., Lyapunov exponents 
and entropy)12–14. Moreover, for seizure detection or prediction, in practice, the above-mentioned analysis meth-
ods are usually developed and integrated within a machine learning framework7,15,16. In many of these previous 
studies, EEG signals were processed to extract features (or biomarkers) in individual channels, and predictive 
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models were then developed and trained with a large number of extracted features using state-of-the-art machine 
learning techniques (e.g., support vector machine, logistic regression, neural nets). The results generated by 
these methods promised a significant improvement of prediction or detection accuracy for various benchmark 
databases17–19.

However, many methods in the literature did not account for synchronous neuronal interactions across the 
brain20, and also were unable to characterize the dynamic nature of non-linearity and non-stationarity prop-
erly21. To this end, nonlinear dynamic learning approaches were proposed to present the epileptic brain as a 
dynamic network and investigate its spatiotemporal synchronization properties12,22,23. The underlying dynamics 
of global or local epilepsy can be assessed through the change of spatiotemporal synchronization (or dynamic 
network) patterns24,25. Some studies have shown great promises in seizure onset detection and prediction with 
network-based features, e.g., degree, shortest path, clustering coefficients, and the algebraic connectivity (Fiedler 
eigenvalue26), characterizing the network property27–29.

Still, accurately capturing the time-varying dynamics of interconnected neurons (recorded by EEG signals) 
remains a challenging question due to the difficulty to infer networks from low signal-to-noise ratio data in 
a more effective way. Pioneering work on automatic recognition of epileptic seizures has demonstrated that it 
is possible to detect seizures by decomposing the EEG signals into elementary waves and analyzing rhythmic 
activities in the frequency band 3 to 20Hz30. Subsequently, a variety of graph-theoretic based approaches were 
proposed to construct the epileptic brain network using different techniques. For instance, some researchers com-
puted the correlation31,32 between EEG signals pair-wise and determined the existence of connectivity between 
channels by thresholding the coefficient values32,33, while others used a phase lag index which was computed 
using the angles obtained from the Hilbert transform of the EEG signals33.

In this study, we propose a new computational method that processes EEG signals in real-time, which in turn 
can be used for automated seizure control treatments in clinical practice. We utilize a technique for inferring the 
connectivity of networks (ICON)34, which reveals synchronization patterns during seizure onsets by estimating 
the coupling functions between EEG channels. The seizure onset is detected on a basis of the synchronization 
property of the recovered time-varying network inferred from multi-channel EEG data. To accelerate the seizure 
detection algorithm, we introduce a more computationally efficient approach derived from the ICON method 
and infer the time-varying network by computing the power of the coupling functions using Fourier transform 
(FT) applied on short epochs (0.25–1 second) of multi-channel EEG data (referred as FT method). Several meth-
ods in the literature have used the discrete wavelet transform (DWT)35,36 in place of the Fourier transform that 
is considered to suffer from large noise sensitivity, but by combining the power and phase spectrum to infer the 
epileptic brain network, our approach significantly improves the robustness of the detection algorithm that effec-
tively rejects artifacts. Furthermore, machine learning (ML) techniques are often used for seizure detection, and 
in the literature, various features are used as input to the ML model, e.g., the energy in EEG signals computed 
using wavelet transforms17. However, the performance of the ML models depends in part on the goodness of the 
feature(s) used. It is then expected that our graph-theoretic approach, which offers an excellent noise reject ratio, 
will improve the performance of seizure detectors.

Results
It is believed that epileptic seizures are characterized by widespread synchronous firing of neurons, and this syn-
chronization often appears in a certain frequency band33,37, e.g., theta band (4–8 Hz)38,39. Hence, monitoring the 
brain electrical activity using EEG and analyzing its spectral information in the frequency domain can reveal sei-
zure occurrences. However, EEG signals are often corrupted by noise, artifacts and/or brain activities (see Fig. 1a) 
that can be confused with seizure activities, and this can render accurate detection of seizure onsets very difficult. 
It is common practice to use either low-pass or band-pass filters to remove unwanted frequency components from 
EEG signals (see the right panel of Fig. 1a for a ten-second segment of non-seizure followed by seizure activities, 
respectively) before proceeding to its analysis40–42. The FT method presented herein, however, eliminates the need 
to use any such pre-processing of data.

FT method.  The performance of the proposed FT method was evaluated on the pediatric scalp EEG data 
from the CHB-MIT database available on the PhysioNet website43. The database contains 24 cases collected from 
23 subjects. Note that in this paper we refer to each case by a patient number (from #1 to #24). We employed a 
graph-theoretic approach to fuse the information contained in the 23 EEG channels. This resulted in a better 
noise and artifacts rejection, even though short-time Fourier transform (STFT) was used (see Fig. 1). Indeed, one 
can see from Fig. 1b that there are significant peaks in the power spectrum in the time interval of 0 to 700 seconds, 
however, these power surges do not correspond to any seizure activity. Furthermore, from the second-smallest 
eigenvalue, λ2, of the Laplacian matrix of the inferred network, one can clearly distinguish the noise and artifacts 
from seizure activities (Fig. 1d). The Fiedler eigenvalue also defines the algebraic connectivity of a graph; in other 
words, it characterizes the graph synchronizability.

We tested our method on 17 patients, and excluded patients that had seizures characterized by amplitude 
depression (AD), and the results are summarized in Table 1. Overall, we achieved a sensitivity of 93.6% with a 
false detection rate of 0.16 FPs/h. The average seizure detection time was 16 seconds from the indicated seizure 
onset time in the dataset (this was obtained by considering a 6 second decision time). A closer look at the EEG 
signals, for those patients with high detection delay or latency, revealed that it was due, in most cases, to seizures 
starting with AD before the occurrence of synchronization that is characterized by coherent high amplitude oscil-
lations. Since this algorithm is not designed to detect amplitude depression (because the detection is based on λ2 
going above a threshold), for these cases, we observed large latencies.

The FT method presented here achieves comparable performance for seizure onset detection with a lower 
false detection rate than most algorithms proposed in the literature16,42,44. However, our method presents some 
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computational advantages. First, by using a short sliding window of size between 0.25 to 1 second, the algorithm 
requires less memory storage and has a very short runtime, hence making it a good candidate for implementa-
tion on portable devices for real-time seizure detection. The second advantage is that we achieved a very good 
performance with only one extracted feature (λ2); however, extracting more features from the inferred graph, 
and using more sophisticated machine learning algorithms can significantly improve the sensitivity and the false 
detection rate. Note that the results presented here were obtained without using any machine learning algorithms, 
and instead a simple thresholding technique was used as shown in Fig. 1c.

ICON method.  The performance of the ICON method was evaluated using the same dataset. Figure 2 shows 
two examples, case #16 for patient #1 and case #29 for patient #18, where ICON captured seizure onset through 

Figure 1.  Illustration of the seizure detection process. (a) Sample EEG signals (23 channels) showing a seizure 
occurring around time = 1870s. The left panel shows the entire recorded session with some artifacts at the 
beginning. The right panel shows a 10s segment with pre-seizure and seizure activities. (b) 3-D plot of the power 
spectrum of EEG channels showing strong power surges in some channels due to artifacts before time = 1000s, 
and some of them are stronger than the surge of power due to seizure. (c) Depiction of how the delay and 
latency are measured from the recorded seizure onset time with = +L d s6 . (d) Fiedler eigenvalue of the 
synchronization network denoted λ2-FT method. Seizure occurrence is characterized by an increase of λ2 and 
the seizure interval is delimited by the dotted lines. The other features are the λn obtained from the correlation 
matrix (where the diagonal entries have been set to zero to avoid self-coupling), the sum of the power spectrum 
obtained with FFT and the eigenratio λ λ/ n2  obtained from FT-method, respectively.
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the abnormalities in synchronizability of the constructed dynamic brain networks. The synchronizability45, 
given by the exponential moving average (EMA) of λ2

45,46, can be derived directly from the dynamic interactions 
between brain regions inferred by ICON. Figure 2a illustrates a case (for patient #1, case #16) where ICON accu-
rately captured seizure onset and offset times as recorded in the dataset, whereas Fig. 2b shows a case (for patient 
#18, case #29) of pre-seizure event that was detected 227 seconds before the actual seizure onset.

Moreover, Fig. 3 depicts the differences between the brain networks during normal brain activity (Fig. 3a) 
and seizure occurrence (Fig. 3b), inferred with ICON for the case presented in Fig. 2b. We can see that during 
a seizure, the strength of interactions between vertices, represented by weighted edges in Fig. 3b significantly 
increases. The summary of the results for all of the 24 patients is given in Table 2. Overall, a sensitivity of 78.79% 
was achieved, with a false detection rate of 0.02 FPs/h. However, we can achieve a sensitivity of 89.36% with a false 
detection rate of 0.01 FPs/h for only 17 patients considered for the FT method. The average seizure detection time 
was 4 seconds from the indicated seizure onset time and possible pre-seizure phenomena were observed for some 
patients (#11-#13, #15, and #18-#24).

Patient # NS TP FP L (s) S (%) D (s) FP/h

1 7 7 3 8.57 100.00 2.57 0.07

2 3 2 7 12.50 66.67 6.50 0.20

3 7 7 9 7.43 100.00 1.43 0.26

4 4 2 5 36.50 50.00 30.50 0.14

5 5 5 0 11.40 100.00 5.40 0.00

7 3 3 3 18.67 100.00 12.67 0.05

8 5 5 0 13.60 100.00 7.60 0.00

9 4 4 3 9.25 100.00 3.25 0.04

10 7 7 2 9.86 100.00 3.86 0.04

11 3 1 0 30.00 33.33 24.00 0.00

17 3 3 36 22.33 100.00 16.33 1.80

18 6 5 6 11.20 83.33 5.20 0.17

19 3 3 0 33.67 100.00 27.67 0.00

20 8 8 8 14.25 100.00 8.25 0.29

22 3 3 3 18.33 100.00 12.33 0.10

23 7 7 5 3.14 100.00 −2.86 0.19

24 16 16 9 12.31 100.00 6.31 0.42

Total (17 patients) 94 88 99

Mean 16.06 10.06

Sensitivity 93.62%

FP/h 0.16

Table 1.  Results summary for the FT method. NS: Number of seizures; TP: True positive; FP: False positive; L: 
Latency; S: Sensitivity; D: Delay; FP/h: False positive per hour.

Figure 2.  Examples of the results using the ICON method. (a) For case #16 of patient #1, the changes of the 
exponential moving average (EMA) of λ2 of the recovered network’s Laplacian matrix (blue) matches the 
recorded seizure onset and offset times (magenta). (b) For the case #29 of patient #18, besides for the changes 
of EMA indicating the seizure onset and offset times (magenta), there was a peak (black) 227 seconds before the 
seizure actual onset time.
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Discussion
In this work, we provided a data-driven, dynmaic learning approach for seizure detection that was tested on the 
widely used benchmark CHB-MIT scalp EEG database43. The ICON method, which constructs a dynamic brain 
network to infer its connectivity from noisy measurement data, establishes a dynamic graph-theoretic approach 
to inferring the network dynamic topology and hence detecting the seizure onset and offset times by capturing 
the network’s abnormalities. This work connects the brain network properties, such as connectivity and synchro-
nizability37, with the occurrence of seizures. The hypothesis that there is a certain level of synchrony in brain 
signals during seizure led to a technique for inferring the epileptic brain network using mean phase coherence47. 
This approach was used to analyze changes to graph centralities to shed more light on the role of constituents of 
evolving epileptic networks that recurrently transit into and out of seizures48. Furthermore, fundamental ques-
tions such as which nodes are connected by a predictive edge and which network modifications constitute a 
pre-seizure state were explored48. However, with ICON we mainly explore the seizure predictive capability of the 
second eigenvalue which is a measure of network algebraic connectivity.

This method requires no prior information for data processing, and hence it can be applied to the entire 
dataset.

As seen in Table 2, the ICON method is sensitive to any network’s abnormalities, which in turn guarantees 
the small latency for detecting seizure onset and offset times. Furthermore, since it can capture abnormality in 
the network dynamic topology, which also includes the one caused by neuronal disorders that might trigger 
the occurrence of seizures, this method can capture and reveal the patient-specific pre-seizure phenomena (See 
Fig. 2b). The challenge, however, is then how to relate these abnormalities to seizures while differentiating them 
from noise and artifacts, for example. This task will be difficult to achieve with the thresholding technique used 
in this paper, but using an appropriate machine learning model (e.g., a neural network) with multiple features 
extracted from the inferred network has the potential to uncover those hidden patterns that were difficult to 
detect, and can improve the detector accuracy or even predict seizure occurrence.

In general, the ICON method provides an innovative angle, through constructing a complex dynamic brain 
network, to detect epileptic seizures. This bridges the occurrence of seizures with its cause and effects, as shown in 
Fig. 3, which in turn enables future research studies on treating neuronal disorders like epileptic seizures.

While our ICON method can detect different types of seizures from the recovered network properties and 
hence, was tested on the entire dataset, the FT method cannot detect seizures that are characterized by AD. 
Therefore, patients #06, #12, #13, #14, #15, and #16 were excluded from the evaluation presented in Table 1. 
Although this method is not capable of detecting most seizure onsets for these patients, the false alarm rate is 
still very low. The graph-theoretic approach adopted here performed comparably well to some algorithms pro-
posed in the literature (see Table 3). It is important to note that we achieved good performances without using 
sophisticated machine learning techniques and without additional features. There are other methods that are 
also suitable for real-time applications, e.g., the approach based on the phase-slope index of directed influence 

Figure 3.  Networks (graph representation and the heat-map representation of the corresponding adjacency 
matrix) of the normal state (a) and seizure state (b).
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applied to multichannel electrocorticogram (ECoG) data49 and which uses a threshold to assess seizures. In the 
paper by Rana et al., they used a more elaborate method for choosing the threshold based on the moving average 
of recent activity to accommodate variability between patients and slow changes within each patient over time49. 
Furthermore, by an adequate choice of parameters, they were able to achieve high sensitivity. In our work, on the 
other hand, we chose a constant threshold for each patient, and we are confident that with our approach, if we use 
a more elaborate technique for selecting a threshold or if we extract more features from the inferred synchroni-
zation network and combined with a good machine learning technique, we can improve the performance of the 
seizure detector. Recently, a paper has shown that using multiple features with a machine learning model (e.g., a 
neural network) improves the accuracy of the seizure detector50.

While the FT method can be used in automated real-time seizure control systems, the ICON method can 
help physicians better study pre-seizure phenomena. Indeed, this approach was able to identify brain activi-
ties that preceded seizure onsets as marked by specialists in the dataset. On average significant changes in the 
brain activity were observed 1.68 seconds before the actual seizure onset. The main advantage of the dynamic 

Patient # NS TP FP L (s) S (%) D (s) FP/h

1 7 7 0 2.00 100.00 −4.00 0.00

2 3 1 0 0.00 33.33 −25.00 0.00

3 7 7 1 5.14 100.00 −0.86 0.03

4 4 4 0 10.25 100.00 4.25 0.00

5 5 5 0 18.80 100.00 12.80 0.00

6 10 1 0 80.00 10.00 74.00 0.00

7 3 3 0 11.00 100.00 5.00 0.00

8 5 4 0 0.50 80.00 −5.50 0.00

9 4 4 0 0.25 100.00 −5.75 0.00

10 7 5 0 1.60 71.43 −4.40 0.00

11 3 2 0 8.00 66.67 2.00 0.00

12 40 32 2 3.25 80.00 −2.75 0.08

13 12 10 5 11.40 83.33 5.40 0.15

14 8 3 0 0.00 37.50 −6.00 0.00

15 20 17 2 2.41 85.00 −3.59 0.05

16 10 7 0 5.57 70.00 −0.42 0.00

17 3 2 1 0.00 66.67 −6.00 0.05

18 6 5 3 4.00 83.33 −2.00 0.08

19 3 3 0 0.00 100.00 −6.00 0.00

20 8 7 1 2.71 87.50 −3.28 0.04

21 4 2 0 0.00 50.00 −6.00 0.00

22 3 3 0 0.00 100.00 −6.00 0.00

23 7 7 1 1.71 100.00 −4.28 0.04

24 16 15 0 1.20 93.75 −4.80 0.00

Total (24 patients) 198 156 16

Mean 4.44 −1.68

Sensitivity 78.79%

FP/h 0.0186

Table 2.  Results summary for the ICON method. NS: Number of seizures; TP: True positive; FP: False positive; 
L: Latency; S: Sensitivity; D: Delay; FP/h: False positive per hour

Sensitivity FP/h Latency (s)

Shoeb51 96.00% 0.21 4.60

Ahammad et al.17 98.5% 14.4%* 1.76

Thodoroff et al.7 85% 0.80 Not Reported

Samiee et al.19 70.19% 2.26%* Not Reported

Zabihi et al.54 88.27% 6.79%* Not Reported

Bhattacharyya and Pachori10 97.91% 0.43%* Not Reported

Khanmohammadi and Chou18 96.00% 0.12 4.21

Fan and Chou46 ~97% 8.61% 6–7

Akbarian and Erfanian50 98.67% ~1% Not Reported

Table 3.  Previous Results based on the same dataset. *In these studies, the false positive rate is reported as a 
percentage of the number of misclassified seizure-free epochs.
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graph-theoretic approach is its ability to reject noise and artifacts (see Fig. 1d), which allowed us to use a minimal 
number of features and yet, still achieve good performance of the detector. In particular, in Fig. 1d we show vari-
ous features that have been obtained with other approaches such as the sum of spectral powers and the correlation 
method. The main observation is that our method generated a feature (λ2) that is much smoother than the sum of 
spectral powers and λn obtained with the correlation method. We also compared λ2 to the eigenratio R = λ2/λn, 
however, R was not as smooth as λ2 as one can see in Fig. 1d, and for some other patients in the same dataset it was 
worse than shown in Fig. 1d, hence we do not recommend using it as a feature.

Methods
Data acquisition and processing.  CHB-MIT scalp EEG dataset43 is used for the validation of our pro-
posed method, which consists of multi-variate EEG recordings from 23 epileptic patients at Boston Children’s 
Hospital (5 males of age from 3 to 22; 17 females of age from 1.5 to 19). The data collection followed a protocol 
approved by the Committee on Clinical Investigations at the Beth Israel Deaconess Medical Center (BIDMC), 
Boston, Massachusetts, USA, and the Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, 
USA51. All procedures were performed in accordance with the relevant regulations and guidelines, and all 
informed consents were obtained before admission to BIDMC General Clinical Research Center took place. 
The EEG signals were recorded during many days using the International 10–20 system of 23 electrodes with 
a sampling rate of 256 Hz, and 182 epileptic epochs were marked by domain experts in a subset of 129 sessions 
of the entire dataset. Note that we only used the sessions with seizure onset epochs. After baseline removal and 
normalization, the EEG signals were re-referenced to average and a band-pass filter of 1–50 Hz was applied to 
reduce noise in the signals. These pre-processing steps were performed using functions in EEGLAB toolbox52. 
For real-time implementation, a non-overlapping sliding window of 1 second length was applied to each session 
of EEG recordings to split the signals into segments.

Inferring connections of a brain network (ICON method).  In this paper, we provide a universal 
framework to diagnose seizure, by estimating a dynamic brain network and then revealing its connectivity from 
the noisy EEG data using our developed ICON (inferring connections of networks) method, which we have previ-
ously used to determine the topology of networks of oscillators, arising in electrochemistry, neuronal networks, 
and groups of mice34. Hence, by dynamically monitoring the connectivity of the inferred brain network, we cap-
ture abnormal activities such as seizures.

We study the evolution of a dynamic brain network consisting of N vertices. The brain activities are recorded 
using EEG sensors with N channels, and the dynamics of the brain regions near each channel is modeled by a state 
variable xi, where = i N1, , . The brain activities recorded at each vertex hence follow the dynamic law gov-
erned by the brain region’s self-dynamics and the interaction among vertices,

∑= + =
≠

ẋ t f x K x x i N( ) ( ) ( , ), 1, , ,
(1)

i i
j i

ij i j

where the vector ∈x t( )i
n denotes the temporal state of brain region i at time t, the function f represents the 

inherent dynamics for the brain region i, and Kij, i, = j N1, , , is the coupling function between brain regions 
i and j (Kij can be different from Kji). The dynamics, i.e., f and Kij, and thus the topology of such a directed brain 
network is problematic to infer from data because of the inherent nonlinearity within and between brain regions 
as well as the noisy measurement of the EEG data. However, the dynamic interactions between different regions 
will provide us insight to explain the brain activities through its first-order derivatives, which is more sensitive to 
capture the abnormality in this complex brain network and hence result in a lower false detection rate of identi-
fying seizure onsets and/or offsets.

The central idea of our approach is to approximate the self and coupling dynamics of each region, f and Kij, 
respectively, by using complete orthogonal bases Q{ }k k and P{ }k k, in particular, the Fourier basis. Then, the dynam-
ical law in Eq. (1) can be expressed as

∑ ∑∑∑= +
≠

�
�

�
�x t a Q x b P x P x( ) ( ) ( ) ( ),

(2)
i

k
k k i

j i k
ij
k

k i j

where bij
k  are the coefficients of the 2-dimensional Fourier basis (with 5 terms) representing the coupling strength 

αij, defined by α = ∑ ∑ ( )bij k l ij
kl 2

, that constitutes the Jacobian matrix J of the coupling term. Following this 
strategy based on the orthonormal basis representation and given the EEG data of each agent i in the network, the 
topology estimation can be formulated as a simple linear inverse problem for each agent i, given by

−y A zmin ,
(3)z

i i i( ) ( ) ( )
i( )

where y(i) is the data vector and ∈ × +A i M r N( ) ( 1)2
  is a matrix composed of the orthonormal bases, in which M is 

the number of data points for each sliding window of channel i, and r (r = 5) is the number of expansion terms in 
the truncated series; and z(i) is the coefficient vector that is being determined. Most importantly, this formulation 
enables independent estimation of the time-varying interactions between brain regions in such a network, so that 
the numerical computations become efficient (Fig. 4).

With the dynamic network topology revealed by ICON, we can study the synchronization behavior of a given 
brain network using eigenvalue analysis of the Jacobian matrix J [ ]ijα= . Under the assumption that the network 
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connectivity increases when a seizure occurs, the abnormality in the Fiedler eigenvalue, which indicates the syn-
chronizability, would indicate the seizure onset. We achieved the seizure detection by using sliding windows 
of 10s–20s to guarantee the reliability of the topology recovered by ICON and efficiency of the detection. In this 
way, ICON can capture the abnormality of the brain network due to seizure efficiently and accurately.

Inference of brain network from EEG power spectrum (FT method).  For a significant number of 
patients suffering from epilepsy, seizures appear in EEG data as spiking trains, with frequencies often in specific 
bands, e.g., 4–8 Hz (theta band). However, for some patients’ seizures can appear as amplitude depressions in the 
brain activity, or sometimes as amplitude death followed by spiking trains. In this paper, we exploit the burst of 
energy in EEG channels appearing in a given frequency band to form a time-varying synchronization network 
from which we then extract a single feature (the second eigenvalue, λ2 of the graph Laplacian matrix). This feature 
is then compared to a fixed threshold to determine whether a seizure event occurred. The threshold selection 
was determined on a case by case basis because of the variability of EEG recordings from one patient to another. 
Furthermore, visual inspection was used to identify the seizure onsets. Various more elaborate methods have 
been proposed in previous studies, which could be adopted instead of using a simple threshold and visual inpsec-
tion, e.g., the method that determines the threshold based on the moving average of previous data points49 and 
neural networks50.

Some of the automated seizure detection algorithms currently use Fourier36 or wavelet transform35 and look 
at the power spectrum in a certain frequency band41 of some predetermined channels. These methods are usually 
patient dependent in the sense that one needs to know the morphology of the patient’s seizure in addition to 
the channels that capture the seizure activity. However, it has been shown that algorithms that take into account 
different seizure morphologies, including amplitude depression, can have good performances and be less patient 
specific53.

In this work, we have presented the ICON method that infers the synchronization network from dynamical 

EEG measurements. Note that the coupling strengths are computed as α = ∑ ∑ ( )bij k l ij
kl 2

in the ICON method, 
with bij

k  the coefficients of the orthonormal bases 


P Pk . From Perseval’s theorem, we know that the root mean 
square (RMS) power of a trigonometric Fourier series of a periodic signal ω θ= + ∑ +∞s t c c k( ) cos( )k k k0  is 
given by = + ∑( )P c c, , ,RMS k k0

2 1
2

2 . Hence, by using the Fourier basis in the ICON method to infer the network 
coupling strength, we indeed see that the coupling strength between brain regions (vertices) i and j essentially 
represents the power of the interaction force between them (power of their interaction function). This analogy to 
the interaction signal power between vertices inspired a computationally efficient network inference approach, 
and hence enables online seizure detection.

In the simplified brain network inference approach, we employ the Fourier transform that is applied to the 
EEG data of each channel i. We choose a sliding window of the desired length, e.g., 1 second (or half a second) and 
compute the power and phase spectrum of each channel using the FFT (Fast Fourier Transform). After obtaining 
the power magnitudes pi (power spectrum) of each channel, we isolate a frequency band, typically between 
2–10 Hz (may vary depending on patients), then set the magnitude of each frequency component outside the 
band [2, 10] Hz, to zero. In order to extract only one feature, and hence suppressing the need to know in advance 

Figure 4.  A visualization of the parallel computational architecture for solving the reduced topology estimation 
problem (3). The right-hand side illustrates the formulation of the problem, where the time-varying interactions 
Kij for each sliding window of the brain region near ith channel are estimated in parallel. The inset on the left-
hand side describes the linear estimation problem for each channel, where y(i) is the data vector, A(i) is a matrix 
involving the 2-dimensional Fourier bases 



P P{ }k , and z(i) is the coefficient vector to be determined.
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what channels are measuring seizure activities, we form a synchronization network as follows. Let i  be the sum 
of the squared power spectrum of the ith channel in a given time interval − −t tk k 1 (where k is the current epoch). 
Then the power-related coupling coefficient between two nodes is  ij

p
ji
p

i jσ σ= = + , and the phase-related 
coupling coefficient is given by σ σ φ φ= − = ∑ −φ φ ( )sinij ji N n

N
j n i n

1
, , , where N is the number of discrete frequencies 

in the desired band, e.g., [2, 10] Hz. Hence, the ijth entry of the adjacency matrix A t( )k  at time tk is obtained as 
a d1 exp( )ij ij‖ ‖= − − γ , where σ σ= φdij ij

p
ij , with =d 0ij  for =i j. Then the Laplacian matrix is computed as 

= −L t D t A t( ) ( ) ( )k k k , where D t( )k  is the degree matrix. We can then extract a classification feature such as λ2 at 
each time step tk (see Fig. 1d). Note that more features can be extracted from the network and used as inputs to a 
machine learning model, which we believe will improve the performance of the seizure detector. Note that for the 
FT method, the results were obtained with the EEG data normalized in the range [−1, 1], and the parameter 
γ = 2 was used. This parameter can be tuned to increase the robustness of λ2 to noise and artifacts, however, a 
large value, i.e., γ > 3 might reduce seizure detection sensitivity because the value of λ2 might be too small, hence 
causes some numerical issues.
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