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Variable selection for inferential 
models with relatively high-
dimensional data: Between method 
heterogeneity and covariate 
stability as adjuncts to robust 
selection
Eliana Lima1,3, Peers Davies2, Jasmeet Kaler1, Fiona Lovatt1 & Martin Green1 ✉

Variable selection in inferential modelling is problematic when the number of variables is large relative 
to the number of data points, especially when multicollinearity is present. A variety of techniques 
have been described to identify ‘important’ subsets of variables from within a large parameter space 
but these may produce different results which creates difficulties with inference and reproducibility. 
Our aim was evaluate the extent to which variable selection would change depending on statistical 
approach and whether triangulation across methods could enhance data interpretation. A real dataset 
containing 408 subjects, 337 explanatory variables and a normally distributed outcome was used. We 
show that with model hyperparameters optimised to minimise cross validation error, ten methods of 
automated variable selection produced markedly different results; different variables were selected 
and model sparsity varied greatly. Comparison between multiple methods provided valuable additional 
insights. Two variables that were consistently selected and stable across all methods accounted for the 
majority of the explainable variability; these were the most plausible important candidate variables. 
Further variables of importance were identified from evaluating selection stability across all methods. 
In conclusion, triangulation of results across methods, including use of covariate stability, can greatly 
enhance data interpretation and confidence in variable selection.

Variable selection is an integral and critical component of inferential modelling and methods to accurately detect 
the subset of variables most likely to have true associations with an outcome of interest are essential. In observa-
tional or experimental research, when potential causal covariates need to be identified to be carried forward for 
future study, a very large set of variables may need to be explored and a robust method is required to identify the 
most likely candidate covariates from within a large parameter data space.

Identification of a best subset of variables is known to be problematic when the number of explanatory varia-
bles is large with respect to the number of subjects and when multicollinearity is present within the data1. In this 
situation, despite their widespread use, it is recognised that selection methods based on exploratory or stepwise 
procedures using P-values or likelihood-based methods have notable deficiencies including producing inflated 
coefficient estimates and downward biased errors1–4. This generally results in models that are over fit and with 
a relatively high number of variables remaining in a ‘final’ model rather than a sparse model that contains only 
variables with the greatest association with the outcome1. The sparsity principle (that a relatively small number of 
predictors contribute meaningfully to the response), is commonly adopted for variable selection of high dimen-
sional data and substantial research has been conducted into selection of sparse models from high dimensional 
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data3. General approaches to variable selection have been reviewed and available methods described under three 
main categories; test-based, penalty-based and screening-based5. It has also been noted that improvements to 
robust variable selection can be made through the use of selection stability6,7. The rationale for this is that, since 
model selection procedures generally suffer from inconsistency, resampling is used to evaluate the extent to 
which selected covariates change when the data are randomly divided or perturbed8–10. Stable variables (i.e. those 
selected most consistently under subsampling) are most likely to have a true association with the outcome of 
interest in a target population and are therefore most likely to be good candidates to evaluate further.

Although a variety of techniques for covariate selection have been advocated11–14, since different techniques 
have different mathematical properties, it is possible they will lead to different solutions; that is different varia-
bles may be selected. A current problem for the researcher is to know the extent to which the choice of method 
of selection will impact upon study results and therefore, the extent to which results will be reproducible with 
different methods. Therefore, another area in which variability can be explored is ‘between-method’ variability 
in covariate selection. Indeed it has been suggested that good practice is to employ a variety of methods “and 
assign the degree of confidence to variables depending on how many methods selected a particular variable in 
the final subset”15. Results that are triangulated using different methods are considered less likely to be artefacts16.
This sentiment is also expressed in the recent concerns related to use of P values to identify important variables 
in which it has been suggested that researchers have ‘the courage to consider uncertainty from multiple angles in 
every study’ and ‘analyse data in multiple ways to see whether different analyses converge on the same answer’17. 
Such triangulation, however, is rarely conducted.

The aim of this research was to evaluate a relatively high dimensional observational animal production-based 
dataset to compare results obtained from ten well-documented, automated methods of variable selection. The 
purpose was to identify the extent to which variable selection would change depending on method used and 
whether combining results across methods could provide additional insights into the selection process.

Results
Covariates selected in the final models.  The outcome of interest was the financial income derived from 
lamb sales on 408 UK sheep farms in 2017 (£/acre) and the comparison between ten automated methods of varia-
ble selection revealed substantial differences between covariates selected in final models. The methods used were 
backward stepwise linear regression (BSLM), multivariate adaptive regression splines (MARS), least absolute 
shrinkage and selection operator regression (lasso), ridge regression (ridge), elastic net regression (enet), adaptive 
elastic net regression (Aenet), smoothly clipped absolute deviation (SCAD), minimax convex penalty (MCP), 
Sparsestep, and ranking-based variable selection (RBVS). The numbers of variables selected using each method, 
are summarised in Table 1. Between 335 (ridge) and 2 (MARS) covariates were selected in the final models and 
five methods produced relatively sparse models with ≤5 variables being selected. In terms of model fit, the inter-
nal and cross validation mean absolute error (MAE) and R2 for all final models are displayed in Table 1. The best 
cross validation MAE was achieved using RBVS (64.1), closely followed by lasso and elastic net (64.6). All other 
models had a cross validation MAE ≤ 80.6 with the exception of BLSM, which performed poorly (MAE = 136.0). 
Overfitting, demonstrated by a large difference between internal and cross validation R2 values was most apparent 

Technique
Number of variables 
in final model

Approach for evaluation 
of model performance MAE R2

Backward stepwise linear regression 265
Internal 26.5 0.95

Cross validation 136.0 0.28

Multivariate adaptive regression splines 2
Internal 64.6 0.67

Cross validation 80.6 0.56

Least absolute shrinkage and selection operator 36
Internal 57.0 0.73

Cross validation 64.6 0.65

Ridge regression 335
Internal 56.0 0.78

Cross validation 74.8 0.57

Elastic net 42
Internal 56.5 0.74

Cross validation 64.6 0.65

Adaptive elastic net 3
Internal 63.6 0.68

Cross validation 70.3 0.58

Smoothly clipped absolute deviation, 19
Internal 61.2 0.70

Cross validation 65.4 0.65

Minimax convex penalty 3
Internal 65.0 0.67

Cross validation 67.4 0.63

SparseStep 3
Internal 63.6 0.68

Cross validation 72.6 0.62

Ranking-based variable selection 5
Internal 62.6 0.68

Cross validation 64.1 0.67

Table 1.  Numbers of variables selected and model performance for ten automated methods of variable 
selection.
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in the BSLR (0.95 vs 0.28) and ridge (0.78 vs 0.57) models. Under fitting, shown by relatively low values for both 
internal and cross validation R2 values compared to the best models, was most evident in the MARS (0.67 and 
0.56) and Aenet (0.68 and 0.58) models. The three sparsest models (with ≤ 5 covariates) that maintained a rea-
sonable performance (cross validation MAE < 73.0) were MCP, SparseStep and RBVS. It was notable that models 
both with very few covariates (e.g. RBVS; 5 variables MAE = 64.1, MCP; 3 variables MAE = 67.4) or a larger 
number (e.g. SCAD; 19 variables MAE = 65.4, elastic net; 42 variables MAE = 64.6) could result in a similarly low 
cross validation error.

The covariates selected in each final model (excluding BSLR and ridge models in which the majority of covar-
iates were selected and which were deemed to fit the data relatively poorly) are illustrated in Fig. 1 and coefficient 
estimates provided in Table 2. Despite similarity in cross validation MAE, considerable differences were identified 
in the actual covariates selected. Only two covariates were selected in all 8 models, these related to the type of 
housing system used by each study farm (V29) and the stocking density of animals on pasture (V40) and it was 
noticeable that these variables had the largest effect sizes. Two further variables were selected in at least half of the 
models and the other covariates were selected by 3 or fewer of the methods. However, of the variables selected in 
three or fewer models, the coefficients of some were sufficiently large to be of potential importance. For example, 
variables V3, V20, V36 and V43 all had coefficients of a magnitude to have a potentially important impact on 
the outcome, yet were selected in less than half of the final models. Therefore, results of these eight final models 
showed substantial heterogeneity in terms of the variables selected.

Selection stability results.  Five hundred bootstrap samples were used to estimate covariate stability and 
stability varied considerably between methods (Fig. 2). The ridge method consistently retained virtually all varia-
bles in all bootstrapped samples, producing a non-sparse model with a large number of variables being retained in 
100% of samples. For all other methods, relatively few covariates were selected in >90% of bootstrap samples; the 
range was 1 variable (RBVS) to 24 (elastic net). Covariates that had a high stability (>90%) in at least one model 
(excluding BSLR and ridge), are listed in Table 3, and a comparison is provided of the stability of these covariates 
between methods. It was evident that stability varied greatly between methods; several variables (e.g. V37, V19) 
could have a stability of >90% using one method and <10% using another. Of the 24 variables that had a stability 
>90% in at least one method, nine of these (X1 – X9) were variables that had not been selected in any of the orig-
inal non-bootstrapped final models.

The median stability was calculated for each covariate across eight selection methods (excluding BSLR and 
ridge which from the initial models, were deemed to fit too poorly to use for subsequent inference). Six of the 
337 variables had a median stability >50% and of these only two had a median stability >90%. The two variables 
with the highest median stability, V40 and V29, were the variables selected by all methods when the original 
non-bootstrapped models were constructed (Fig. 1).

Three conventional linear models were fit using subsets of covariates with relatively high bootstrap stability 
across all methods and 10×10 fold cross validation conducted to evaluate model performance. A linear model 
built using the two variables with a median stability >90% (variables V40 and V29, Table 2) resulted in an internal 
MAE = 65.0 and R2 = 0.67 and a cross validation MAE = 65.9 and R2 = 0.65. When six variables with a median 
stability across methods >50% were modelled, the resulting internal model fit metrics were MAE = 62.3 and 
R2 = 0.69, and cross validation fit metrics MAE = 65.0 and R2 = 0.66. A further linear model built with covariates 
that had a bootstrap stability of >90% in any of the methods (n = 24 covariates, Table 2) provided the best overall 
cross validation performance and better than any of the original ten methods implemented, with an internal 

Figure 1.  Covariates selected (out of 337 available) in final models using eight different automated methods 
of variable selection. Key; Sparse step – SparseStep regression, SCAD - smoothly clipped absolute deviation, 
Elastic net - elastic net regression, RBVS - ranking-based variable selection, MCP - minimax convex penalty, 
MARS - multivariate adaptive regression splines, Lasso - least absolute shrinkage and selection operator 
regression, Aenet - adaptive elastic net regression.
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MAE = 56.0, R2 = 0.75 and a cross validation MAE = 61.4, R2 = 0.70. Coefficients and confidence intervals for 
this model, including for comparison, bootstrap confidence intervals from the initial models, are provided in 
Supplementary Information (Table S1).

The ranking of covariate stability was explored between all ten automated model selection methods using 
non-parametric correlation analysis, results are presented in Table 4. Spearman correlation coefficients >0.6 

Variable ID MARS Lasso Elastic net Aenet SCAD MCP Sparse step RBVS

V29 58.5 34.8 35.7 54.0 45.7 34.6 58.6 59.2

V40 *207.2 181.5 182.2 191.7 196.2 198.4 19.2 218.7

V6 22.5 22.9 28.6 16.0 9.7 33.5

V34 16.6 18.8 2.2 22.8

V2 5.4 6.2 0.6

V9 8.4 8.3 5.0

V10 2.7 4.4 7.0

V13 6.5 7.8 2.2

V15 12.2 13.2 3.6

V17 2.3 3.9 3.6

V21 8.3 10.0 3.1

V22 3.2 2.7 1.6

V25 13.5 14.0 5.7

V36 −15.5 −15.9 −9.1

V37 −7.9 −9.3 −0.7

V38 12.1 12.9 2.3

V43 21.7 22.9 11.5

V40^2 2.2 0.3 −29.9

V4 2.4 3.0

V7 9.3 9.8

V8 2.3 3.0

V12 1.0 2.1

V16 −2.7 −2.6

V19 −1.1 −2.2

V24 4.8 4.2

V26 −1.5 −2.7

V27 0.2 0.7

V28 1.2 2.4

V30 −12.6 −14.5

V32 −4.5 −6.4

V33 −0.5 −1.4

V35 −0.6 −1.6

V39 3.3 4.6

V41 2.1 2.5

V42 −7.4 −8.0

V44 0.8 2.5

V1 0.5

V3 39.7

V5 −0.6

V11 1.7

V14 4.5

V18 0.2

V20 −22.4

V23 0.7

V31 −0.5

Table 2.  Coefficients of variables selected in final models of eight automatic variable selection methods (blank 
spaces indicate the variable was not selected). *Represents a hinge function of variable V40. Key; Sparse 
step – SparseStep regression, SCAD - smoothly clipped absolute deviation, Elastic net - elastic net regression, 
RBVS - ranking-based variable selection, MCP - minimax convex penalty, MARS - multivariate adaptive 
regression splines, Lasso - least absolute shrinkage and selection operator regression, Aenet - adaptive elastic net 
regression.
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existed between the following methods i) SCAD, MCP and adaptive elastic net, and ii) Elastic net, lasso and 
SparseStep. Covariate stability of MARS showed a degree of similarity to SCAD, Lasso, MCP and elastic net 
(Spearman correlations 0.44 to 0.50) but covariate stability of ridge and BLSR showed little correlation with other 
methods.

Figure 2.  Illustration of the distribution of covariate selection stability for ten methods of automated covariate 
selection. Selection stability was defined as the percentage of bootstrap samples (out of 500) that each covariate 
(n = 337) was selected by each specified method. Key; SparseStep – SparseStep regression, SCAD - smoothly 
clipped absolute deviation, ridge - ridge regression, RBVS - ranking-based variable selection, MCP - minimax 
convex penalty, MARS - multivariate adaptive regression splines, lasso - least absolute shrinkage and selection 
operator regression, BSLR - backward stepwise linear regression, enet - elastic net regression, Aenet - adaptive 
elastic net regression.

Variable ID
Maximum 
Stability

Median 
Stability SCAD Lasso MARS MCP Aenet Enet RBVS SparseStep

V40 100 100 100 100 65 100 100 100 99 100

V29 100 97 97 100 54 91 100 100 60 97

V34 100 79 71 100 88 52 94 100 29 27

V6 92 73 83 90 39 64 89 92 20 61

V36 92 65 73 92 47 57 83 90 0 12

V42 95 51 42 91 60 30 83 95 0 7

V39 95 48 49 95 36 46 80 94 10 17

V21 93 46 57 90 20 34 83 93 2 16

V37 94 45 53 91 37 35 62 94 0 10

V10 94 44 52 92 20 37 82 94 2 7

V30 98 40 32 98 47 22 64 98 0 10

X1 92 38 23 88 65 12 53 92 1 1

V2 92 36 42 90 12 31 71 92 3 26

V4 90 31 36 88 7 21 61 90 1 26

X2 93 28 20 91 36 17 54 93 0 0

V19 90 27 32 88 4 21 65 90 0 0

X3 95 25 29 91 7 20 66 95 0 1

V8 91 25 26 84 4 17 57 91 1 23

X4 99 22 27 97 10 18 66 99 1 14

V41 95 20 15 92 25 6 74 95 13 5

X5 92 19 9 83 29 7 42 92 0 0

X6 93 18 11 90 25 9 61 93 0 0

X8 92 13 15 87 5 10 61 92 0 0

X9 92 7 10 87 2 5 47 92 0 2

Table 3.  Maximum and median selection stability values (%) for covariates across eight statistical models, 
ranked in order of median stability. Covariates shown all had a stability >90% in at least one method (BSLM 
and ridge methods excluded). Key; SparseStep – SparseStep regression, SCAD - smoothly clipped absolute 
deviation, Enet - elastic net regression, RBVS - ranking-based variable selection, MCP - minimax convex 
penalty, MARS - multivariate adaptive regression splines, Lasso - least absolute shrinkage and selection operator 
regression, Aenet - adaptive elastic net regression
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Discussion
Results of this research illustrate that choice of method can have a substantial influence on the subset of variables 
selected in modelling relatively high dimensional data and that triangulation of results across methods can greatly 
enhance data interpretation and confidence in variable selection The ten methods of automated variable selection 
used to model these data produced markedly different results, which meant if used alone, would lead to different 
conclusions being drawn from the same data and different variables being carried forward for future study. It is 
rare that more than one technique is used when conducting high-dimensional analyses, but these results align 
with the view that evaluation of multiple methods is a useful strategy to ensure that uncertainty in data is consid-
ered from multiple angles15,17. Indeed, it has been argued that in the face of a ‘reproducibility crisis’ in research18, 
use of multiple analytic approaches to fully explore data and identify robust solutions may partly mitigate prob-
lems with reproducibility19. Our results support this view and use of multiple analytic approaches added valuable 
insights to relationships within these data. For example, two variables were selected by all methods and had 
relatively large effect sizes; this triangulation provided confidence that these variables were likely to be the most 
important of the 377 available, which was not clear from use of any individual method. Quantification of selection 
stability across all methods provided further insights. Firstly, the two covariates, V29 and V40, that were selected 
by all methods initially, were also the most stable across all methods (median stability >90%); this provided 
further evidence for the likely importance of these variables. A linear model fit using solely these two variables 
demonstrated that they explained a large proportion of the variation in the outcome (R2 = 0.65) compared to that 
explained by the best model (R2 = 0.70), again providing confidence in their relative importance in these data.

After identification of these two key variables, use of selection stability across methods also aided the detection 
of further covariates of potential importance that could warrant further evaluation; using the median and maxi-
mum stability across methods, new subsets of variables were identified. In fact, the combination of 24 covariates 
identified as being highly stable (>90%) in at least one of the methods resulted in a linear model with the best 
overall cross validation performance characteristics. This combination of variables was not identified by any 
of the individual methods but in terms of minimising the cross validation MAE could be described as the best 
model for these data, again indicating the usefulness of employing multiple analytic approaches. The coefficient 
distributions (Table S1, Supplementary Information) provided further information to evaluate and rank these 
24 variables in terms of relative importance; those with confidence intervals furthest from zero across many 
methods deemed most likely to be important and worthy of follow up. Whilst the choice and number of variables 
to follow up from a particular study will depend on resources available as well as the effect size and plausibility 
of each variable, this approach using between method selection stability provided a useful framework to inform 
such decisions.

It was notable that there were marked differences in the sparseness of final models between methods; some 
variables with apparently relatively large effect sizes were selected by some methods and not others. Backward 
stepwise linear regression and ridge regression produced the least sparse models and poor results in terms of 
discrimination of important variables and cross validation fit characteristics. These methods were discounted as 
being useful for variable selection with these data and confirms that stepwise regression is generally considered 
unsuitable for variable selection with high dimensional data1. Comparison of variable selection between methods 
was useful because a rounded evaluation could be made from more and less sparse models. Variables with high 
stability in any method could be considered of potential importance and since stability varied between methods, 
this allowed a subset of variables to be identified that had not been selected by any individual method.

The correlations in bootstrap selection stabilities between different models indicated some similarity between 
the variable selection methods used. Despite the fact that MCP produced a sparser solution than SCAD, the 
two methods were highly correlated in terms of ranking of variable stability (Spearman correlation 0.98). This 
may not be surprising since the methods of regularisation employed have similarity (Eqs. 7–9); both of these 
methods incorporate a non-linear penalisation and apply less shrinkage with increasing size of coefficient20,21. 
Similarly, both SCAD and MCP had selection stability rankings highly correlated to Aenet, another method that 

Stability SCAD Lasso MARS MCP Ridge Aenet Enet RBVS Sparse step BSLR

SCAD 0.50 0.46 0.93 −0.05 0.84 0.48 0.49 0.50 0.05

Lasso 0.50 0.45 0.52 0.39 0.47 0.98 0.37 0.60 0.09

MARS 0.46 0.45 0.50 0.15 0.39 0.44 0.41 0.38 −0.27

MCP 0.93 0.52 0.50 0.00 0.85 0.51 0.49 0.50 0.07

Ridge −0.05 0.39 0.15 0.00 −0.08 0.39 0.07 0.19 0.15

Aenet 0.84 0.47 0.39 0.85 −0.08 0.46 0.48 0.39 0.04

Enet 0.48 0.98 0.44 0.51 0.39 0.46 0.38 0.59 0.08

RBVS 0.49 0.37 0.41 0.49 0.07 0.48 0.38 1.00 0.53 −0.04

Sparse step 0.50 0.60 0.38 0.50 0.19 0.39 0.59 0.53 0.01

LM 0.05 0.09 −0.27 0.07 0.15 0.04 0.08 −0.04 0.01

Table 4.  Spearman correlations between variable selection stability by method. Key; Sparsestep – SparseStep 
regression, SCAD - smoothly clipped absolute deviation, Ridge - ridge regression, RBVS - ranking-based 
variable selection, MCP - minimax convex penalty, MARS - multivariate adaptive regression splines, Lasso 
- least absolute shrinkage and selection operator regression, BSLR - backward stepwise linear regression, Enet - 
elastic net regression, Aenet - adaptive elastic net regression.
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incorporates reduced penalisation with increasing size of coefficient22. Elastic net and lasso also produced highly 
correlated selection stabilities, again this reflects similarities of these methods. Whilst lasso is based on the con-
ventional L1 regularisation, a single penalty applied to the sum of the absolute coefficient values (Eq. 3), elastic net 
combines this with the L2 penalty, a penalty applied to the sum of the squared coefficient values (Eq. 5).

There was a notable contrast in the degree of covariate stability between modelling methods. Of the most 
sparse models, SparseStep and MCP identified 2 covariates as being >90% stable out of the three variables orig-
inally selected in the full models. RBVS identified one covariate as >90% stable of the original 5 and MARS 
identified neither of the two variables originally selected as >90% stable. In contrast, for Aenet, all three of the 
originally selected variables had >90% stability. Of the less sparse models, out of 19 variables originally selected 
using SCAD, only 3 were >90% stable whereas both lasso and elastic net identified a relatively large number of 
variables as being >90% stable. The variability in stability between methods suggests some methods are more 
inclined to produce different results under perturbations of the data than others and confirms the view that selec-
tion stability is a crucial addition to the variable selection process6,9.

In conclusion, the use of different statistical methods to select a sparse set of important variables resulted in 
very different subsets of variables being identified. Evaluation of multiple methods and selection stability pro-
vided invaluable insight to aid variable selection in these epidemiological relatively high-dimensional data. These 
findings indicate that use of triangulation of results across methods can greatly enhance data interpretation and 
confidence in variable selection.

Materials and Methods
Data collection and preparation.  Data for the study came from previous research conducted on 408 com-
mercial sheep farms in the UK23. The original study aim was to identify covariates associated with increased farm 
income per acre, to determine the best candidates for intervention studies to improve farm profitability. Data 
collection and pre-processing have been described in detail previously23; a brief overview is provided below.

The outcome variable of interest was farm revenue (£) derived from lamb sales per unit area farmed (acre) 
for the year 2017. This variable was approximately normally distributed with a median £197 per acre (IQR £120–
£297). The potential explanatory covariates comprised information on farmer demographics, farm management 
strategies and farmer attitudes, and were collected by questionnaire. Farms were based in the UK; 76% were 
located in Wales, 18% in England and 4% and 2% in Scotland and Northern Ireland respectively. The median farm 
size was 265 acres (IQR 150–450) and the median flock size 560 breeding ewes (IQR 329–873).

A total of 337 explanatory variables were available and following imputation of a small number of data points, 
there were no missing values in the final dataset. Whilst the precise details of the covariates are not relevant to 
this research, full details can be found in Lima et al.23. Specific potential confounding variables such as flock size 
were included in the model selection. Continuous variables (n = 42) were centred and standardised by two stand-
ard deviations to allow direct comparisons to be made between model coefficients24. Six continuous covariates 
were included as polynomial terms up to power four because non-linear relationships with the outcome were 
suspected.

Analytics.  Ten commonly used statistical approaches that incorporate automated covariate selection were 
employed to analyse the data. Identical data were used for each statistical method; the outcome variable was farm 
revenue per acre and all 337 covariates were included as explanatory variables. A common approach to imple-
mentation of each method was used as follows. Firstly, each model was fit to the data and, where required, model 
hyperparameters optimised using ten-fold cross validation repeated ten times. For each method, a ‘final’ model 
was selected using hyperparameter values that resulted in the lowest cross validation mean absolute error (MAE); 
the selected covariates and coefficients at the optimised hyperparameter value were identified. Subsets of selected 
covariates in each final model were compared between methods.

To evaluate the extent of over- or under-fitting in the final models, a comparison was made between the MAE 
and R2 computed for each final model using the full dataset (‘internal fit’) and those calculated from 10 × 10 fold 
cross validation (‘cross validation fit’).

To further assess between model heterogeneity in covariate selection, covariate selection stability was evalu-
ated for all models. Selection stability is a concept well described in the context of model selection7,9,10; the basis 
is to evaluate the extent to which covariate selection changes under perturbations of the data. The most stable 
variables are the ones least likely to change when the data are perturbed and therefore can be considered most 
likely to have an effect across largest parts of the data and in other similar populations. In this case we evaluated 
covariate stability for each model using a bootstrapping methodology. We estimated covariate stability for each 
method, as the percentage of times that each covariate was selected in the model across 500 bootstrap samples. 
The distribution of covariate coefficients were also calculated from all non-zero (i.e. variables that were selected) 
values of the coefficient in the bootstrap samples. Therefore, we not only compared covariates selected between 
the ten different statistical methods used, but for each method, we also calculated the stability of variable selec-
tion. This allowed comparisons between all models of the most stable variables (for example, those with a stability 
of ≥90%) and the extent to which the most stable variables were similar between methods.

The ten methods used for analysis were; backward stepwise linear regression (BSLM)25, multivariate adaptive 
regression splines26, least absolute shrinkage and selection operator regression11, ridge regression12, elastic net 
regression11,13, adaptive elastic net regression27, smoothly clipped absolute deviation20, minimax convex penalty21, 
Sparsestep28, and ranking-based variable selection29. These approaches are summarised below; all models were 
run using the R statistical framework30.

Backward Stepwise Linear Regression (BSLR).  A conventional linear regression model was imple-
mented and can be described as;
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∑β β= + +
=

y x e
(1)j

p

j j0
1

where y is the response variable, β0 an intercept term, xj represents the jth of p covariates with an estimated coef-
ficient βj, e is the residual model error. Covariate selection was conducted using a backward stepwise procedure 
with minimisation of the Akaike information criterion (AIC) as the loss function. The AIC is defined as 2 

− ˆk 2 ln(L) where k is the number of parameters in the model and L̂ the likelihood function. The BSLR model was 
estimated using the MASS package in R25. Covariate stability was evaluated from 500 bootstrap samples using the 
R package bootstepAIC31.

Multivariate adaptive regression splines.  Multivariate adaptive regression spline (MARS) models26 
are a flexible form of regression modelling that perform automatic variable selection as well as identification of 
non-linearities and interactions. Non-linear functions are represented by hinge functions26 and the MARS model 
can be described as;

∑β β= + +
=

y h x e
(2)j

p

j j j0
1

where βy, 0, j, p and e are as defined in (1), h xj j is a function of covariate xj or a product of two or more such 
functions, with coefficient βj. MARS uses expansions in linear basis functions which are generally specified as (x 
− t)+ and (t − x)+ (where “+” indicates the positive part); each function is piecewise linear, with a knot at the 
value t. These ‘hinge’ functions and can be represented by;

− + = − >
≤

x t( ) x t, if x t
0, if x t

and

− + = − >
≤

t x( ) t x, if x t
0, if t x

Model selection is made firstly by using a forward iterative procedure to identify the combination of hinge 
functions and interactions that minimise the least squares error followed by a backward deletion step (‘pruning’) 
in which model terms that produce the smallest increase in residual squared error are deleted from the model. 
Hyperparameters optimised using 10 ×10 fold cross validation were “nprune”, the maximum number of terms 
(including intercept) allowed in the pruned model and “degree”, the maximum degree of interactions incorpo-
rated in the model. MARS models were constructed using the earth package32 within the caret package platform33 
in R.

Least absolute shrinkage and selection operator regression.  A least absolute shrinkage and selec-
tion operator (lasso) model11 was the first of several regularised modelling approaches implemented with the 
data. The others, ridge regression, elastic net, adaptive elastic net, smoothly clipped absolute deviation, minimax 
convex penalty and Sparsestep, are described below. The general principle of regularised approaches, which are 
an extension of the linear regression Eq. (1), is that a penalty is applied to covariate coefficients to shrink them 
towards zero and to set some to exactly zero. Whilst this increases model bias, it can be associated with a reduc-
tion in variance and improved model fit34. In the case of Lasso, the penalty is bound to the sum of the absolute 
values of the coefficients (L1 penalty) and the lasso loss function can be represented;

ˆ∑ ∑ β= − + λ | |
= =

y ySSE_lasso ( )
(3)i

n

i L
j

p

j
1

i
2

1

where SSE_lasso represents the lasso loss function to be minimised, i denotes each observation and n the num-
ber of observations, yi and ŷi are respectively the observed and the predicted outcome for the ith observation, j 
denotes a predictor variable with p the number of predictor variables in total, and |β| represents absolute values 
of the regression coefficients. The optimal value of λL, the penalisation hyperparameter, was determined as that 
producing the lowest MAE using 10 ×10 fold cross validation.

Ridge regression.  Ridge regression12 is an alternative form of regularised regression in which a penalty is 
applied to the square of the coefficients (L2 penalty). The ridge loss function takes the form;

∑ ∑ β= − + λ | |
= =

ˆy ySSE_ridge ( )
(4)i

n

i R
j

P

j
1

i
2

1

2

where SSE_ridge represents the ridge loss function to be minimised, and i, yi, ŷi, j, p and n are all defined as in Eq. (3).  
The optimal value of λR, the penalisation hyperparameter, was determined by 10×10 cross validation.

Elastic net regression (Enet).  Elastic net is a combination of lasso and ridge regression and incorporates 
both the L1 and L2 penalties and can be represented as;

https://doi.org/10.1038/s41598-020-64829-0


9Scientific Reports |         (2020) 10:8002  | https://doi.org/10.1038/s41598-020-64829-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

∑ ∑λ α β α β= − +






− + | |




= =

^SSE
n

y y1
2

( ) ( 1
2

(1 )
(5)enet i

n
i E j

P
j j1 i

2
1

2

where SSEenet represents the elastic net loss function to be minimised, i, yi, ŷi, j, p and n are as defined in Eq. (3). 
The hyperparameters that represent the penalty λ )( E

 and the relative proportion of penalisation on either the sum 
of the square of the coefficients or the unsquared coefficients (α) were optimised by 10 ×10 fold cross validation 
again to minimise MAE.

The lasso, ridge and elastic net models were built using the glmnet package  in the caret package platform33 
in R30.

Adaptive elastic net regression (Aenet).  The adaptive elastic net is an extension of the elastic net such 
that the lasso (L1) component of penalty is modified to a weighed (adaptive) lasso penalty27. In the adaptive lasso, 
variables with larger coefficients are assigned smaller weights and the extent of differential penalty weightings is 
a hyperparameter. The adaptive elastic net loss function can be described in terms of the elastic net loss function 
(3) but with an additional weighting factor, w, applied to each covariate coefficient, which is dependent on the size 
of the coefficient (β) as follows;

∑ ∑ β α β= − + λ








 − α +





= =

ˆSSE
n

y y w1
2 ( )

1
2

(1 )
(6)aenet i

n
i E j

P
j j j1 i

2
1

2

where SSEaenet represents the adaptive elastic net loss function to be minimised, all other model parameters are as 
defined in Eq. (3), and w is defined as;

β=
γ−

wj j enet

where βj enet  are the absolute coefficient values derived from an initial elastic net model defined in (3) and γ is a 
hyperparameter optimised by 10 × 10 fold cross validation. Adaptive elastic net regression was conducted in the 
R package msaenet22.

Smoothly clipped absolute deviation and minimax convex penalty.  Smoothly clipped absolute 
deviation (SCAD)20 and minimax convex penalty (MCP)14,21 are additional related forms of regularised regres-
sion. A key feature of these methods is that, as with adaptive elastic net, the size of the penalty function varies with 
the size of the covariate coefficient, β. Both methods can be described by the general framework;

∑ ∑ β γ= − + |λ=
=

ˆSSE y y P( ) ( , )
(7)

scad mcp i
n

i
j

p

j/ 1 i
2

1

where SSEscad/mcp represents the SCAD or MCP loss function to be minimised, i, yi, ŷi, j, p and n are as defined in 
Eq. (3) and β γλ( )P ,j  represents a penalty function as follows;

For SCAD:

β γ
γ

γ
γ

λ = λ β ≤ λ
λ − β

−
λ < β > λ

P( , ) , if

1
, if

(8)

γβ ≥ λ0, if

For MCP:

β γ β
γ

γ

γ γ

λ = λ β − β ≤ λ

. λ β > λ

P( , ) 2
, if

0 5 if (9)

2

2

where γ λand  are hyperparameters optimised using 10 × 10 fold cross validation. Both SCAD and MCP models 
were estimated using the R package ncvreg35. The non-linear penalties applied by the SCAD and MCP techniques 
mean, as with adaptive elastic net, relatively less shrinkage is applied as the absolute size of coefficients increases.

SparseStep.  The SparseStep function has been relatively recently described and provides another approach 
for non-linear penalisation in the regression loss function28. The SparseStep loss function can be described as;

∑ ∑ β
β γ

= − + λ
+= =

ˆSSE y y_ ( ) (10)sp step i
n

i j
p

1 i
2

1

2

2 2

where SSEsp_step represents the SparseStep loss function to be minimised, i, yi, ŷi, j, p and n are as defined in Eq. (3) 
and λ γand  are hyperparameters optimised using 10 ×10 fold cross validation. The Sparsestep model was esti-
mated using the sparsestep package in R28.
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Iterative ranking-based variable selection.  Iterative ranking-based variable selection (RBVS) is a differ-
ent approach to that of regularisation, for the identification of sparse models. The theory and methods of estima-
tion have been described in detail29 and we provide an overview of the concepts. RBVS is based on the principle 
that truly important covariates will consistently be related to an outcome of interest, both over an entire sample 
and over randomly chosen sample subsets. RBVS uses a method of ranking variables in terms of their associa-
tion with the outcome and this is repeatedly conducted over many subsamples of the data. A set of top ranked 
variables is identified and removed from the dataset and the procedure repeated at a second iteration to identify 
the next top ranked set. Iterations are continued until no further top sets of variables are identified. RBVS was 
conducted using the R-package “rbvs”36 with lasso regression used as the method for variable ranking. The size of 
subsample used was 200 and 100 repeated samples were used at each iteration to identify the top set of variables. 
The maximum number of variables allowed in the subset of important variables at each iteration was set at 10. The 
top ranked variables identified were deemed to comprise a ‘final model’ and coefficients for these variables were 
estimated using a conventional linear regression model with and 10 ×10 fold cross validation used to estimate 
cross validation MAE and R2.
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