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Determining organ weight toxicity 
with Bayesian causal models: 
Improving on the analysis of 
relative organ weights
Stanley E. Lazic1,3*, Elizaveta Semenova   1 & Dominic P. Williams2

Regulatory authorities require animal toxicity tests for new chemical entities. Organ weight changes are 
accepted as a sensitive indicator of chemically induced organ damage, but can be difficult to interpret 
because changes in organ weight might reflect chemically-induced changes in overall body weight. 
A common solution is to calculate the relative organ weight (organ to body weight ratio), but this 
inadequately controls for the dependence on body weight – a point made by statisticians for decades, 
but which has not been widely adopted. The recommended solution is an analysis of covariance 
(ANCOVA), but it is rarely used, possibly because both the method of statistical correction and the 
interpretation of the output may be unclear to those with minimal statistical training. Using relative 
organ weights can easily lead to incorrect conclusions, resulting in poor decisions, wasted resources, 
and an ethically questionable use of animals. We propose to cast the problem into a causal modelling 
framework as it directly assesses questions of scientific interest, the results are easy to interpret, and 
the analysis is simple to perform with freely available software. Furthermore, by taking a Bayesian 
approach we can model unequal variances, control for multiple testing, and directly provide evidence of 
safety.

Regulatory authorities require toxicity testing on animals as part of the safety assessment for new drugs, chemi-
cals, biologics, food additives, and medical devices. For new compounds or other chemical entities, organ weight 
changes are accepted as a sensitive indicator of chemically-induced effects on organs, and are commonly assessed. 
A problem with interpreting organ weight data is that a compound might affect the overall body weight of ani-
mals, and consequently, the size and weight of organs. However, the primary scientific question is whether a 
compound directly effects an organ, not indirectly through changes in body weight. To overcome this problem, 
researchers frequently calculate a ratio – called the “relative organ weight” – by dividing each animal’s organ 
weight by their body weight. The relative organ weights are then plotted, analysed, and interpreted, and research-
ers assume that this approach will provide correct conclusions. Unfortunately, the ratio fails to properly adjust 
for differences in body weight between groups – a point made repeatedly but mostly ignored1–9, and which we 
demonstrate again below.

Michael et al. surveyed organ weight toxicity practices from pharmaceutical, veterinary, chemical, food/nutri-
tional, and consumer product companies in Europe, North America, and Japan10. The only response that was 
consistent across all industries and locations was the use of relative organ weights to adjust for changes in body 
weight. Michael et al. also reported that respondents “believed that statistical analyses did not always enhance the 
understanding of these effects and could be misleading”. A remarkable statement, considering that the alternative 
is an ineffective ad hoc adjustment and eye-balling the data, but it nevertheless suggests a dissatisfaction with the 
recommended statistical procedures. The recommended approach since the 1940s has been the analysis of covari-
ance (ANCOVA)11, but it has rarely been used in the past 70 years. Multivariate methods have also been proposed, 
but have not been adopted either12.

In summary, we have a method in widespread use that is known to be ineffective, and an unused but effective 
method. Publishing yet another paper on the deficiencies of relative organ weights and the merits of ANCOVA 
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is unlikely to change practices. We suspect that many researchers avoid using ANCOVA because they do not 
understand how it works and how to interpret the output. We therefore propose an alternative approach that is 
conceptually simple, directly tests the hypothesised causal relationships of interest, and returns results that are 
intuitive and easy to interpret. We have already used these simple models to show that new neurons in the adult 
mammalian hippocampus play little or no role in behavioural outcomes, contrary to the accepted view13,14.

First, we use simulated data to show how relative organ weights can mislead. Next, we show that an ANCOVA 
provides the correct conclusion, but is difficult to interpret. Then, we analyse the data with a simple causal model 
and illustrate how the results are more informative. Finally, we analyse a more complex real data set that has mul-
tiple doses and unequal variances across experimental groups for liver weights. We show how the simple causal 
model can be extended to account for the multiple groups and unequal variances. By taking a Bayesian approach 
we can make direct probabilistic statements of scientific interest, including the probability of safety (classical fre-
quentist methods can only fail to reject the null hypothesis of “no toxicity”, giving an ambiguous conclusion: is the 
compound safe, or is power too low to detect an effect?). The Bayesian approach can distinguish between evidence 
for safety versus “insufficient evidence to make a conclusion”.

Methods
Data.  The data are from a National Toxicology Program report15 and were downloaded from (https://github.
com/lahothorn/SiTuR)16. Sixty female F344 rats were randomly assigned to the following six groups: 0, 62.5, 
125, 250, 500, and 1000 mg of sodium dichromate dihydrate (SDD) per litre of drinking water (10 rats/group). 
After thirteen weeks, the body and liver weights of the sixty rats were measured, and the question is whether 
SDD directly affects liver weight. However, since liver weight is related to the overall size of an animal, and SDD 
affected the body weight of the rats, it is unclear if changes in liver weight merely reflect changes in body weight.

Since the body weight measurements include the weight of the liver, we subtract liver weight from body weight 
to obtain a “liver-free” estimate of the body weight, which we use in all subsequent analyses. This preprocessing 
step is rarely mentioned in published studies and therefore presumably not done (or it is unclear if body weights 
are measured after the relevant organs are removed). Subtracting the liver weight is necessary because otherwise 
the measured body weight will always reflect changes in the liver weight, although it may make little difference 
in practice because the liver weight is small compared with the overall body weight. The body and liver weight 
values were centred by subtracting the mean values (across all dose groups) from each animal’s value. Body and 
liver weights therefore have a mean of zero, making it easier to define the prior distribution for the group means, 
but it does not affect the results.

Simulated data.  To illustrate the inadequacy of using relative organ weights, we generated data that has 
similar means, standard deviations, and correlations as the real data set from the National Toxicology Program 
report15. Because we are generating the data, we know the true causal relationships, and can therefore compare 
analytical methods to see which provide the correct causal conclusion. Twenty animals per group were simulated 
with the following equations:

= − ×  B Normal(320 32 D, 16) (1)

= − + . × + . ×  .L Normal( 3 0 4 D 0 04 B, 0 6)

where B is the body weight, L is the liver weight, and D is the dose, which is an indicator variable that equals 0 
for control animals and 1 for animals in the drug group.

Models and analyses.  The basic model has three variables: (1) an experimental intervention such as a drug 
and control group, (2) the weight of a target organ, and (3) body weight (again, this is the remaining body weight 
after subtracting the liver weight). The scientific hypothesis is whether a difference in organ weight between 
treatment groups can be attributed to a direct effect of the treatment on the organ, or if the effect is mediated by 
changes in overall body weight, or both. This basic model is often called a mediation model and it was popular-
ised in the social sciences by Baron and Kenny17, and considerable developments have been made since18–23. A 
nice feature of these models is that the hypothesised causal relationships can be expressed as a diagram, where 
the variables are shown as nodes and the hypothesised causal relationships are indicated with arrows (Fig. 1A).

The diagram can then be expressed as a set of equations that are fit to the data. In the equations below we 
abbreviate body weight to B, liver weight to L, and Dose to D, which can take two levels: D = 0 is the control group 
and D = 1 is the treated group. The first equation below describes the effect of the drug on body weight (Drug → 
Body weight path in Fig. 1A), and the second equation models both the effect of the drug and the effect of body 
weight on liver weight (Drug → Liver weight and Body weight → Liver weight paths).

β β σ∼ +B Normal( D , ) (2)i 0 1 i B

θ θ α σ∼ + +L Normal( D B , ) (3)i 0 1 i i L

i indexes the animal and runs from 1 to the maximum number of animals (N ). There are seven unknown 
parameters in these equations (β s, θ s, σ s, and α) that are estimated from the data. The three key parameters are: 
β1, which quantifies the direction and strength of the drug’s effect on body weight; α, which describes how body 
weight affects liver weight; and θ1, which quantifies the direction and strength of the drug’s effect on liver weight, 
after adjusting for the drug’s effect on body weight. Once these parameters are estimated from the data, the fol-
lowing three effects can be calculated. The direct effect (DE) of the drug on liver weight (Drug → Liver weight 
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path) is given by θ1 and is the main hypothesis for this experiment (it corresponds to a standard ANCOVA analy-
sis). The direct effect has an intuitive interpretation as the effect of the drug on liver weight when the body weight 
is held fixed to what it would have been in the 0 dose group – one can think of it as blocking the Drug → Body 
weight path in Fig. 1A so that the drug can only affect the liver through the direct path. Second, the indirect effect 
(IE) is the product of β1 and α and represents the effect of the drug on the liver weight that is mediated through 
changes in body weight. Finally, we can calculate the total effect (TE) as the sum of the direct and indirect effects. 
The TE can also be calculated as the difference in the mean liver weights between the two dose groups (ignoring 
any effect of body weight).

The model has a key assumption about the causal effects: no other variables exist that influence the three var-
iables in the model, which would affect the interpretation of the results. These variables are called confounders 
and are the nodes C1–C4 in Fig. 1A. The influence of potential confounding variables can be minimised by the 
design of the experiment when this is feasible, for example by randomising animals to treatment groups. 
Alternatively, they can be accounted for in the causal model and details of how to incorporate such variables are 
described in most standard sources; for example, see VanderWeele23 for a mathematical description and Tingley 
et al. for a code-based specification24. The first confounder is when a variable affects both organ weight and 
whether an animal received the control or drug (C1 in Fig. 1A). Since this is a randomised experiment, we know 
how animals were assigned to treatment groups and hence there is no arrow pointing from an unmeasured vari-
able (C1) to the Drug node. Contrast this with an observational study comparing people that take aspirin and 
those that do not. Since people choose to take aspirin (or not) for many reasons (e.g. have headache), there are 
multiple arrows pointing into the Drug node, and these reasons will also affect the downstream variables of inter-
est. A second confounder is when a variable affects both body weight and whether an animal received the control 
or drug (C2). Again, because this is a randomised experiment, such a variable is unlikely to exist. A third con-
founder is when a variable affects both liver and body weight (C3), and is harder to rule out because we expect 
that factors such as sex, litter, and age might be relevant. Potential confounders like C3 can be dealt with by either 
holding these values constant experimentally (e.g. using only animals of one sex and all of the same age), or by 
including these variables as covariates in the mediation model. As we have no further information on the animals 
in this dataset, we will assume that no such variables exist. A final confounder is when the drug has an effect on a 
variable (C4) that subsequently affects both body weight and organ weight. If such a variable exists, we can still 
obtain an unbiased estimate of the direct effect, but not the indirect effect. In summary, we can be reasonably 
certain that the above assumptions about confounding hold in this experiment. The causal modelling approach 
also requires that hypothesised causal relationships have been properly specified, meaning that the arrows con-
necting the three variables are pointing in the correct direction. Another potential causal structure is Drug → 
Liver weight → Body weight, where the drug has no direct effect on body weight, but has a direct effect on the 
liver, which makes animals ill, and which subsequently causes them to lose body weight (Fig. 1B). If this is the true 
relationship, then the analysis is straightforward because we can ignore body weight entirely and examine the 
liver weights directly (called the Total Effect below). Using relative organ weights in this situation will also bias the 
results. Fortunately, given that assumptions C1–C4 hold, the approach described below is valid for both models. 

Figure 1.  The causal model. A Drug (D) can affect liver weight (L) directly; by altering body weight (B), which 
in turn affects the liver weight; or through both mechanisms. Four potential confounding effects (C1–C4) must 
be ruled out before making causal mechanistic claims about how the drug affects liver weight (A). An alternative 
causal model is that the drug affects liver weight, making the animal ill, which then leads to a reduction in body 
weight.
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If the true relationships are the ones shown in Fig. 1A, then the Direct Effect provides the relevant result, but if the 
true relationships are those shown in Fig. 1B, then the Total Effect should be used for inference. We will assume 
that Fig. 1A is the true model of the causal relationships.

The code below shows how to implement the analysis using the mediation package in R24. The first two lines 
reflect the two equations above, and the third line takes the output from the first two lines, specifies the treatment 
variable (treat = “Dose”), the mediating variable (mediator = “B”), and finally defines the factor levels for the 
control and treated animals (control.value = “0” and treat.value = “1”).

m.mod < - lm(B Dose)
y.mod < - lm(L Dose + B)
med.mod < - mediate(m.mod, y.mod, treat = “Dose”, mediator = “B”, control.value = “0”, treat.value = “1”)
The above causal model can be extended in two important ways. First, if a confounder like C3 in Fig. 1B exists, 

the results could be biased if there is relationship between C3 and the treatment conditions; for example, if the 
control condition has more females and the treated condition has more males25. This relationship can result from 
an imbalance in the design of the experiment and is therefore usually avoidable, but when unavoidable, it can 
be accounted for by modifying the model definition above (see Tingley et al. for details24). We can also test the 
sensitivity of the conclusions to the assumption that no variable like C3 is affecting the results by performing a 
“what-if ” experiment, whereby we induce a positive or negative correlation between body weight and liver weight 
and recalculate the effects. The medsens function in the mediation package performs such a sensitivity analysis. 
Second, the above model assumes that the relationship between liver weight and body weight is constant across 
treatment groups. Formally, the assumption is that there is no treatment-by-body weight interaction, which is 
visualised as parallel lines as in Fig. 2D. Such an assumption may not hold for a given dataset, and this makes the 
recommended ANCOVA analysis even more difficult to interpret. With a causal modelling approach such inter-
actions suggest that body weight might moderate the effect of the treatment (in addition to mediate); for example, 
if the drug only affects livers of lighter animals. We do not discuss these extensions here, but see references17,18,23,26 
for details, and the implementations are described in the documentation for the mediation package24.

Although straightforward to implement, the above analysis has several limitations, which we can overcome 
by switching to a Bayesian analysis that we implement in Stan using the rstan package27,28. A key benefit of a 
Bayesian approach is that we obtain straightforward probabilistic statements about quantities of scientific interest, 
instead of commonly misinterpreted p-values and confidence intervals. Defining the model in Stan enables us 
to make three extensions. First, we allow for multiple doses or treatment groups and calculate the causal effect 
at each dose. Second, to control false positives, we shrink the estimates of each group mean towards the overall 
mean (the mean of all of the data) for both liver weight and body weight. False positives occur when the means 
of two groups are far apart in a sample of data (relative to the variability of the values within each group), even 
though there is no true difference between the groups. The traditional way to control false positives is to adjust 
the p-value upwards (or reduce the threshold for significance) using what has now become a bewildering set of 
multiple testing corrections. An alternative suggested by Gelman and colleagues is to obtain better estimates of 
the group means, by using a hierarchical model to shrink the group means towards the global average29. In other 
words, adjust the estimates of the group means instead of adjusting the p-values. Third, we allow the liver weights 
and body weights to have unequal variances across the dose groups. The assumption of homogeneity of variance 

Figure 2.  Model definition and representation as a directed acyclic graph (DAG). Symbols are defined in the 
text.
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is not reasonable for the liver weight values (Fig. 4A). Classical methods either assume a constant variance for 
each group, which may be inappropriate, or estimate a separate variance for each group using only the data from 
that group, which can provide poor variance estimates with small sample sizes. The group variances can also be 
shrunk towards a global average variance, just like the group means, whereby information from all groups is 
used to estimate the variance for a particular group. This provides more stable estimates while still allowing the 
variances to differ between groups.

The Bayesian model is defined below and represents our assumptions about the generative process that cre-
ated the data. It encodes the causal structure from Fig. 1A as well as the distributions that describe the liver 
and body weight values. We do not discuss Bayesian inference in any detail here, but Kruschke and McElreath 
provide excellent introductions30,31. The key idea is that we use distributions (called prior distributions) to rep-
resent our knowledge about parameters in the model before observing the current data. The prior distributions 
are then updated with the data to form posterior distributions, which reflect both the evidence provided by the 
data and our prior knowledge. All inferences and conclusions are then based on the posterior distributions. In 
the equations in Fig. 2, liver weight, body weight, and the drug variables are once again abbreviated to L, B, and 
Dose (D), respectively. The model definition is on the left, and graphical notation on the right helps visualise the 
dependencies.

In the first line of the model (Fig. 2), B is subscripted with the letter i, which indexes the animal (i runs from 1 
to 60). Body weight is modelled as being generated from a normal distribution, and the tilde (∼) is read as “is 
distributed as” or “is generated from” and indicates a stochastic relationship. The distribution of body weights is 
characterised by a mean (β) and standard deviation (σB). j indexes the dose groups and runs from 1 to 6. Since 
both β and σB are subscripted with a j, this indicates that each dose group has its own mean and variance. There 
are thus six β and σB values – one for each group. The j i[ ] notation is taken from Gelman and Hill and indicates 
that animals (i) are nested in groups ( j)32. This way of writing the model, where the mean of each group is esti-
mated, is called the “cell means” form (it is more common to include an intercept that represents the mean of the 

Figure 3.  Simulated data. Liver weight is reduced in the drug-treated group (p = 0.014; A), as is body weight 
(p < 0.001; B). There are no differences between groups for relative organ weights (p = 0.710; C), suggesting 
(incorrectly) that changes in liver weight simply reflect changes in overall body weight. Relationship between 
liver and body weight shows that for a given body weight, animals in the drug-treated group have higher liver 
weights than control animals (D).
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control group, and the other parameters represent the change from the control. The cell means parameterisation 
is used so that we can more easily define a hierarchical structure to shrink the β values towards the global average, 
and because it makes subsequent calculations easier.) We can examine the β values – or differences between β 
values – to determine if differences between groups exist, and hence this first line enables us to test for the effect 
of the drug on body weight.

In the second line of the model definition, L is liver weight and the θ and σL parameters and subscripts have the 
same interpretation as the β and σB parameters in the previous line. B is once again the body wight and α is the 
parameter that describes the direction and strength of the relationship between body and liver weight, which is 
assumed constant across all dose groups, that is, there is no body weight-by-dose interaction.

β, θ and α are unknown parameters that we estimate from the data. In the Bayesian framework, all unknowns 
must be represented with a prior distribution, which represents our uncertainty about the unknowns before see-
ing the data. The next three lines of the model definition specify prior distributions for these unknowns.

Our uncertainty in the six β parameters (body weight group means) is represented as a Student-t distribution 
with three degrees of freedom (df), a mean of zero and a standard deviation of σβ. A t-distribution resembles a 
normal distribution but has heavier tails, which is controlled by the df (as the df increases a t-distribution 
becomes a normal distribution). We use a t-distribution because it allows the mean of some dose groups to be far 
away from others and incorporates our knowledge that large effects may exist at some doses, and because we 
centred the body weight values, we know that they have a mean of zero. σβ is the variation between the dose 
groups – if the drug has no effect then σβ would be close to zero. The same prior is used for θ, which represents the 
mean liver weight for each group. The prior for α is a normal distribution with a mean of zero and a standard 
deviation of 10.

The next six lines specify priors for the standard deviation parameters in the model. σβ and σθ represent the 
variation between the group means for body weight and liver weight, respectively. σB, and σL represent the varia-
bility of the data within each group for body weight and liver weight, and σσB

 and σσL
 represent how much the 

within group standard deviations (σB and σL) vary from group to group for body weight and liver weight. All of 
the standard deviation parameters in the model are represented with half-normal distributions, which are normal 
distributions with values less than zero truncated, since standard deviations must be positive. The standard devi-
ations for the halfnormal distributions were set to approximately ten times larger than the empirical values, such 
that the priors have little influence on the results. The results were similar under reasonable alternative priors (e.g. 
twice as wide or half as wide).

Finally, given the estimated values for θ, the direct effect (DE) of SDD on liver weight can be calculated as the 
difference of each θ from the control group (θ1). Similarly, the indirect effect (IE) can be calculated as the differ-
ence of each β from the control group (β1) times α. The total effect (TE) at each dose is just the sum of the direct 
and indirect effects. The total effect can also be calculated by ignoring body weight and estimating the simple 
Drug → Liver weight effect. This is not shown in the model specification (Fig. 2) because it is redundant, but it is 
calculated in the Stan code, represented by the parameter γ, as calculating the same quantity in two ways provides 
a way to check for coding errors.

For comparison, the ANCOVA model is given below, where θ0 is the intercept and θ1 – θ4 are the dose effects. 
D1 – D4 are binary dummy variables and the remaining variables and parameters are the same as above. To make 
this a Bayesian model priors can be placed on the all the parameters.

Figure 4.  Effect decomposition for the drug’s influence on liver weight. The overall decrease in liver weight is 
driven by a large decrease in body weight, but the specific and direct effect of the drug is to increase liver weight.
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θ θ θ θ θ α σ∼ + + + + +L Normal( D D D D B , ) (4)i i i i i i0 1 1 2 2 3 3 4 4

Controlling false positives.  We simulated 1000 datasets with similar properties as the SDD data, including 
the association between body weight and liver weight, and the within-group variances for both outcomes; but 
without differences between groups. For each dataset we calculated the direct effect at each dose and deemed the 
result a false positive if the value of zero was outside of the 95% highest posterior density interval (HPDI). The 
false positive rate was calculated as the proportion of simulated datasets that had at least one false positive for 
the direct effect. We provide the data and code to reproduce the analyses in this paper in supplementary file S1.

Results
Simulated data.  Figure 3A plots the liver weight for twenty control and twenty drug-treated animals, and 
the drug-treated animals have a reduced liver weight. A classical statistical test for a difference in group means 
gives a p-value of 0.014. The body weight of the animals in the drug-treated group is also reduced (Fig. 3B; 
p < 0.001), suggesting that the decreased liver weight might simply reflect changes in body weight. The graph of 
the relative liver weights (Fig. 3C) and the formal statistical test (p = 0.710) confirms this suspicion, and we might 
naively conclude that the drug has no direct effect on liver weight. Not only is this conclusion incorrect, but the 
true effect of the drug is to increase liver weight, the opposite of what Fig. 3A suggests. Figure 3D shows how this 
is possible: the drug-treated group (darker points) are shifted to the left of the control group, indicating that their 
body weight is decreased. The values from the drug-treated group are also shifted above the control group, indi-
cating that the liver weight in the drug-treated group is increased for any given value of body weight. Scatterplots 
and similar graphs can help understand the relationships between liver weight and body weight33. Testing for 
differences in liver weight between groups using the recommended ANCOVA analysis gives a p-value of 0.016, 
and so we correctly conclude that the drug increases liver weight.

Figure 4 shows the result of the (non-Bayesian) mediation analysis, which highlights the key effects in the 
data: (1) the overall liver weight of the animals in the drug-treated group is decreased (total effect), which is 
driven by (2) a large decrease in body weight, despite (3) the drug directly increasing the liver weight. Two causal 
effects thus are operating in opposite directions, and which appear to cancel out when looking at the relative liver 
weight. Liver weight was higher than expected, even after accounting for a decrease in liver weight due to a large 
decrease in body weight. The sensitivity analysis showed that the conclusion about the indirect effect would not 
change unless an unknown variable (C3) was inducing a correlation of approximately 0.75 between body weight 
and liver weight. For the direct effect, the conclusion would change if the correlation was 0.25. We can therefore 
state that only a moderate to large violation of the assumption would change the conclusions. Even though the 
ANCOVA model came to the correct conclusion, it was not obvious from the model output that two causal effects 
were working in opposite directions – the raw data needed to be examined along with the model predictions 
(lines in Fig. 3D).

Real data.  First, we compare group means and standard deviations from a standard non-hierarchical model 
with those from a hierarchical model. Figure 5 compares the estimated means and 95% Bayesian confidence 
intervals (highest posterior density intervals) for a standard model that assumes equal variances and a hierarchi-
cal model that shrinks the means towards the overall mean (zero in this case because the values were centred) 
and that allows for unequal variances. Since the group means of the hierarchical model are closer together, the 
differences between groups is smaller, and hence false positives are less likely.

For a classical analysis using a 0.05 significance threshold, there is a 23% chance of at least one false positive 
result when comparing all groups to the control, and a 54% chance when making all possible comparisons. The 
Bayesian model rephrases hypothesis testing as parameter estimation and “corrections” are not done by changing 

Figure 5.  Comparing an equal-variance standard model with a hierarchical model that allows for unequal 
variances. Note how the hierarchical model shrinks the group means closer to zero (the overall mean), thereby 
controlling the false positive rate.
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the p-value or significance threshold but by shrinking the group means towards the overall mean. The simula-
tion experiment showed that when comparing all groups to the control, the false positive rate was only 1% when 
using the Bayesian model (compared with an expected 23%). Unlike frequentist methods, this approach can 
control false positives without appreciably increasing false negatives because effects are estimated with greater 
precision29.

Figure 6 shows the raw data from the sodium dichromate dihydrate (SDD) experiment. Qualitatively, both 
liver weights (A) and body weights (B) decrease at higher doses, as does the liver/body weight ratio (C). As 
expected, liver and body weights are highly correlated (r = 0.84, p < 0.001; Fig. 6D) but the relative liver weight is 
still associated with liver weight (r = 0.51, p < 0.001; E), indicating that dividing by body weight provides a poor 
correction with this data. The recommended ANCOVA method removes the dependence on body weight 
(r = 0.00, p = 1.00; F). Figure 6A also shows that the liver weight values are less variable at higher doses.

Figure 7 shows the results of the Bayesian mediation analysis where each drug-treated group is compared 
against the control. The left set of graphs are similar to Fig. 4, where the total effect of SDD is separated into the 
direct effect on the liver and the indirect effect that is mediated via a change in body weight. The thick error bars 
are 50% Bayesian CI and the thin lines are 95% CI. The right set of graphs shows the posterior distribution for 
the direct effect, which is the main scientific hypothesis. The main summary statistic reported here is the prob-
ability that SDD decreases liver weight, indicated as P(Eff < 0). Except for the 125 mg/L group, there is some 
evidence that SDD decreases liver weight at the lower doses, (P(Eff < 0) = 0.79 and 0.86 at 62.5 and 250 mg/L, 
respectively), and strong evidence for an effect at higher doses (P(Eff < 0) = 0.99 and 0.97 at 500 and 1000 mg/L). 
A standard ANCOVA analysis returns the following adjusted p-values (using Holm’s method): at 62.5, 125, and 
250 mg/L, p > 0.54; at 500 mg/L p = 0.001; and at 1000 mg/L p = 0.16. The ANCOVA method failed to detect a 
difference at the highest dose and only the 500 mg/L dose appeared to affect the liver weights. An analysis of the 
relative liver weights returns the following adjusted p-values (using Holm’s method): at 62.5, 125, and 250 mg/L, 
p > 0.60; at 500 mg/L p = 0.0002; and at 1000 mg/L p = 0.002. Analysis of the relative liver weights detected a sig-
nificant difference at both 500 and 1000 doses.

Instead of detecting the existence of an effect, it is often more important to determine if the change in liver 
weight is greater than a relevant threshold – usually ± some value around zero. The threshold can be set such that 
if the effect exists but is below the threshold, then the effect can be considered negligible. A region of practical 
equivalence (ROPE) can thus be defined, and if most of the posterior distribution falls within this region, then we 
can conclude that we have strong evidence of safety34. Such a calculation is straightforward and is shown for the 
62.5 mg/L dose group in Fig. 8. The ROPE is defined as a change of ± 0.25 g for the direct effect (vertical dashed 
lines) and corresponds to a 20% change in liver weight (a 20% increase in liver weight is the AstraZeneca thresh-
old, whereby bespoke mechanistic investigations into the cause of hepatic hypertrophy or hypercellularity are 
triggered). Approximately 53% of the posterior distribution for the 62.5 mg/L dose group falls within this region, 
and we therefore do not have strong evidence of safety at this dose. 44% of the posterior distribution lies below the 
lower threshold and 4% lies above the upper threshold. A key benefit of this approach is that as the sample size 
increases, the posterior distribution becomes narrower and will eventually be contained within the ROPE (assum-
ing there is no effect), and we can therefore provide a direct probabilistic statement about safety, which is difficult 

Figure 6.  Effect of SDD on liver weight (A), body weight (B), and the liver/body weight ratio (C). Liver and 
body weight are strongly correlated (r = 0.84, p < 0.001; D), but the relative liver weight is still associated 
with body weight (r = 0.51, p < 0.001; E), indicating that the dependence on body weight has not been fully 
removed. The recommend ANCOVA method fully removes the dependence on body weight but can be harder 
to interpret (F).
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to do with frequentist methods. For the other doses, the probability that the direct effect is between −0.25 and 
0.25 is 0.49, 0.44, 0.04, and 0.15. Thus, at no dose do we have a strong evidence of safety.

Another advantage of Bayesian models is the flexibility to easily calculate many quantities of interest. For 
example, suppose we are interested in the probability that, at any dose, the direct effect is less than a −0.25 g 
reduction in liver weight. In Fig. 8, this is the probability below the left dashed line and equals 0.44. The proba-
bility at any dose is the probability at the first dose, or the second dose, or the third dose, and so on, and equals 

Figure 7.  Bayesian mediation analysis. Left graphs show the effect decomposition for the effect of SDD and 
right graphs show the posterior distribution for the direct effect of SDD on liver weight. P(Eff < 0) is the 
probability that the effect is less than zero and corresponds to the proportion of the distribution that is below 
zero.
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P(DE62.5 < −0.25 OR DE125 < −0.25 OR DE250 < −0.25 OR DE500 < −0.25 OR DE1000 < −0.25) = 0.98. 
Hence, even though several doses were tested, we get a single number that enables us to conclude that there is 
strong evidence of a biologically relevant effect of the drug.

Discussion
The results of the ANCOVA model suggest that SDD does not affect liver weight at the highest dose of 1000 mg/L, 
based on the adjusted p-value of 0.16 (the unadjusted p-value is 0.04). However, analysing the relative organ 
weights gives an adjusted p-value of 0.002, suggesting that liver weight is affected. Bringing our biological knowl-
edge into play when interpreting the results, we would conclude that if we observe an effect at the second highest 
dose of 500 mg/L (which all methods found), then it is likely that the effect also exists at a higher dose, especially 
when the graphs suggest a large effect (Fig. 6A). It appears that the relative organ weight analysis arrived at the 
correct conclusion, despite its known flaws. Even though the ANCOVA method is preferred over relative organ 
weights, it may have over-corrected for the changes in body weight in this example. The results of the Bayesian 
causal model are more consistent with intuition and the relative organ weight results for the highest dose. Figure 7 
shows that the total effect is larger at 1000 mg/L compared with 500 mg/L, but the indirect effect is a greater pro-
portion of the total effect, thus reducing the magnitude of direct effect. Displaying all of these relationships as in 
Fig. 7 makes the interpretation more straightforward.

In any given experiment, it will be unclear which causal model shown in Fig. 1 is correct – assuming these two 
models exhaust the possibilities. Nevertheless, the Bayesian model described here can estimate unbiased effects 
under either model. If The Drug → Liver Weight → Body Weight model is correct, then the total effect can be 
examined. Otherwise the direct effect can be examined. Methods exist to uncover causal structural relationships 
from data, they are unlikely to be reliable with the small sample sizes used in these toxicology experiments35.

A Bayesian model provides direct probabilistic statements about safety by reporting the proportion of the pos-
terior distribution that is within a region of practical equivalence. There was no strong evidence of safety at any 
dose for the SDD data, but the posterior distributions were all relatively wide, even when the estimated effect was 
close to zero. This indicates that power was too low to make any strong direct conclusions about safety, although 
we can still make indirect conclusions for a lack of safety when the posterior is far from zero. This type of analysis 
opens the possibility of powering experiments by calculating the number of samples needed to achieve confidence 
intervals of a given width, and not based on the probability of rejecting a null hypothesis as is usually done36,37. 
Powering studies based on the precision of an estimate is also easier than a classic sample size calculation because 
no minimum effect size needs to be defined.

We showed with simulated data – once again – how relative organ weights can mislead and argue that their 
use should be discontinued. Graphical displays of the raw values33, and mediation models provide a better under-
standing of the relationships in the data and the effect of chemical substances on organ weights. For simple 
designs with only two groups the mediation R package provides a simple way to fit these models, plot the results, 
and perform a sensitivity analysis to test the effect of violating assumptions. This analysis can be performed 
with only a basic knowledge of the free statistical software R, or with JASP’s point-and-click interface (https://
jasp-stats.org/), and thus there are no barriers to widespread adoption.

We also showed how the basic model can be extended to account for multiple groups and unequal variances 
by switching to a Bayesian framework, which also enabled us to control the false positive rate and obtain straight-
forward probabilistic conclusions about quantities of scientific interest, such as the probability that SDD decreases 

Figure 8.  Probability of safety. The vertical lines define the region of practical equivalence, within which the 
effect is considered negligible. Only 53% of the posterior distribution falls within this region, indicating that 
there is little evidence of safety.
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liver weight or the probability of safety. Although the Bayesian model is more complex and requires knowledge of 
the Bayesian programming language Stan, it highlights the flexibility of the approach to model the relationships 
in the data.

We focused on drug-induced organ weight toxicity as a concrete example, but the methods are applicable 
to many situations where body weight is a confounding factor and where ratio adjustments are currently used. 
Mediation models can also be used when the mediator, the outcome, or both, are not normally distributed (e.g. 
binary or count data). These three-variable mediation models are simple examples of larger multi-variables mod-
els known as path models or structural equation models, and many areas of experimental biology could benefit 
from their use38,39.

Data availability
The data used are already publicly available, but have been included in the Supplementary Information for 
convenience.
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