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Metabolomic alternations of 
follicular fluid of obese women 
undergoing in-vitro fertilization 
treatment
Jingyan Song1,2, Shan Xiang1, Conghui Pang2, Jiayin Guo3 & Zhengao Sun   1,2*

Obesity exerts negative effects on the metabolic homeostasis of cells in various tissues, but how it 
influences ovum metabolism is not fully understood. Previous studies demonstrate that oocyte genes 
that regulate oxidative stress, lipid metabolism, and inflammation are highly expressed in obese 
women. However, the metabolic effects of these genetic variations are not clear. To address this gap, 
we conducted an exploratory evaluation of follicular fluid (FF) metabolites in underweight, normal-
weight, overweight, and obese women undergoing in vitro fertilization (IVF) treatment. The FF samples 
from the underweight (Group A, n = 40), normal-weight (Group B, n = 40), overweight (Group C, n = 40), 
and obese women (Group D, n = 40) were analyzed using ultra-performance liquid chromatography 
high-resolution mass spectrometry. A novel, high-coverage, semi-targeted metabolomics method 
(SWATH to MRM) and a targeted metabolomics method were employed to identify and verify the 
differential metabolites between the four groups. Sixteen differentially expressed FF metabolites 
were identified. Increase of BMI was associated with upregulation of 5 metabolites, ganoderiol 
H, LPI (18:3), sedoheptulose 1,7-bisphosphate, austalide L and 2 - {[hydroxyl (3-hydroxy-4-
methoxyphenylmethylidene] amino} acetic acid, and downregulation of 5 metabolites, 1-phenyl-1,3-
elcosanedione, retinol acetate, p-Cresol sulfate, setariol and arachidonyl carnitine. These metabolites 
were enriched in different metabolic pathways of retinol metabolism and fatty acid metabolism. These 
obesity-related differential metabolites provide a pathogenesis mechanism that explains the decline of 
oocyte development during obesity. These results suggest that obesity affects follicular environment 
prior to pregnancy, a time-window that may be important for lifestyle interventions to decrease obesity 
levels.

Antral follicles in mammalian ovaries are composed of oocytes, one or more layers of granulosa cells and outer 
membrane cells. Oocytes bind to granulosa cells through gap junctions, which mediate the transfer of small 
metabolites, inorganic ions, and second messengers from one cell to another to supply nutrients and growth 
factors that promote oocyte growth, development, and maturation1,2. Oocyte development is a complex process 
regulated by many internal and external factors in the ovary. Granulosa cells provide a variety of energy substrates 
for oocytes while oocytes control the metabolic activities of granulosa cells by secreting paracrine factors2,3. 
During oocyte maturation, a number of metabolites and metabolism-related enzymes have been demonstrated 
to play important roles in various cellular events1,4–6. In the last four decades, the wide-spread application of 
IVF-ET technology has not only brought joy to the majority of infertility patients, but also provided a platform for 
studying the development of oocytes and improve their ontogenetical potential. Moreover, about half of women 
of child-bearing age undergoing assisted reproductive technology (ART) are overweight or obese. Therefore, it is 
important to understand the impact of overweight on oocytes development7,8.
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Meanwhile, obesity and its related metabolic disorders cause major health problems that have attracted global 
attention. In particular, several studies have confirmed that obese women have a significantly increased risk of 
infertility, abortion, obstetric complications, neonatal morbidity, and mortality, and birth defects9–15. Previous 
studies have revealed that obese women undergoing IVF treatment have decreased number and quality of oocytes 
and embryos in comparison to normal-weight women16–18. Another recent study found that the expression of 
genes related to inflammation, oxidative stress, lipid metabolism and transcription factors in oocytes of over-
weight or obese women was statistically significant compared to those of women with normal weight19. These 
results suggest that obesity changes in the microenvironment of the oocytes before pregnancy and this is likely 
to affect the pregnancy outcome. These results were obtained by studying the medium follicular fluid (FF), and 
thus analysis of FF composition provides a unique opportunity to assess factors such as the oocyte environment at 
ovulation and the metabolic information of oocytes and surrounding granulosa cells. Recent clinical studies have 
shown that in obese women undergoing fertility treatment, FF triglyceride, leptin, and c-reactive protein levels 
are elevated and these are positively correlated with body mass index (BMI), poor oocyte quality, and pregnancy 
outcome19,20. Collectively, these studies demonstrate the importance of FF in providing a favorable follicular 
environment for a successful pregnancy, especially in obese patients. Recently, untargeted metabolomics has been 
widely used to detect metabolites in FF, enabling us to understand how the surrounding metabolites affecting 
oocyte development21–24. However, no comprehensive untargeted metabolomics analysis has been done to exam-
ine the impact of obesity on human FF metabolites. This experimental design study investigated the underlying 
mechanisms of follicular metabolomics in obese women undergoing IVF.

Materials and Methods
Participants.  The MetSizeR approach was used to estimate the sample size of 40 participants based on the 
following assumptions23–28: mass spectrometry of 584 follicular fluid metabolites, a target false detection rate 
of 5%, and an expected proportion of significant metabolites of 20%29. A total of 160 subjects were recruited 
and their FFs collected at the affiliated hospital of Shandong University of Traditional Chinese Medicine, from 
November 2017 to May 2018. The subjects were divided into four groups; group A (BMI < 18.5 kg/m2, n = 40), 
the group B (18.5 kg/m2 ≤ BMI < 25 kg/m2, n = 40), the group C (25 kg/m2 ≤ BMI < 30 kg/m2, n = 40) and group 
D (BMI ≥ 30 kg/m2, n = 40). The recruited subjects were included or excluded in our study according to the 
inclusion and exclusion criteria.

Ethical considerations.  All experiments were performed in accordance with institutional guidelines and 
received approvals from the Health Authorities and Ethics Committees of the Affiliated Hospital of Shandong 
University of Traditional Chinese Medicine. All participants carefully read and appended their signatures on the 
informed consent forms prior to the commencement of the study.

Inclusion and exclusion criteria.  Inclusion criteria: (1) all patients receiving IVF treatment due to fallo-
pian tube associated problems; (2) healthy women aged between 21–35 years.

Exclusion criteria: (1) women who had endometriosis, polycystic ovary syndrome (PCOS), genital abnormal-
ities, chronic hypertension, diabetes, autoimmune diseases, infectious diseases, or liver, kidney, cardiovascular, or 
thyroid diseases; (2) subjects aged ≥ 40 years old.

FF retrieval procedures.  GnRH antagonist (cetrorelix; Merck Serono, Darmstadt, Germany) is admin-
istered subcutaneously at a daily dose of 0.25 mg when there is at least one follicle measuring ≥12 mm in 
mean diameter on the trigger day, with 150–450 IU/day of recombinant FSH (Puregon, MSD, Courbevoie, 
France; Gonal-F, Merck-Serono, Lyon, France) and urinary FSH (hMG, Menotrophin for Injection, Livzon 
Pharmaceutical Group Inc, Guangdong, China). Gonadotropin doses will be determined based on individual 
patient’s characteristics. Final oocyte maturation will be triggered when more than two ovarian dominant folli-
cles measuring ≥18 mm are visible by ultrasound. Final oocyte maturation will be achieved using either a single 
0.2 mg injection of GnRH agonist (Triptoreline, Decapeptyl, Ipsen, France) or 250 μg of recombinant hCG (rhCG, 
Ovitrelle, Serono, France). Oocyte retrieval will be performed after 35–36 h by transvaginal ultrasound-guided 
aspiration. For each participant, the FF was collected from multiple mature follicles and pooled for each partic-
ipant. After oocyte isolation, FF was centrifuged at 14,000 × g for 20 min to remove cells and insoluble particles. 
The supernatant was then transferred to sterile cryovials and stored at −80 °C for further analysis. Subsequently, 
an elective freeze-all strategy was performed and all the embryos were vitrified at cleavage stage on day 3.

Sample preparation.  200 μL of FF samples were mixed with 600 μL of methanol/isopropanol/water 
(4:4:2) containing six internal standards: d3-hexanoyl-carnitine, L-tryptophan-d5, d3-decanoyl-carnitine, PE 
(15:0/15:0), TG (15:0/15:0/15:0) and PC (17:0/17:0). The mixture was vortexed for 5 min and centrifuged at 
14000 × g for 30 min, at 4 °C. The supernatant was transferred to an autosampler plate for analysis.

LC-MS condition.  A SCIEX ExionLC AD ultra-performance liquid chromatography (UPLC) system and a 
reverse-phase ACQUITY UPLC® BEH C18 column (2.1 × 100 mm, 1.7 μm) were used for metabolomics anal-
ysis. 5 μL of FF was injected at 15 °C and the total flow rate set at 0.4 mL/min. The column temperature was set at 
40 °C. In positive mode, water with 0.1% formic acid (FA) served as mobile phase A and acetonitrile with 0.1% 
FA as mobile phase B. The elution gradient was maintained at 95% A for 0.5 min, it was then increased to 100% B 
over the next 7 min, and then returned to 95% A from 10 min to 10.1 min. The total running time was 12 min. In 
the negative mode, water containing 5 mM of ammonium acetate served as mobile phase A, and acetonitrile was 
used as mobile phase B. The elution gradient was kept at 95% A for 0.5 min, increased to 100% B over the next 
8 min, and then returned to 95% A from 12 min to 12.1 min and the total running time was 14 min. All SWATH 
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data were acquired using a SCIEX Triple TOF 5600+, and all MRM data were obtained on a SCIEX QTRAP 5500. 
The nebulizer gas (GS1 and GS2) was set at 55 psi and the source temperature was set at 550 °C.

In the positive mode, the voltage of ion spray was 5,500 V. The declustering potential and collision energy 
were set at 60 V and 35 ± 15 V, respectively. In the negative mode, the voltage of ion spray was −4,500 V. The 
declustering potential and collision energy were set at −60 V and −35 ± 15 V, respectively. The full scan range 
and the production scan range spun from m/z 50 to m/z 1200. The raw SWATH data were converted to mzXML 
files using the “msconvert” program from ProteoWizard. Multiple data files were grouped and processed with 
SWATHtoMRM to generate 584 MRM transitions30. The Analyst TF 1.7.1 software was used to maximize the 
number of measured MRM transitions in each analysis using the scheduled MRM method. The flow diagram of 
the SWATHtoMRM analytical process is provided in Fig. 1.

Data processing and statistical analysis.  Group differences among clinical variables were compared 
with one-way analysis of variance (ANOVA) and Chi-square (χ2) test. Scheffe was performed as ANOVA post 
hoc tests using SPSS software 22.0 (IBM Corp., USA). UPLC-TOF and UPLC-QTRAP were used to analyze 
160 FF samples and this was done in three replicates. PeakView software was used for data processing while 
MarkerView software was used for peak detection, extraction of MS2 peaks and chromatograms, and MS1 and 
MS2 peak grouping. According to the “80% rule”31, peaks present in more than 80% of the samples of each 
group were chosen for further analysis. In large-scale metabolomic measurements, the reproducibility of the 
analyses were influenced by the source contamination or the maintenance and cleaning of the mass-spectrometer. 
Normalization is a common preprocessing method used to reduce systematic change. In this study, peak areas 
of all metabolites were normalized using internal standards. Only the metabolites with an RSD value below 15% 
in QC samples were used for statistical analysis. Principal component analysis (PCA) was employed to identify 
differential variation features on the MarkerView software. Univariate statistical analysis was performed with the 
Student’s t-test. Variables with univariate statistical significance (p < 0.05) were considered different among the 
four groups. In addition, supervised partial least-squares discriminant analysis (PLS-DA) was applied to model 
all features of the four groups in MetaboAnalyst. The predictability of the model was determined by internal 
validation using a 7-fold cross-validation and response permutation testing. The best-fitted PLS-DA models were 
used to explore the variable importance in the projection (VIP) value of all variables. Significance analysis of 
microarray (SAM) was performed to address the false discovery rate (FDR) for multiple tests. Differential varia-
bles with a VIP value greater than 1 and an FDR value less than 0.05 were selected. Potential differential variables 
were validated by p value, VIP value and FDR value. These differential variables were identified by accurate mass, 
isotope patterns, and mass spectrometric fragmentation patterns. They were further characterized using data-
bases such as KEGG, PubChem compound, METLIN, the Madison Metabolomics Consortium Database, and 
the Human Database.

Targeted metabolomics study.  The UHPLC system (LC-30AD, Shimadzu) coupled to a Turbo V electro-
spray ionization source and a Qtrap 5500 mass spectrometer was used for targeted metabolomics analysis. MRM 
transitions were employed to perform MS detection. Sixteen metabolites were targeted in a single injection using 
both positive and negative modes with rapid polarity switching (50 ms). MultiQuant 3.0 (SCIEX) was used for 
data processing and MetaboAnalyst used for statistical analysis.

Results
Analytical characteristics of SWATHtoMRM method.  To assess the reliability of the SWATH to MRM 
method, six compounds; d3-hexanoyl-carnitine, d5-L-tryptophan, d3-decanoyl-carnitine, PE (15:0/15:0), TG 
(15:0/15:0/15:0) and PC (17:0/17:0) were used as internal standards. A series of concentrations of internal stand-
ards were prepared and added to the FF sample. Six FF samples were prepared and analyzed in triplicate. The 
linear curve of each internal standard was constructed using its mean peak area at each concentration. The linear 
regression coefficients of d3-hexanoyl-carnitine, d5-L-tryptophan, d3-decanoyl-carnitine, PE (15:0/15:0), TG 
(15:0/15:0/15:0) and PC (17:0/17:0) were 0.9921, 0.9937, 0.9918, 0.9965, 0.9944 and 0.9953, respectively. These 
results revealed strong linear relationships.

Recovery was assessed at low, medium, and high concentrations for each internal standard. The mixture at 
each concentration was added to the FF matrix prior to the extraction or instrumental analysis. A recovery exper-
iment was conducted in triplicate for quality control (QC) purposes. Recoveries were calculated using the peak 

Figure 1.  The workflow of SWATHtoMRM method.
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area ratios of the standards spiked before extraction to the standard spiked before instrumental analysis. The 
results indicated that the recoveries ranged from 86.4% to 113.7% for the six internal standards at low, medium, 
and high concentrations. Therefore, the recovery rate of the detection method used was satisfactory.

The relative standard deviation (RSD) of the ratios of the peak numbers and peak areas of six QC samples 
were used to evaluate the repeatability. For metabolomics analysis, 89.2% peaks occurred at RSD < 15% and 
accounted for 95.4% of the summed responses in the positive mode, while 92.7% peaks occurred at RSD < 15% 
and accounted for 93.9% of the total responses in the negative mode.

Participant characteristics.  There were no differences recorded in any of the basic characteristics of the 
subjects in the four groups, including ovarian stimulation parameters (see Table 1).

In the IVF laboratory parameters, the BMI was similar while the number of usable embryos and FET cycles 
were different between groups. The number of oocytes and mature oocytes obtained from the four groups was 
similar. No differences were detected in the 2PN fertilized oocytes parameters (see Table 1). Notably, the number 
of usable embryos from overweight and obese women was smaller than those from women with normal BMI 
(p = 0.014 and p = 0.038, respectively). Similar results were obtained in the number of FET cycles (p = 0.03 and 
p = 0.02, respectively).

The clinical pregnancy rates (CPRs) were 37.9%, 41.7%, 36.2%, and 33.3% in the underweight, normal weight, 
overweight, and obese groups, respectively. The pregnancy loss rates (PLRs, biochemical pregnancies plus clinical 

Parameter Group A (n = 40) Group B (n = 40) Group C (n = 40) Group D (n = 40) p-value

Age (years)a 28.40 ± 2.69 29.10 ± 2.73 29.35 ± 3.75 29.20 ± 3.21 0.538

BMI (kg/m2)a 17.63 ± 0.74 21.85 ± 1.97 26.91 ± 1.23 33.75 ± 2.30 <0.001

Infertility types (n, %)b 0.763

Primary infertility 16 (40%) 14 (35%) 14 (35%) 18 (45%)

Secondary infertility 24 (60%) 26 (65%) 26 (65%) 22 (55%)

Infertility duration (years)a 2.90 ± 1.87 3.15 ± 2.34 2.85 ± 1.33 3.75 ± 1.61 0.109

Basal FSH (U/L)a 7.55 ± 1.50 7.12 ± 2.12 7.49 ± 3.58 6.52 ± 1.89 0.206

Basal LH (U/L)a 6.09 ± 2.91 5.52 ± 1.48 4.85 ± 2.36 5.30 ± 2.50 0.137

Basal AFC (n)a 15.25 ± 4.13 17.05 ± 6.00 17.60 ± 5.36 16.95 ± 4.90 0.201

Gonadotropin dosage (U)a 2336.38 ± 797.95 2105.00 ± 571.39 2340.31 ± 977.94 2169.47 ± 639.38 0.407

Interval of COS (d)a 11.35 ± 1.33 11.65 ± 1.29 12.00 ± 1.22 12.23 ± 2.40 0.088

Retrieved oocytes (n)a 14.40 ± 6.11 15.85 ± 8.62 12.70 ± 5.65 14.45 ± 6.53 0.236

Metaphase α oocytes (n)a 11.05 ± 5.03 11.10 ± 4.86 9.35 ± 4.38 11.20 ± 5.94 0.305

2PN fertilized oocytes (n)a 9.30 ± 4.43 10.00 ± 4.30 7.90 ± 4.01 8.30 ± 4.10 0.109

Usable embryos (n)a 4.50 ± 2.94 5.70 ± 1.90 3.95 ± 2.80 4.15 ± 2.49 0.012

FET cycles (n)a 1.65 ± 1.17 1.80 ± 0.69 1.35 ± 0.74 1.35 ± 0.66 0.038

Clinical pregnancy rate (n, %)b 25/66 (37.9%) 30/72 (41.7%) 21/58(36.2%) 20/60 (33.3%) 0.796

Pregnancy loss rate (n, %)b 4/25 (16.0%) 4/30 (13.3%) 4/21 (19.1%) 5/20 (25.0%) 0.753

Live birth rate (n, %)b 21/66 (31.8%) 26/72 (36.1%) 17/58 (29.3%) 15/60 (25.0%) 0.575

Table 1.  Basic characteristics, IVF laboratory parameters and pregnancy outcomes of recruited subjects in the 
present study. COS, controlled ovarian stimulation; 2PN, two pronucleus; FET, frozen embryo transfer. aOne-
way ANOVA analysis. bChi-square (χ2) test.

Figure 2.  The clinical pregnancy rates of group A (underweight), group B (normal weight), group C 
(overweight) and group D (obesity)women undergoing IVF treatment.
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Figure 4.  The live birth rates of group A (underweight), group B (normal weight), group C (overweight) and 
group D (obesity) women undergoing IVF treatment.

Figure 5.  Two-dimensional score of follicular fluid samples of group A (underweight), group B (normal 
weight), group C (overweight) and group D (obese) women undergoing IVF treatment by PLS-DA analysis.

Figure 3.  The pregnancy loss rates of group A (underweight), group B (normal weight), group C (overweight) 
and group D (obesity) women undergoing IVF treatment.
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pregnancies) were 16%, 13.3%, 19.1%, and 25% respectively in the four groups. The live birth rates (LBRs) were 
31.8%, 36.1%, 29.3%, and 25% in the four groups, respectively. The study was underpowered to detect a difference 
in CPRs, PLRs, and LBRs, but there was a trend toward disadvantage as the BMI increased(see Figs. 2–4).

Metabolites identification.  Thousands of compound features in FF were obtained. The QTOF data were 
converted to mzXML files using the “msconvert” program from ProteoWizard. Multiple data files were grouped 
and processed by SWATH to MRM. A large-scale set of MRM transitions was produced, and a scheduled MRM 
method was performed. The top 16 metabolites (VIP > 1 and p < 0.01) were considered as the potential differen-
tial metabolites. The differential metabolites were identified based on their accurate mass, isotope ratio, and MS/
MS spectra.

The study subjects were divided into four groups based on their BMI index (BMI < 18.5; 18.5 ≤ BMI < 25; 25 
≤ BMI < 30; BMI ≥ 30). The two-dimensional scoring chart (Fig. 5) shows that in the metabolomics analysis of 
FF samples, the samples gradually separated with the increase in BMI index. The three-dimensional scoring chart 
(Fig. 6) shows the distribution of each sample in three-dimensional space. Figures 5, 6 reveals that the samples in 
the four groups were well separated, and better separation was achieved at higher differences in BMI index. And, 
the scattering plots are obtained for the PLS-DA models on which Figs. 5, 6 was based (see Fig. 7).

Figure 6.  Three-dimensional score of follicular fluid samples of group A (underweight), group B (normal 
weight), group C (overweight) and group D (obese) women undergoing IVF treatment by PLS-DA analysis.

Figure 7.  PLS-DA Loading plot in metabolomics analysis.
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In total, 16 differential metabolites were identified; ganoderiol H, retinol acetate, 2,3-diphosphoglyceric 
acid, LPI (18:3), 1-phenyl-1,3-elcosanedione, 13,14-dihydroretinol, p-cresol sulfate, 5-hexyl-2-furanoctanoic 
acid, cholesteryl sulfate, progesterone, uric acid, sedoheptulose 1,7-bisphosphate, 2- {[hydroxyl (3-hydroxy-4- 

Compound m/z Polarity TR (min) Metabolites P value Pathway

M1 347.2620 − 8.66 13,14-dihydroretinol 0.00838 Retinol metabolism

M2 327.2285 − 8.62 Retinol acetate 0.00985 Retinol metabolism

M3 265.1458 − 6.89 2,3-Diphosphoglyceric acid 0.00957 Glycolysis or gluconeogenesis

M4 167.0201 − 1.84 uric acid 0.00189 Purine metabolism

M5 385.3047 − 11.34 1-phenyl-1,3-eicosanedione 0.00671 Fatty acid metabolism

M6 502.3912 − 10.9 Arachidonyl carnitine 0.00877 Fatty acid metabolism

M7 293.1772 − 7.49 5-Hexyl-2-furanoctanoic acid 0.00673 Fatty acid metabolism

M8 315.2341 + 7.51 Progesterone 0.00869 Steroid hormone biosynthesis

M9 465.2899 − 9.66 Cholesteryl sulfate 0.00061 Steroid hormone biosynthesis

M10 187.0087 − 4.01 p-Cresol sulfate 0.00714 N/A

M11 593.4691 − 11.87 LPI (18:3) 0.00376 N/A

M12 369.1727 − 4.67 Sedoheptulose 1,7-bisphosphate 0.00093 N/A

M13 224.0637 − 3.82 2-{[hydroxyl(3-hydroxy-4-methoxyphenylmethylidene]amino}acetic acid 0.00067 N/A

M14 413.3028 − 8.82 Setariol 0.030383 N/A

M15 489.3556 − 7.87 Ganoderiol H 0.00026 N/A

M16 427.2083 − 5.27 Austalide L 0.000007 N/A

Table 2.  Characterization of the biomarkers between underweight, normal weight, overweight, and obese 
group in follicular fluid.

Figure 8.  Differences in important follicular fluid characteristics between the four groups; group A 
(underweight), group B (normal weight), group C (overweight) and group D (obese) women undergoing IVF 
treatment (VIP scores).

Figure 9.  One-way analysis of variance (ANOVA) univariate statistics.
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methoxyphenyl) methylidene] amino} acetic acid, setariol, arachidonyl carnitine and austalide L (see Table 2). 
The multiple reactions monitoring (MRM) transitions of the 16 potential metabolites were targeted and detected. 
Differences between the four groups was compared. The final results are provided in Fig. 8 and the ANOVA results 
are shown in Fig. 9. The box plot chart about the 16 differential metabolites was seen in Fig. 10. With the con-
tinuous accumulation of BMI, 5 metabolites, namely ganoderiol H, LPI (18:3), sedoheptulose 1,7-bisphosphate, 
2- {[hydroxyl (3-hydroxy-4-methoxyphenyl) methylidene] amino} acetic acid and austalide L, were up-regulated 
in the four groups, while 5 metabolites of 1-phenyl-1,3-elcosanedione, retinol acetate, p-cresol sulfate, setariol, 
and arachidonyl carnitine were down-regulated in the four groups. In addition, 6 metabolites with no specific var-
iation rules, such as 2,3-Diphosphoglyceric acid, 13,14-dihydroretinol, 5-hexyl-2-furanoctanoic acid, cholesteryl 
sulfate, progesterone and uric acid have been found.

Pathway analysis.  MetaboAnalyst was employed to perform metabolic pathway analysis. Abnormal 
changes were detected in 5 metabolic pathways, i.e., steroid hormone biosynthesis, retinol metabolism, glycolysis 
or gluconeogenesis, and purine metabolism (see Fig. 11). In these pathways, three metabolites; retinol acetate, 
1-phenyl-1,3-elcosanedione, and arachidonyl carnitine were down-regulated, while no significant changes in the 
metabolic pathways were observed for the up-regulated metabolites.

Discussion
The results of this study show that being obesity in women alters the metabolic characteristics of human FF as 
profiled through untargeted metabolomics using the SWATH to MRM method. This method is characterized 
by high coverage, high sensitivity, good reproducibility, and a wide dynamic range. In this study, sixteen FF 

Figure 10.  Metabolite profiles of the 16 candidate biomarkers (M1-M16) obtained from the quantitative 
analysis of the subjects.
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metabolites were identified and enriched in in 4 metabolic pathways including steroid hormone biosynthesis, reti-
nol metabolism, glycolysis or gluconeogenesis, and purine metabolism. Several studies have used metabolomics 
to study the pregnancy outcomes of women undergoing IVF1,32,33. However, only a few researchers have studied 
the effects of obesity on FF metabolomics34–36. In this study, all FF of underweight, normal weight, overweight and 
obese women receiving IVF treatment were included into the metabolomics study. We found that the contents of 
retinol acetate, 1-phenyl-1,3-elcosanedione and Arachidonyl carnitine in FF decreased significantly as the BMI 
increased. These metabolites were involved in different metabolic pathways of retinol metabolism and fatty acid 
metabolism (see Table 2 and Fig. 11).

Retinol acetate (retinyl acetate, vitamin A acetate) is a natural form of vitamin A which is the acetate ester of 
retinol. It possesses antineoplastic and chemopreventive activities37. Furthermore, vitamin A and its physiological 
metabolites, collectively known as retinoids play essential roles in embryonic morphogenesis and reproductive 
physiology as a mitogenic and differentiation stimuli38. Retinoids induce cellular differentiation in vitro by mod-
ulating the expression of homeobox genes, growth factors and their receptors39. Previous studies have shown 
that retinoids can synchronize cellular events that trigger oocyte maturation, increase oocyte ability to fertilized 
and facilitate preimplantation embryonic development40–43. Cumulus cells are reported to play a dominant role 
in mediating the effects of retinoids during in vitro oocyte maturation. Retinoid-treated cumulus cells expressed 
lower levels of initiator and effector caspases, such as TNF-α, TNFR1, BAX44–46 and higher levels of BCL-244. 
The retinoid treatment has been shown to reduce the incidence of oocyte apoptosis by diminishing apoptosis 
markers44–47. In this study, results show that the number of usable embryos obtained from overweight and obese 
women and the number of FET cycles in such a population was significantly smaller compared to that of women 
with normal BMI. Despite the fact that this study was underpowered to detect differences in CPRs, PLRs, and 
LBRs, a negative relationship was observed between BMI and these parameters We inferred that significantly 
lower levels of FF retinol acetate in overweight and obese individuals may explain this negative relationship.

Arachidonyl carnitine and 1-phenyl-1,3-elcosanedione, both of which are products of fatty acid metabolism, 
were also found to be significantly lower in overweight and obese women. Fatty acids, which regulate oocyte 
developmental competence, are stored intracellularly as triacylglycerides in lipid droplets. They are the primary 
and potent energy source. For instance, oxidation of the fatty acid palmitate generates 106 ATP molecules com-
pared to glucose oxidation which yields approximately 30 ATP molecules48,49. Evidence indicates that obesity 
may compromise mitochondrial metabolism, the main energy-supplying organelles of oocytes50–53. Indeed, 
increased BMI was associated with raised levels of FF triglyceride in women undergoing IVF treatment20,54. 
Studies have demonstrated that increased FF triglyceride levels are associated with failure of oocytes to cleave 
and decrease the number of usable embryos20,32. Similar results were obtained in this study. The decrease in 
1-phenyl-1,3-elcosanedione and arachidonyl carnitine in FF was related to the excess fatty acid environment and 
impaired mitochondrial metabolism in overweight or obese women. This adversely affected the developmental 
potential of the oocytes.

As the BMI increased, 7 types of metabolites were altered, but this was not the case in the corresponding met-
abolic pathways. Of these, 5 metabolites, ganoderiol H, LPI (18:3), sedoheptulose 1,7-bisphosphate, 2- {[hydroxyl 
(3-hydroxy-4-methoxyphenyl) methylidene] amino} acetic acid and austalide L, were up-regulated, while 2 
metabolites, p-cresol sulfate and setariol were down-regulated.

Figure 11.  Pathway analysis diagram (red: steroid hormone biosynthesis; Pale yellow: purine metabolism, 
yellow: glycolysis or gluconeogenesis, orange: retinol metabolism).
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Ganoderiol H is a metabolite of Ganoderma lucidum (reishi). El-mekkawy et al. found that Ganoderiol (spe-
cifically Ganoderiol F) exerted anti-HIV activity55,56. And, LPI (18:3) is a lysophosphatidylinositol derived from 
hydrolysis of phosphatidylinositol (PI). It is involved in many physiological activities in adipose tissues, including 
reproduction, angiogenesis, apoptosis, and inflammation57. Recent studies show that the LPI/GPR55 system is 
a novel target for obesity with both normal or impaired glucose tolerance and type 2 diabetes, and a significant 
increase in circulating plasma LPI levels was observed in obese individuals58. However, the specific role of LPI in 
obese infertile population is not known.

Sedoheptulose 1,7-bisphosphate belongs to the class of organic compounds known as monosaccharide phos-
phates. These are monosaccharides comprising a phosphated group linked to the carbohydrate unit. 2-{[hydrox-
y(3-hydroxy-4-methoxyphenyl) methylidene] amino} acetic acid is a predicted metabolite generated by 
BioTransformer¹ that is produced from the metabolism of 3-hydroxy-4-methoxybenzoic acid. It is generated by 
glycine N-acyltransferase (Q6IB77) enzyme via a glycination-of-aryl-acid reaction. This glycination-of-aryl-acid 
occurs in humans. Austalide L is a mycotoxin produced by aspergillus ustu. Setariol is found in cereals and cereal 
products. Setariol is a constituent of the leaves of setaria italica (foxtail millet). p-Cresol sulfate is a microbial 
metabolite that is found in urine and likely derives from secondary metabolism of p-cresol. p-Cresol sulfate is 
the major component of urinary myelin basic protein-like material (MBPLM)59. It appears to be elevated in the 
urine of individuals with progressive multiple sclerosis60. It has also been linked to cardiovascular disease and 
oxidative injury59. Some of the metabolites described above have been found in some diseases, while others are 
rarely reported. Thus, their roles in obese infertile patients remain obscure.

This study has the following limitations. All the participants were exposed to similar fertility procedures and 
stimulations. The FF was collected by the same physician, in the same laboratory, and processed by the same 
individual, to rule out possible potential effects of interpatient variability. Our results reflect the differences in 
obesity. Majority of studies on the effects of obesity on the FF milieu are biased by the fact that obese women 
usually require higher doses of gonadotropins for stimulation. In this study, there was no significant difference in 
gonadotropin dosages and interval of COS among the four groups, and thus the bias caused by medication effects 
on the FF milieu did not exist. Nevertheless, we collected pooled FF from multiple follicles as it is the standard-
ized procedure in our reproductive center. Another limitation is the small sample size (n = 160), although it is still 
larger than in most previous studies on this topic19,34,35,54.

Conclusions
In conclusion, this study demonstrates significant alterations in the FF microenvironment of obese women 
undergoing IVF treatment, which may contribute to reduced fertility. The results of this study imply that the FF 
microenvironment of obese women may increase oocyte apoptosis and mitochondrial dysfunction. The extent to 
which these changes affect oocyte quality, maturation, fertilization potential, and embryonic development is not 
clear. Furthermore, appropriate measures, especially lifestyle interventions, which are likely to be constructive for 
obese women undergoing IVF treatment on their pregnancy outcomes, can be taken in the future. Nevertheless, 
this still needs to be explored in further clinical trials19,54.
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