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Interaction of atomic systems with 
quantum vacuum beyond electric 
dipole approximation
Miriam Kosik1*, Oleksandr Burlayenko2, Carsten Rockstuhl3,4, Ivan Fernandez-Corbaton4 & 
Karolina Słowik1*

The photonic environment can significantly influence emission properties and interactions among 
atomic systems. In such scenarios, frequently the electric dipole approximation is assumed that 
is justified as long as the spatial extent of the atomic system is negligible compared to the spatial 
variations of the field. While this holds true for many canonical systems, it ceases to be applicable 
for more contemporary nanophotonic structures. To go beyond the electric dipole approximation, 
we propose and develop in this article an analytical framework to describe the impact of the 
photonic environment on emission and interaction properties of atomic systems beyond the electric 
dipole approximation. Particularly, we retain explicitly magnetic dipolar and electric quadrupolar 
contributions to the light-matter interactions. We exploit a field quantization scheme based 
on electromagnetic Green’s tensors, suited for dispersive materials. We obtain expressions for 
spontaneous emission rate, Lamb shift, multipole-multipole shift and superradiance rate, all being 
modified with dispersive environment. The considered influence could be substantial for suitably 
tailored nanostructured photonic environments, as demonstrated exemplarily.

An excited atomic system, e.g. an atom, a molecule, a quantum dot, can decay radiatively from an excited to a 
ground state while releasing its energy into the photonic environment. The rate of this process depends on the 
properties of the environment, and in a pioneering work by Purcell the possibility to control the spontaneous 
emission lifetimes of atomic systems by tailoring their surroundings was first investigated1. Hence, it has also been 
called the Purcell effect. The effect has been experimentally verified in various types of cavities or band-gap envi-
ronments, including semiconductor microstructures2, photonic crystals3, and plasmonic nanoparticles, where 
the emission rate was enhanced up to three orders of magnitude4,5. Besides emission enhancement on its own, 
photonic environment equally affects the interactions between multiple atomic systems. In vacuum, examples 
such as dipole-dipole coupling6, or collective phenomena like Dicke superradiance have been explored7,8. Also, 
all these effects can be tailored by suitably engineering the photonic environment9,10.

The influence of photonic environment on these phenomena is usually quantified in the electric dipole approx-
imation. This is justified when the electric field shows a negligible spatial variation across the size of the atomic 
system. Steps beyond may be required if the atomic system is less than an order of magnitude smaller than the 
wavelength of light it is coupled to, as demonstrated in semiconductor quantum dots11 or in Rydberg excitons12. 
Similarly, corrections beyond the electric dipole approximation may be necessary if the electromagnetic field is 
focused into spots comparable in size to the atomic system. The latter can be realized by nanoscopic environments 
and picocavities, capable to localize the electric field into nanometric spatial domains, providing high intensities 
and spatial modulations at the length scale of tens of nanometers. This tends to be comparable to the size scale of 
molecules or quantum dots13–15. Then the usual mismatch of size scales of photonic modes and atomic systems is 
reduced, which leads to enhanced interaction probability if the photonic modes and the atomic system overlap 
in space. The resulting need to include corrections beyond the electric dipole approximation to properly quantify 
light-matter coupling was demonstrated for quantum dots near plasmonic nanoparticles16.
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Furthermore, and potentially more interestingly, nanostructured environments may also open light-matter 
interaction channels beyond that one corresponding to coupling of electric field with electric dipoles. For exam-
ple, light concentration in nanoscopic regions causes modulations of electromagnetic field at spatial distances 
comparable to the size of atomic systems, which may couple to electric-quadrupolar or higher-order moments. In 
addition, due to their large refractive index, dielectric nanomaterials offer the possibility of strong concentration 
of magnetic fields17. This prompts to consider not just electric-multipolar contributions but at the same time their 
magnetic counterparts. Until now, enhancement of the rate of a magnetic dipole emission by a nanostructure was 
considered18 and reported experimentally in lanthanide ions19–22. Large enhancement of quadrupole23–25 and even 
higher-order transitions was equally predicted. Transitions driven with several multipolar mechanisms have been 
considered26 and observed16,27 respectively in semiconductor quantum dots and transition-metal/lanthanide ions. 
Recently, it was pointed out that the simultaneous existence of several interaction channels enhanced in intensity 
with photonic nanostructures might open new avenues on the route to control spontaneous emission, related to 
their controlled interference28. To account for these effects, treatments beyond the point-dipole approximation 
were developed29–31, based on spatial integration of the transition elements expressed in terms of wavefunctions 
of the atomic system. Nonclassical corrections to these transition rates originating from effects such as nonlocal-
ity, electronic spill-out and Landau damping have been considered in ref. 32. Although such approaches take into 
account all multipolar orders of light-matter interaction, they require information on the atomic system’s wave-
functions, which are in general complex multidimentional structures. They are hardly accessible experimentally 
and their calculation may be a significant computational effort already in case of few-electron systems.

In this work, we develop an analytic theory based on the multipolar coupling Hamiltonian, in which the spa-
tial extent of the atomic system is taken into account in terms of multipolar transition moments rather than wave-
functions. These moments can be evaluated with smaller computational effort than full wavefunctions, found 
in literature33,34 or measured21,35. Contrary to the previous works mentioned above, we evaluate not just tran-
sition rates, but also energy shifts. In the case of an individual atomic system we evaluate Purcell enhancement 
of spontaneous emission and Lamb-shift modification in nanostructured dispersive environment. Additionally, 
we provide expressions to evaluate interaction strengths and collective emission rates of multiple atomic sys-
tems immersed in the same environment, while considering the magnetic-dipolar and electric-quadrupolar 
interaction channels. Our method exploits field quantization in dispersive media36, in which the optical proper-
ties of the environment are expressed in terms of the electromagnetic Green’s tensor, defined by the spatial and 
spectral dependence of the electric permittivity. Our result is an extension to those results previously obtained 
in electric-dipole approximation in refs. 9,37. Here, we include two next-order terms of the multipolar coupling 
Hamiltonian38, namely the magnetic dipole and the electric quadrupole. This unlocks qualitatively new routes to 
tailor light-matter coupling exploiting interference effects.

The work is organized as follows: in the next section we introduce the general framework used to describe 
light-matter coupling in the presence of dispersive and absorptive structured materials beyond electric-dipole 
approximation. Examples of application of the theory to specific geometries are given at the end of the Results 
section. Detailed numerical results and lengthy calculations are provided in the Supplementary Information 
available online.

Results
In this section, we introduce the general framework used to describe light-matter coupling in the presence of 
dispersive and absorptive structured materials beyond electric-dipole approximation. After giving a statement 
of the problem, we offer expressions for spontaneous emission rate and Lamb shift of a single atomic system 
in such environment at first. Next, we generalize these expressions to many-atom systems. Finally, examples of 
application of the theory to specific geometries are given. Lengthy calculations are documented in Supplementary 
Information.

Atomic system.  We assume that the atomic system can be approximated by two active energy levels, sepa-
rated by energy  0ω , where  stands for the reduced Planck’s constant. The corresponding ground and excited 
states are denoted by ∣ ⟩g  and ∣ ⟩e , respectively. The system is fully described by a set of Pauli operators: the lower-
ing operator g eσ = ∣ ⟩ ⟨ ∣  and the inversion operator ∣ ⟩ ⟨ ∣ ∣ ⟩ ⟨ ∣e e g gzσ = − , following the usual commutation rules 
σ σ σ= −[ , ] z

† , [ , ] 2zσ σ σ= . The free Hamiltonian of the system reads †
0 0H ω σ σ= . This Hamiltonian can be 

generalized to the case of multiple emitters in a straightforward manner, as done in one of the following 
subsections.

Quantized electromagnetic field in dispersive media.  In this work we follow the quantization scheme 
in dispersive and absorbing media, developed in refs. 39–42. We restrict ourselves to nonmagnetic matter with rel-
ative permeability µ = 1. The constitutive equation relating the temporal Fourier components of the displace-
ment field ωD r( , ), the electric field E r( , )ω , and medium polarization P r( , )ω  in an absorbing medium takes the 
form ω ε ω ω ε ε ω ω ω= + = +D r E r P r r E r P r( , ) ( , ) ( , ) ( , ) ( , ) ( , )N0 0 . Here, ωP r( , )N  describes a noise contribu-
tion to the polarization P r( , )ω  arising from vacuum fluctuations in an absorbing medium. The related noise 
current density reads ω ω ω= −ij r P r( , ) ( , )N N .

Since we investigate vacuum-induced effects, we are interested in the case of a vanishing mean electric field. 
Then, the only field is related to noise current fluctuations and can be expressed as 

∫ω µ ω ω ω= ′ ′ ′i d rE r G r r j r( , ) ( , , ) ( , ) , (1)N0
3

https://doi.org/10.1038/s41598-020-62629-0


3Scientific Reports | (2020) 10:5879 | https://doi.org/10.1038/s41598-020-62629-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

 where µ0 stands for vacuum permeability.
The dyadic tensor G r r( , , )ω′  is the full electromagnetic Green’s tensor characterizing the environment, deter-

mined from the Maxwell-Helmholtz equation 

c
Ir G r r r r( , ) ( , , ) ( ) ,

(2)

2

2
ω ω ω δε





∇ × ∇ × −





 ′ = − ′

with I  representing the unit dyadic. The boundary condition for the Green’s tensor at infinity reads 
G r r( , , ) 0ω′ →  for ∣ ∣− ′ → ∞r r . The Green’s tensor serves as the kernel that connects the electric field ωE r( , )  
with its source at position ′r .

The requirement for the canonical equal-time commutation relations of quantized fields to hold allows one to 
express the noise current in the form39–41

j r r f r( , ) Im ( , ) ( )
(3)N

0 εω ω
ε
π

ω= .ω

Here, 0ε  represents the electric permittivity of vacuum and ε ε εω ω ω= + ir r r( , ) Re ( , ) Im ( , )  is the rela-
tive permittivity of the dispersive and absorptive medium surrounding the atomic system. For simplicity, we 
assume isotropic media, so that the permittivity can be expressed as a scalar function. The bosonic operator fields 
take the form = ∑ω ωff r r e( ) ( )j ,j j, where x y zj { , , }∈  and ej is a unit vector in the jth direction. They obey the 
following commutation relations39–41

f f

f f

r r

r r r r

[ ( ) , ( )] 0,

[ ( ) , ( )] ( ) ( ) (4)

,j ,k

,j ,k jkδ δ ω ω δ

′ =

′ = − ′ − ′ .

ω ω

ω ω

′

′
†

Finally, the electric field can be expressed in terms of bosonic operators as follows 


∫ε

εω
π

ω ω ω= ′ ′ ′ω
′i

c
d rE r r G r r f r( , ) Im ( , ) ( , , ) ( ) ,

(5)0

2

2
3

where c is the vacuum speed of light.
In the Schrödinger picture, the positive frequency part 

†
=+ −E r E r( ) [ ( )]( ) ( )  of the electric field operator 

= ++ −E r E r E r( ) ( ) ( )( ) ( )  is obtained through the integration dE r E r( ) ( , )( )
0∫ ω ω=+ ∞ . Similarly, the positive 

frequency part of the magnetic field is expressed given by ∫ ω ω=+ ∞ dB r B r( ) ( , )( )
0

, where the frequency com-
ponents of the magnetic f ields are connected to the corresponding electric f ield through 

ω ω= − ∇ ×
ω

B r E r( , ) ( , )i .
The free-field Hamiltonian reads †d r d f r f r( ) ( )field

3 ∫ ∫ ω ω= ω ωH .

Coupling Hamiltonian.  The electric dipole approximation is based on the assumption that the electric field 
can be approximated as constant across the spatial extent of the atomic system. In particular, this means that 
direct coupling of the emitter with the magnetic field is ignored and spatial modulations of the electric fields are 
neglected as well. Typically, the above assumption is very well met: the scale of spatial modulations of the electric 
field is set by its wavelength, usually in the optical or near-infrared range, while the modulations of the field’s 
envelope are even slower and thus negligible. This assumption holds true in free space or traditional cavities, if the 
atomic system is represented by an atom or a molecule. However, the assumption might no longer be applicable if 
the emitter is positioned within a subwavelength electromagnetic hotspot, e.g. in photonic crystal cavities, in 
close vicinity of plasmonic nanostructures16, near picocavities or even in free space when geometrically large 
emitters like semiconductor quantum dots are considered11,26,31. For this reason, we include two higher-order 
terms of the multipolar coupling Hamiltonian, which include first-order spatial derivatives of the electric field38. 
The Hamiltonian is given in the rotating wave approximation, valid as long as the coupling strengths are small 
with respect to the transition frequency 0ω

E d B m E Q d E m B Q E[ : ] [ : ] , (6)int 0
( )

0
( )

0
( )

0
( )

0
( )

0
( )H † † † †σ σ= − ⋅ + ⋅ + ∇ − ⋅ + ⋅ + ∇− − − + + +

where the fields are evaluated at the position of the atomic system r0, and for brevity we denote ≡± ±E E r( )0
( ) ( )

0 . 
We assume that the electric field derivatives exist at this position, i.e. the atomic system should not be placed 
directly at an interface between two different media. Above, = g ed d  and = g em m  are the electric and 
magnetic transition dipole moment elements, and = g eQ Q  is the electric transition quadrupole moment 
element, respectively. The dot denotes the standard scalar product of vectors, the double dot product of tensors is 
defined as ≡ ∑ C DC D: ij ij ji, while E( )∇ ±  is a dyadic product. In the case of a real electric quadrupole moment 
tensor, the quadrupolar contribution to the coupling Hamiltonian can be equivalently rewritten as 

∇ = ∇ ⋅ = ∑ ∂+ + ∗ +† † Q EQ E r Q E r r: ( ) ( ) ( ) ( )ij ij j i
( ) ( ) ( ) . Please note that different degrees of freedom in the opera-

tors above are denoted as follows: 

•	 The degree of freedom related to the two-dimensional Hilbert space spanned by ∣ ⟩ ∣ ⟩g e{ , } is already included 
in the symbols of transition moments,  and is relevant for Hermitian conjugation, e.g. 
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 ⟨ ∣ ∣ ⟩ ⟨ ∣ ∣ ⟩† †
g e e gQ Q Q( )= = ;  permanent multipole moments are assumed negligible,  e.g. 

 g g e eQ Q 0⟨ ∣ ∣ ⟩ ⟨ ∣ ∣ ⟩= = ,
•	 the dipole moment vectors and the quadrupole moment tensor have elements corresponding to the x y z, ,  

spatial directions, e.g. di, Qij, responsible for the orientation of the multipolar moment,
•	 finally, the fields depend on position in space r, and each element of the Green’s tensor is a function of the 

observation point r and the source point r′.

Emission properties of single atomic system.  To derive the spontaneous emission rate of an atomic 
system, we proceed as follows: First, Heisenberg equations are found for the atomic and the field operators. The 
equations for the field are then formally integrated, so that the field operators are expressed through the atomic 
ones. The result is then inserted into atomic equations, so that field variables are completely eliminated from the 
description. The resulting complicated integro-differential equations are simplified in the Markovian approxi-
mation, where the memory effects are neglected. As a result, we obtain effective dynamics of the atomic system 
alone. The procedure is a generalization of the one introduced in ref. 9, where only the electric dipole interaction 
term was taken into account. Since the equations tend to be lengthy, we describe the consecutive steps in detail in 
Section 1 of the Supplementary Information. The effective evolution of the atomic system reads 


σ

γ ω δ σ σ= −






+ +






− ⋅ + ⋅ + ∇+ + +


i i d E m B Q E

2
( ) [ : ]

(7)z0 0,free
( )

0,free
( )

0,free
( )† † †


† † † †σ γ σ σ

σ

= − + + ⋅ + ⋅ + ∇

− ⋅ + ⋅ + ∇

+ + +

− − −



i d E m B Q E

E d B m E Q

( ) 2 { [ : ]

[ : ] } , (8)

z z 0,free
( )

0,free
( )

0,free
( )

0,free
( )

0,free
( )

0,free
( )

where the fields are always evaluated at r0,  is the identity operator in the atomic Hilbert space, γ is the spon-
taneous emission rate, and δ stands for the analogue of Lamb shift, calculated beyond the electric dipole approx-
imation. Explicit expressions for these quantities are given in the following. The “free” subscript corresponds to 
free fields, i.e. fields that are not influenced by atomic back-action. In the vacuum state, these fields account for 
vacuum fluctuations and their mean value vanishes. The influence of the photonic environment is taken into 
account through the modified Green’s tensor. The emission rate γ includes contributions from the electric dipole, 
magnetic dipole, and electric quadrupole channels, as well as their interference. The rate is expressed as 

 ∑γ
ε

ω
ω= ′ ′ =′

=∣†

c
D D G r r r r2 Im ( , , ) ,

(9)mn m
r

n
r

mn r r
0

0
2

2 0 00

where we have defined a “generalized transition moment” Dr with components 

D d Q i m
r

,
(10)

m
r

m
k

mk p pkm p
k0

∑ ∑ ε
ω

= +





+





∂
∂

with ∈m k p x y z, , { , , }, Gmn
″  denotes the imaginary part of an mn element of the Green’s tensor and εpkm is the 

Levi-Civita antisymmetric symbol. The derivatives in Eq. (10) should be evaluated at the position of the atomic 
system. Please note that the “generalized moment” is in fact a differential operator that acts on the Green’s tensor, 
i.e. the “moment” combines atomic and field properties. We stress that Dr becomes a purely atomic quantity only 
in the electric dipole approximation. Please note that in this case expression (9) is reduced to the well known form 

†γ ω= ⋅ ⋅
ε

ω


d G r r dIm ( , , )
c

2
0 0 0

0

0
2

2
9,37,43.

The Lamb shift in Eq. (7) is expressed through a principal-value integral: 

∑∫δ
π

ω
ω

ω ω
ω ω ω=

−
′

∞ ′ =
′=

P
c

d D D G r r1 ( ) ( ) Im ( , , )
(11)mn m

r
n
r

mn r r
r r0

2 0

2

0
,0

0

∣†

� ε

 where 

D d Q i m
r

( ) ,
(12)

m
r

m
k

mk p pkm p
k

∑ ∑ εω
ω

= +


 +





∂
∂

 and the generalized moment in Eq. (10) is ω=D D ( )m
r

m
r

0 . Again, in electric dipole approximation expression (11) 
reduces to the familiar form derived in refs. 9,44.

General comments.  Before we move to the next section, we will make a few general comments.
The emission and frequency shifts originate from coupling to quantized electromagnetic vacuum and can be 

derived in the quantum model, albeit their enhancement with respect to free space can be expressed with classical 
quantities. The enhancement depends on the geometry of the surroundings of the emitter, which determines the 
properties of the field, here accounted for in terms of the Green’s tensor. The tensor is governed by the classical 
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electric permittivity. Such description does not take into account the electron tunneling effects which might 
appear between the atomic system and metallic nanoparticles for separations below 1 nm45.

The Green’s tensor ω ω ω′ = ′ + ′G r r G r r G r r( , , ) ( , , ) ( , , )h s  can be decomposed into a sum of a homogene-
ous term Gh and a scattered part Gs

46. The homogeneous term corresponds to the response in free space or a 
homogeneous medium, while the scattered one describes influence of scatterers in the environment, e.g. extended 
interfaces among different media, nanostructured particles, or photonic crystals. The contribution of the homo-
geneous part of the Green’s tensor is already included in the homogeneous-medium spontaneous emission rate or 
the respective Lamb shift, while the contribution of the scattered part is of general interest. The scattered contri-
bution is frequently finite at the origin, as ′ →r r r, 0.

From an analysis of the generalized multipole moment, we find that the electric dipole component depends on 
the imaginary part of Green’s tensor, while the electric quadrupole and the magnetic dipole components are pro-
portional to the sum and difference of the corresponding derivatives of the imaginary part of the Green’s function: 

∂ + ∂Q ( )km k m , ∂ − ∂m ( )p k m , p k m,≠ , respectively. A simple π
4

-rotation of the coordinate system shows that 
these can be independently tailored, since there are no general restrictions on the ratios of values of a function 
and its derivatives in different directions at a given point. This observation is a starting point to consider their full 
interference and engineer environments which might support it28.

Generalizing the expressions for the transition rate beyond the electric dipole approximation not only allows 
to consider corrections to the atomic systems’ dynamics in cavities of extreme geometries. More importantly, it is 
a tool to describe, e.g. optical activity of chiral molecules for which an interplay between the electric and magnetic 
dipolar coupling of matter and light, i.e. interference of the two transition mechanisms, plays a crucial role. In 
centrosymmetric systems, parity is a good quantum number, allowing one to identify transitions either described 
by the electric dipole mechanism or a combination of electric quadrupole and magnetic dipole. Such systems 
could be considered sources of photons with well-defined parity, corresponding to a given transition mechanism.

Emission properties of multiple atomic systems.  The same formalism can be applied to the case where 
multiple two-level atomic systems, indexed with α, share the same photonic environment. The systems do not 
need to be identical, but we assume the separations of their transition frequencies ωα to be small with respect to 
the scale of spectral modulations of the properties of the photonic environment. This assumption will be relevant 
for the Markovian approximation. We additionally assume that the systems do not directly interact. However, the 
shared environment can be a carrier of interatomic coupling, as we will see below.

In the case of multiple atomic systems, the Hamiltonian from Eq. (6) should be generalized to the form 

H H H H ,
(13)

field int,∑ ∑= + +
α

α
α

α

where ω σ σ=α α α α
†H  , and int,H α is given by Eq. (6) with the operator σ replaced with σα and fields evaluated at 

positions rα of the thα  atomic system E r E E r( ) ( )( )
0

( ) ( )→ ≡α α
± ± ± , → ≡α α

± ± ±B r B B r( ) ( )( )
0

( ) ( ) . A set of Pauli oper-
ators σα, z ,σ α describes the αth atomic system. Different systems are naturally independent of each other, so the 
commutation rules for Pauli operators read σ σ =α β[ , ] 0, [ , ] z ,

†σ σ σ δ= −α β α αβ, σ σ σ δ=α β α αβ[ , ] 2z , .
Steps to derive evolution equations of atomic operators in the Markovian approximation are listed in Section 

2 of the Supplementary Information. The resulting equations read 

† † †



i i

i Q E m B d E

[ ( ) ] ( )

[ : ]
(14)
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,

, ,free
( )

,free
( )

,free
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∑σ ω δ γ σ ξ γ σ σ

σ

= − + − + +
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β β ββ β α β αβ αβ β α
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+ + +
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i
i d E m B Q E

E d B m E
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z z, ,

,free
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( )
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,free
( )

σ γ σ ξ σ σ ξ σ σ

σ

σ

= − + + −

+ ⋅ + ⋅ + ∇

− ⋅ + ⋅ + ∇ .

β ββ β αβ α β αβ β α

β β β β β β β

β β β β β β β

+ + +

− − −

† †

† † † †



For a better understanding, it is useful to note that the same equations can be derived for a collection of atomic 
systems described by an effective Hamiltonian of the form 

∑ ∑ω δ σ σ ξ σ σ ξ σ σ= + + + .
α α α α α β αβ α β αβ β α>

† † †H ( ) ( ) (16)eff � � �

In the Hamiltonian in Eq. (13), the photonic environment explicitly plays the role of the interaction carrier. In 
(16) the environment is eliminated, and an effective and direct multipole-multipole coupling is present instead 
with a strength 

∣ ∣P d R G I Gr r r r( ) Im ( , , ) ( ) Im ( , , ) ,
(17)mn

mn mn mn mnr r
r r

r r
r r0

2
, 2∑ ∫ξ ω ω ω

ω ω
ω ω πω ω=






 −

′ + ′







αβ
αβ αβ∞

=

′=

=

′=
β

α

β

α
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where ωαβR ( )mn  and I ( )mn ωαβ  are expressed through multipolar elements and differential operators, as given in 
Section 2 of the Supplementary Information. From Eq. S17 in Section 3 of the Supplementary Information it fol-
lows that if the transition frequency is sufficiently large, the expression for the coupling can be simplified to the 
form 

R G I G

R i G i

r r r r

r r

( )Re ( , , ) ( )Im ( , , )

( )Re ( , , ) ,
(18)

mn
mn mn mn mn

mn mn

r r
r r

r r
r r

r r
r r

2 , ,

0

2

2 2 ,

∑

∫

ξ πω ω ω ω ω

ω ω
ω ω

ω ω

=







′ + ′







+
+

′

αβ
αβ αβ

αβ

=

′=

=

′=

∞
=

′=

β

α

β

α

β

α

∣ ∣

∣

where the principal value integral is no longer present and the integration is now performed along the imag-
inary axis. There, the Green’s tensor shows greater numerical stability due to its decaying rather than oscillating 
character.

The multipole-multipole interaction strength ξαβ
 is a generalization of the dipole-dipole coupling which in 

free space scales as R 3− , R being the interatomic distance. Contrary, a modified photonic environment, e.g., in a 
photonic crystal, near a nanoparticle or a nanowire, might allow not only for stronger interactions but also for 
extended interaction distances9. Due to the enhancement of off-diagonal elements of the Green’s tensor, 
long-range coupling of multipoles or, in general, arbitrary nonparallel orientations may be enabled. Due to the 
strong field localization, corrections beyond the electric dipole approximation in such systems may be significant, 
and coupling of different multipoles is possible. Interference of different interaction components may lead to 
further enhancement or suppression of interaction strength, resulting in a corresponding modification of inter-
action distance. Please note that due to the large width of the peak in the density of states, assumed in Section 2 of 
the Supplementary Information, atomic systems with slightly different transition frequencies may in general be 
coupled.

Figure 1.  Example nanostructures and spontaneous emission rates. The nanostructures are two silver 
nanospheres of 40 nm diameter, separated by a 6 nm gap. The pink rectangle indicates the grid on which the 
Green’s tensor is evaluated. Spontaneous emission of an atomic system is shown as a function of its position 
within the pink rectangle. The total rates and components in different multipolar channels are given. ED-ED 
corresponds to the “pure” electric-dipole channel, while ED-MD is the interference between the electric and 
magnetic dipoles, etc. All rates in Hz. Figure created with use of MNPBEM17 toolbox50 for MATLAB (version 
R2019a). Note that logarythmic scale is used in all panels.
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The dissipators in Eq. (14) include emission rates of an individual, thα  atomic system γαα (reducing to γ from 
the previous Section in case of a single system), and collective decay rates γαβ. They arise because each atomic 
system is capable of modifying the photonic environment of the others and they are defined as 

P∑ ∫γ ω πω ω ω ω ω
ω ω
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valid also for β α= , which yields I ( ) 0mj ω = . Again, using Eq. S17 of the Supplementary Information we can 
simplify the expression to 
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Please note that for identical emitters this problem can be discussed in terms of Dicke superradiance, and would 
be a straightforward generalization of results of ref. 47.

Figure 2.  Shift δ of an atomic system’s transition frequency for selected positions within the pink rectangle in 
the system sketch in Fig. 1. The first row corresponds to the pure multipolar channels, while the second row 
displays the interference terms. The total shift is the sum of all components and is shown at the bottom. All 
shifts in eV. Figure created with use of MNPBEM17 toolbox50 for MATLAB (version R2019a).
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Examples.  In this section we apply the formulas derived above first to the case of a homogeneous background 
dielectric and second to an exemplary selected nanostructured environment into which the atomic system is 
placed. In the first considered case, our goal is to retrieve familiar scaling of different multipolar components of 
spontaneous emission rates with different powers of refractive index48,49. In the latter case, we demonstrate that 
in a suitably engineered environment contributions beyond electric dipole may have a significant impact on the 
atomic system’s dynamics.

Homogeneous background medium.  In a homogeneous, isotropic, and infinitely extended medium the 
Green’s tensor takes the form 

ikR
k R

ikR k R
k R

e
R

G R 1 1 RR( , ) 1 3 3
4

,
(21)

ikR

2 2

2 2

2 4ω
π

=
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+
−

+
− − 




where R R r r= = − ′∣ ∣ ∣ ∣  is the distance between the source and observation point where the field is to be eval-
uated, and the wave number in the homogenous medium reads ε ω ω= =ω ωk n( ) ( )

c c
, ωn( ) being a 

position-independent refractive index.
In Section 4 of the Supplementary Information we show that away from the medium resonances the imagi-

nary part of the Green’s tensor is diagonal in the limit of →R 0 with 

ω
π

=
→

G k R RRlim Im ( , )
60

, (22)R
jk j k
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3

 for k j≠ , and is exactly 0 for R 0= . The diagonal elements however, are finite and read as 
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π π π

= − + + .G k k R k R R O RRIm ( , )
6 30 60
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Inserting the limit at R 0→  in Eq. (9), we retrieve the Weisskopf-Wigner result for the electric dipole contribu-
tion to spontaneous emission 
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Higher-order terms may be evaluated based on derivatives found in Eqs. S27 & S28 of the Supplementary 
Information.
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As the result, we find the familiar result for transition rates via higher-order channels48,51, which scale with the 
third power of the refractive index48,49. Similarly, multipole-multipole interaction terms can be retrieved.

Pair of metallic nanospheres.  To offer also an example of a structured photonic environment, we consider here a 
pair of silver nanospheres of 40 nm diameter, separated by a 6 nm gap inside of which an atomic system is posi-
tioned. The chosen coordinate frame is shown in the system sketch in Fig. 1. The Green’s tensor was calculated 
using the MNPBEM toolbox for MATLAB50: a Maxwell equation solver based on the Boundary Element 
Method52–54. Full Maxwell equations were solved. Silver was modeled using data from ref. 55. The tensor is calcu-
lated at the frequency 2 7890ω π= × −ps 1 on a 4 nm 3 nm×  grid located in the symmetry plane =y 0 between 
the nanospheres, as marked by the rectangle in the system sketch in Fig. 1. The Green’s tensor’s elements and 
derivatives are presented in the Supplementary Information.

We now consider a two-level atomic system with transition frequency 0ω . We choose a transition electric 
dipole moment to be oriented along the x axis, with a length of =d eax 0, where e stands for the elementary charge 
and a0 is the Bohr radius. The magnetic transition dipole moment parallel to the z  axis is µ=m i2z B, with µB 
standing for Bohr magneton. The electric transition quadrupole moment in the xy plane is set to Q Q eaxy yx 0

2= = . 
The chosen values correspond to all moments equal to 1 atomic unit, i.e. values characteristic for atoms and mol-
ecules. The transition rates depend on the position of the atomic system with respect to the nanospheres, and are 
shown in Fig. 1. We only consider the atomic system’s positions in the rectangle from the system sketch in Fig. 1. 
In free space, the rates through respective channels are given by Eqs. (24–26)) with =n 1 and read γ ≈ 37ED,fs  
MHz, γ ≈ .2 0MD,fs  kHz and 17EQ,fsγ ≈  Hz. This means that the ED channel dominates the emission, and if it is 
present the visibility of the other channels is suppressed. In general, in the gap between the nanospheres the 
enhanced transition rates in all channels exceed the free-space values by several orders of magnitude: up to 4 in 
case of the ED and even 7 (8) for the MD (EQ), improving the impact of the higher order channels with respect to 
the dominant electric dipole. As a result, the channels beyond the electric dipole make a significant contribution 
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to the overall transition rate. This contribution includes the interference channels: for the studied nanostructured 
geometry and orientations of the multipolar moments we find the interference between the MD and EQ to be 
relatively strong, while the interference with the ED channel is weaker. However, in general other geometries or 
orientations of the atomic systems could be considered where these channels, here weak, could be tuned28. 
Among possible applications this suggests potential for enhancement of optical activity, in particular circular 
dichroism. Among the two considered higher-order channels, the magnetic dipole transition channel dominates 
by two orders of magnitude over the electric quadrupole one. However, the latter is manifested through interfer-
ence, which we find always destructive in the investigated region, and whose contribution to the transition rate in 
channels beyond the ED is of the order of 10%.

We now evaluate the correction of the frequency shift, i.e. the Lamb shift, of the atomic system coupled to the 
quantum vacuum near the two nanospheres. Please note that the full Green’s tensor diverges at the origin. 
However, we are only interested to evaluate the correction of the shift with respect to free space, determined by 
the scattered part of the Green’s tensor. The result obtained for selected positions within the gap is shown in Fig. 2. 

Figure 3.  Absolute values of interaction strengths ξ  between two atomic systems, one of which is positioned at 
the centre of the simulation domain, in function of position of the other system. All strengths in Hz. Figure 
created with use of MNPBEM17 toolbox50 for MATLAB (version R2019a).

Figure 4.  Absolute values of collective decay rates γ12 of two atomic systems, one of which is positioned at the 
centre of the simulation domain, in function of position of the other system. All rates in Hz. Figure created with 
use of MNPBEM17 toolbox50 for MATLAB (version R2019a).
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The relative values of the shifts δ ω< −10 3
0 in the investigated domain are dominated by the electric-dipole and 

the comparable magnetic-dipole channel. Please note the opposite sign of the interference term between the two.
Finally, we evaluate the interaction strengths ξ  (Fig. 3) and collective emission rates γ12 (Fig. 4) for a pair of 

atomic systems, one of which is positioned at the center of the domain in between the nanospheres, while the 
position of the other is swept across the simulation domain. The evaluated interaction strengths reach tens of THz 
throughout the simulation domain. Please note that atomic systems separated by very small distances might 
interact through mechanisms other than the optical one, e.g. through electron exchange. The total interaction 
strength and collective decay rate is a sum of contributions from all channels. Please note that in the case of inter-
action strength we find the contributions from all investigated multipoles to be significant. Contrary, the collec-
tive decay rates are dominated by the ED channel.

Discussion
We have studied dynamics of atomic systems coupled to a photonic environment in its vacuum state. The envi-
ronment is described in terms of the electromagnetic Green’s tensor and the interaction contributions beyond 
the paradigmatic electric dipole approximation have been included. The derived formalism allows us to evaluate 
dynamical parameters characterizing optical properties of atomic systems: both the individual and the collec-
tive contributions to energy shifts and decay rates. Inclusion of terms beyond the electric dipole approxima-
tion allows us to study the role of higher multipolar channels, including enhancement or suppression through 
interference of different interaction mechanisms. Examples of phenomena to be investigated are optical activity, 
multipole-multipole interactions between atomic systems and spontaneous emission suppression due to interfer-
ence of different mutipolar channels in tailored photonic environments.

Methods
Our approach is based on quantization scheme introduced in refs. 39,42. To derive equations presented in this work 
we apply the Markovian approximation, as described in detail in the Supplementary Information available online.

Green’s tensor corresponding to the pair of metallic nanospheres in the Examples section was calculated using 
the MNPBEM toolbox for MATLAB50: a Maxwell equation solver based on the Boundary Element Method52–54. 
Full Maxwell equations were solved. Silver was modeled using data from ref. 55.
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