
1Scientific RepoRtS |         (2020) 10:7280  | https://doi.org/10.1038/s41598-020-62144-2

www.nature.com/scientificreports

incompatible coulomb hamiltonian 
extensions
G. Abramovici

We revisit the resolution of the one-dimensional Schrödinger hamiltonian with a coulomb λ/|x| 
potential. We examine among its self-adjoint extensions those which are compatible with physical 
conservation laws. In the one-dimensional semi-infinite case, we show that they are classified on a U(1) 
circle in the attractive case and on ( )+ ∞,  in the repulsive one. In the one-dimensional infinite case, we 
find a specific and original classification by studying the continuity of eigenfunctions. In all cases, 
different extensions are incompatible one with the other. For an actual experiment with an attractive 
potential, the bound spectrum can be used to discriminate which extension is the correct one.

The Coulomb problem addresses the non-relativistic Schrödinger equation with a 3-dimensional Coulomb 
potential, restricted to one dimension; it has inspired a vast corpus of scientific literature for the last seventy 
years1–11. Some results have been much debated. Mathematical aspects are now fully understood, but physical 
ones want for more elaborated and robust interpretation, which we provide in details here.

In this article, we study the Coulomb potential, either restricted to a semi-infinite line, or else to a full infinite 
line. We will formally write the corresponding hamiltonian H = −d2/dx2 + V in dimensionless units and  will 
represent the domain on which wavefunctions are defined, so the first case corresponds to = +

∗D R , while the 
second to =D R. When necessary, we will write H( ) instead of H. One may note that the Schrödinger equation 
for D R= +

∗  is equivalent, through a simple mapping, to the radial one for 3=D R  in 3-dimension with zero 
orbital momentum, L = 0.

This work lies at the frontier between physics and mathematics, because Coulomb hamiltonians +
∗H( ) and 

H( ) , although defined on a physical basis, reveal non self-adjoint. In such a case, one usually needs to study the 
self-adjoint extensions K of the hamiltonian. But, in this very case, the situation is even worse, because H is not 
even symmetric6,11 (that is, one can find two states ϕ and χ such that ϕ χ χ ϕ≠⟨ ∣ ∣ ⟩ ⟨ ∣ ∣ ⟩H H ). In such a situa-
tion, one must restrict the Hilbert space on which eigenstates are defined, in order to get a symmetric operator, 
the self-adjoint extensions K of which are well-defined. We call L this restricted Hilbert space.

When the self-adjoint extension of an operator is unique, these mathematical manipulations are transparent 
because the spectral theorem applies, so the action of the operator is defined unambiguously on any function of 
L. This is the case for almost all standard hamiltonians found in scientific literature, which are moreover gener-
ally well defined without any restriction (that is L L ( )2=  ), so one does not need to care about all these mathe-
matical subtleties.

However, +
∗H ( )  and H( ) belong to the class of operators, which admit several self-adjoint extensions. Each 

extension is incompatible with the other, so one must choose only one extension at a time, where to define a 
complete set of eigenstates. From a physical point of view, the interpretation of the operator action on a wavefunc-
tion is ambiguous, since its definition depends on the extension which is chosen. Deficiency coefficients are 
defined, which indicate the number of degrees of freedom, for this choice. For +

∗H( ), authors have found12–15 one 
continuous degree of freedom.

Motivation
The interest of the Coulomb problem lies in its unusual properties: the fact that hamiltonian +

∗H( ) and H( )  are 
not self-adjoint and not even symmetric, so that one must construct maximal restrictions L and study their 
self-adjoint extensions K. Our aim is to find a physical interpretation of these extensions, in order to identify 
those which are compatible with standard physical laws and those which are not.

The boundary triples theory, which is proved for the Coulomb problem12, establishes that any eigenfunction ψ 
of K is an eigenfunction of H with specific boundary conditions. This result, to which we will refer as the bound-
ary triples theorem, provides a physical interpretation of all the self-adjoint extensions to be found. We will also 
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benefit of all previous classifications of these extensions12–15 and repeat some of these calculations, taking into 
account physical considerations.

In what concerns the semi-infinite line, all self-adjoint extensions of +
∗H( ) reveal compatible with physical 

conservation laws, so the main contribution of this study on +
∗H( ) consists mainly in a more physical and peda-

gogical way to construct them. However, we provide an original description of the space parameter of these 
extensions, which is topologically equivalent to U(1) in the attractive case and to ∞( , ) in the repulsive one.

On the contrary, self-adjoint extensions of H( ) are not all compatible with physical conservation laws. 
Indeed, their study brings a specific difficulty: the connection of the solution defined on +

∗  with that defined on 
−
∗ , since the continuity of eigenfunctions at x = 0 is not guaranteed. This has been very debated and we propose 

an original connection process, which is founded on physical conservation laws and gives new, although compat-
ible, results.

Altogether, we prove a new classification of the self-adjoint extensions of H( ) , excluding those which are not 
compatible with physical conservation laws. Accordingly, this classification maps on a space of extension param-
eter, which is reduced compared to that of previous classifications15, but the deficiency coefficient remains equal 
to 2. The parameter space of our classification is the product of a one-dimensional closed line by a phase similar 
to a gauge degree of freedom.

In what concerns the 3-dimension space, in spite of the mapping between its Schrödinger equation with that 
of +

∗H( ), the corresponding classifications of self-adjoint extensions are different (see however Appendix in 
Supplementary Information), since the deficiency coefficient of H( )3  is zero12, that is H( )3  is self-adjoint, when 
defined in L ( )2 3 .

The present article is organized as follows: we will first focus on the D R= +
∗  case and classify all self-adjoint 

extensions of +
∗H( ), both for an attractive potential or a repulsive one. In particular, we define and exhibit the 

Dirichlet or Neumann extensions. Then, we study in details the continuation problem in the =D R case. Next, 
we study physical applications of D R3= , D R=  and = +

∗D R  cases. In a fifth part, we examine the spectral theo-
rem. In the next one, we exhibit the extension parameter spaces. Finally, we will review the highlights of this work 
on the Coulomb problem. Some notations and terms are given afterwards in Table 1.

Self-adjoint extensions in the ∗
+  case

Operator +
∗H( ) is unbound and can not be defined on +

∗L ( )2 , the Hilbert space of square-integrable functions. 
Eigenfunctions φe obey equation 

d
dx

x
x

x e x x( ) ( ) ( ) 0
(1)

e
e e

2

2
φ λ φ φ− + = ∀ >

ℜ/ℑ real/imaginary part of a complex number

i the imaginary number. Its conjugate reads �= −i

 generic physical space

 set of real numbers

+
∗  /  set of positive real/integer numbers

E* the set E excluding 0 (for any set E)

H hamiltonian

simple without degeneracy

η adimensional Coulomb parameter

Rydberg states eigenstates corresponding to η− ∈ 

non Rydberg states eigenstates corresponding to η− ∉ 

L ( )1  set of Lebesgue integrable functions defined in 

L ( )2 set of Lebesgue square integrable functions defined in 
Ln Laguerre polynomial

D
generic domain where eigenstates are defined for a given self-adjoint extension not to 
be confused with boundary conditions in real space, applied to H( )

S
generic set of negative eigenvalues for a given self-adjoint extension (we call it 
spectrum instead of discrete spectrum)

B generic set of bound eigenstates for a given self-adjoint extension

F generic set of free eigenstates for a given self-adjoint extension

ω parameter which classifies the self-adjoint extensions in the semi-infinite real line case

ϖ = (ω, θ) parameter which classifies the self-adjoint extensions in the real line case

Table 1. Notations and terminology.

https://doi.org/10.1038/s41598-020-62144-2


3Scientific RepoRtS |         (2020) 10:7280  | https://doi.org/10.1038/s41598-020-62144-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

where we have multiplied Schrödinger equation by 2m/ℏ2, so e is the reduced energy corresponding to  
E = ℏ2e/(2m); we define 


λ ≡

πε

′mqq2
4 o

2
, m is the mass of the particle, εo vacuum permittivity, ℏ the reduced Planck 

constant and q, q′ the electric charges. For e > 0 (free states of positive energy), the solutions of (1) read 

x F kx G kx k e k( ) ( ) ( ), with momentum , /(2 ) andk k kα β η λΨ = + ≡ ≡η η

� �

�
� �

�

�

F u C u M u

G u u
C

U u

C

( ) e (1 , 2, 2 ),

( ) 2 e ( ) (1 , 2, 2 ) ,

with e
sinh( ) (2)

u

u

2

R

η

η η η

πη
πη

≡ −

≡





Γ −

−






≡ .

η η

η
η

η

πη

−

−

−

Here, Γ is the gamma function, M the regular confluent hypergeometric function and U the logarithmic confluent 
hypergeometric function16. Both Fη and Gη are continuous and bounded, see ref. 11 for asymptotic behavior and 
other properties. The case e = 0 extends this case when the potential is attractive, see section ‘Solutions of zero 
energies’.

For e < 0 (bound states of negative energy), the solutions of (1) read 

x f kx g kx k k( ) ( ) ( ), with momentum e , /(2 ) andk k kϕ μ ν η λ= + ≡ − ≡η η

η

λ η

η λ

η η ψ η

≡ +

≡ | | +

≡
|Γ + | | |

− + +
.

η η

η

η

−

−

′

f u D u U u

g u u M u

D

( ) 2 e (1 , 2, 2 ),

( ) 2 e (1 , 2, 2 ),

with
(1 )

1 2 2 (1 ) (3)

u

u

2
dig

Here, ψdig is the digamma function. One finds ∈η +
∗f L ( )1  ⋂ ⋂+

∗ ∞
+
∗ L C( ) ( )2  while ∈η

∞
+
∗g C ( ) and diverges 

as u →∞. We have chosen ∥fη∥2 = 1 in +
∗L ( )2 .

For λ < 0 so ′ <qq 0 and the potential is attractive, the spectrum of any self-adjoint extension will reveal 
infinite and discrete. As we shall find, all solutions corresponding to η = −n, with n ∈ ∗ , belong to the same 
extension and read f u u L u n( ) e (2 ) 2u

n
3/2λ= − −η

− ′ − , the standard Rydberg solution, with Ln the Laguerre pol-
ynomial. They obey Dirichlet condition f−n(0) = 0. On the other hand, for η− ∉ ∗ , fη(0) ≠ 0, see ref. 11 for more 
details. We will call Rydberg states, those following η = −n with ∈ ∗n  , and non Rydberg states the others. Note 
that the definition of gη must be changed into 

g u u L u n( ) e (2 ) 2u
n

3/2λ= − −η
− ′ −

since, in that very case η = −n, u e−uM(1 −n, 2, 2u) is proportional to u e−uU(1 −n, 2, 2u).
For λ > 0 so qq 0′ >  and the potential is repulsive, the spectrum of any self-adjoint extension will reveal dis-

crete, with a unique bound state of strictly negative energy, but in a specific case that we will explain further on.

existence of self-adjoint extension. The existence of self-adjoint extensions for the Coulomb poten-
tial has been fully established in several references12–15 and needs not to be discussed here again. Indeed, the 
deficiency coefficients m± are found equal to 1, although not explicitly calculated in ref. 13. We will construct all 
self-adjoint extensions as follows.

We will write ω +
∗H ( ) the self-adjoint extensions of +

∗H( ), parametrized by ω, a symbolic index, the meaning 
of which will be explained later on. The boundary triples theorem implies that ω +

∗H ( ) is the restriction of +
∗H( )  

on some domain L of eigenfunctions, which we write = ωL D . We will first construct all possible symmetric 
extensions of +

∗H( ) with different boundary conditions and find self-adjoint ones ω +
∗H ( ) as maximal symmetric 

extensions15.

Description of a self-adjoint extension. In this part, we consider the attractive case. Let eω < 0 be in the 
spectrum of ω +

∗H ( ), that is kϕ
ω
, with momentum = −ω ωk e , is an eigenfunction of ω +

∗H ( ) and belongs to ωD . 
There is such eω, otherwise the spectrum of ω +

∗H ( ) would be included in + , which case we exclude later on.  
kϕ

ω
 is proportional to 

 η ω
ω

x f k x( ) (writing ηω = λ/(2kω)) because of (3); indeed, ∈η +
∗

ω
f L ( )2 , so does kϕ

ω
 by 

definition, while 
ηω

g  diverges, letting 0kν =
ω

. The other factor reads then �ekμ = θ
ω

ω, a constant phase factor 
which can be fixed arbitrarily.

One observes that not all functions ϕk belong to ωD , because the scalar product η η⟨ ∣ ⟩F F
1 2

,which we calculate 
in Appendix (see Supplementary Information), with arbitrary momenta ki = λ/(2ηi), is not always zero. Let us 
establish this result: we note γE the Euler constant and define function gb: 
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�ψ γ≡ + − − +∣ ∣g x x ln x
x

( ) (1 ) 1
2

2 ;b d g E

then, the scalar products reads 

⟨ ∣ ⟩
λ η η

η η
=

−
×

−

Γ + Γ +η η
η η

f f
D D

k k
g g( ) ( )

(1 ) (1 )
;

(4)
b b

2

1
2

2
2

2 1

1 2
1 2

1 2

(this expression is valid when η1 → η2 and the limit is 1); therefore an operator admitting all such eigenfunctions 
would not be symmetric6,11.  ■

Let ϕ ϕ≡ ∈ =ω ω−
∗

−ω
 ⟨ ∣ ⟩ ⋃S e e{ / 0} { }k e . We will prove that the set of bound states of ω +

∗H ( ) corresponds 
to functions generated by B SL k{ ( )/ }k

2 2ϕ≡ ∈ − ∈ω ω+
∗ , so the spectrum of H ( )ω +

∗  will exactly be ω +S ⋃ . 
Let us characterize ωS . The condition 0k k1 2

ϕ ϕ =⟨ ⟩  reduces to 

η η=g g( ) ( ) (5)b b1 2

so η= =ω
λ

ω−
S { }( )e g g/ ( )b e b2

. We study the zeros of gb(η) −gb(ηω) further on. (5) implies that any function 
ϕk orthogonal to kϕ

ω
 obeys gb(η) = gb(ηω) so all functions in ωB  are either proportional or orthogonal to each 

other. By construction, ωB  is maximal, because any function orthogonal to ϕ
ωk  belongs to it; there cannot be any 

other eigenfunction in Dω corresponding to a bound state, so φ ∈ ∈ ⊆ω ω ωD S Be{ / }e . However, we cannot claim 
yet that this inclusion is an equality, because the scalar product of a bound state with a free one could be different 
from zero.

Let us discard this possibility and thus prove e{ / }eφ ∈ ∈ =ω ω ωD S B . Let us examine free states. Let Fω be 
the set of functions φe = Ψk, with e > 0 and momentum =k e , such that 

0 (6)k kϕ Ψ = .
ω

⟨ ⟩

Each φ ∈ ωe F  reads x F k x G k x( ) ( ) ( )eφ α β= +η
ω

η η
ω

η  using (2). Let us define gf: 

��R ψ γ≡ + + − ∣ ∣g x x ln x( ) ( (1 )) 2 ,f d g E

then the scalar products ⟨ ∣ ⟩η ηf F
1 2

 and ⟨ ∣ ⟩η ηF G
1 2

 calculated in Appendix (see Supplementary Information) read 

η η
λ η η

η
λ

=
Γ +

×
+

=
−

Γ +
×

+
.η η

η η
η η

η

η
⟨ ∣ ⟩ ⟨ ∣ ⟩f F

D C

k k
f G

D

C

g g

k k4 (1 )
;

( ) ( )

2 (1 ) (7)

b f

2 1

3/2

1
2

2
2

1 2

1

3/2

1
2

2
21 2

1 2

1 2

1

2

We define ζ α β≡η
ω

η
ω

η
ω/ . For η− ∉ ∗

1   (non Rydberg states), using (6) with (7), one finds 

S ζ η η η η η η∀ = − ∈ = − = − .ω
ω

η η
ωe k

C
g g

C
g g2 ( ( ) ( )) 2 ( ( ) ( )) using(5)

(8)
k f b f b1 1

2
2 1 2

For 1 η− ∈ ∗ (Rydberg states), one finds ⟨ ∣ ⟩ =η ηf F 0
1 2

 and ⟨ ∣ ⟩ = −η η
η η λΓ −

+

η

η
f G ( 1)

D

C k k

( )

1 2
1 1 1

2

3/2

1
2

2
2
 so one must 

choose β = 0k2
 and gets k2

ζ = ∞. (8) extends in this case, since gb(ηω) →∞ when ηω → −n with n ∈ ∗.  
(8) implies that Ψk is orthogonal to any function k1

ϕ ∈ ωB  as soon as it is orthogonal to ϕ
ωk . All free eigenfunc-

tions of ω +
∗H ( ) must belong to Fω, so they respect (8); thus, they are all orthogonal to any ( )k1

ϕ ∈ ω +
∗B ; this 

ends our demonstration.  ■
Conversely, all elements in ωF  are eigenfunctions of ω +

∗H ( ) . In that purpose, let us establish the generalized 
orthonormality of all elements in Fω. Let e1

φ  and φe2
 be in ωF , with e1 ≠ e2. The scalar products ⟨ ∣ ⟩η ηF F

1 2
, η η⟨ ∣ ⟩F G

1 2
, 

η η⟨ ∣ ⟩G F
1 2

 and ⟨ ∣ ⟩G G
1 2η η , calculated in Appendix (see Supplementary Information) read 

λ η η
δ

δ

λ

η

=
−

−
+ −

= −

=
−

.

η η
η η

η η

η η
η

η

⟨ ∣ ⟩

⟨ ∣ ⟩

⟨ ∣ ⟩

G G
C C

g g

k k
k k

F F k k

F G
C

C k k

( ) ( )
( );

( );

2
1

(9)

f f2 1

1
2

2
2 1 2

1 2

1 1
2

2
2

1 2
1 2

1 2

1 2

1

2

For e1 ≠ e2, we span the scalar product ⟨ ∣ ⟩e e1 2
φ φ  using (2) and (8), which gives 
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F F F G G F G G

C C
g g g g g g

k k

k k

0 2 ( ( ) ( )) 2 2 ( ( ) ( )) 2 4( ( ) ( ))

( ) ( )

( ),

e e

f b f b f f

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1
2

2
2

1 2

1 2

1
2

2
2 1 1

1
2 2

2
2 1

1
2

1
2

1 2

1 2

⟨ ∣ ⟩ ⟨ ∣ ⟩ ⟨ ∣ ⟩ ⟨ ∣ ⟩ ⟨ ∣ ⟩

∣ ∣ ∣ ∣

φ φ α α α β β α β β

η η

λ

β β

η η
η η η

η
η η η

η
η η

α β δ

δ

= + + +

=
−






− − + − − −







+ + −

= −

η
ω

η
ω

η η η
ω

η
ω

η η η
ω

η
ω

η η η
ω

η
ω

η η

η η

η
ω

η
ω

ω ω

η
ω

η
ω

where 
1 1

ζ ζ=η η
 follows (8).  ■

We have proved that all bound eigenfunctions of ω +
∗H ( ) are in Bω while all free ones are in ωF . Therefore, we 

get =ω ω ω⋃D B F . We define ∼ωH  the restriction of +
∗H( ) on ωD . We will prove now that H∼ω is symmetric, that is 

ψ ϕ ψ ϕ=
∼ ∼

ω ωH H( ) ( )  for all ,ψ ϕ ∈ ωD . Let (e1, e2) be such that ψ φ= e1
 and e2

ϕ φ=  (depending on whether 
ψ belongs to the free or the bound spectrum, either e1 ∈ +  or S∈ ωe1 , and idem for ϕ with e2). One writes then 



⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ψ ϕ ψ ϕ ψ ϕ ψ ϕ ψ ϕ− = − = − =
∼ ∼

ω ω

=

H H e e e e( ) ( ) ( ) 0
e

1 2 1 2

1

The last equality is proved by discussing whether e1 ≠ e2, so ψ φ φ= ⊥e e1 2
 = ϕ, following all previous discus-

sions, or else e1 = e2.  ■
Let us prove that ∼ωH  is maximal ad absurdum. Since it is symmetric, it admits a self-adjoint extension K, which 

is defined on C D⋃ ω, where C is some non empty space, by hypothesis. Let us write CK  the restriction of K on C. 
Let i{ , }i Iφ ∈  be a basis of Dω, and ψ ∈ Jj{ , }j  a basis of C. One writes 

∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩∑ ∑ ∑φ φ φ ψ φ ψ= = = + .
∼

ω
∈ ∈ ∈I I J

K H a K b ci i
k

i
k

k j
k

j
k

k
l

j
l

l

Multiplying the first line by ψ⟨ ∣j  and the second by �⟨ ∣φ , one gets �b 0j = , so �⟨ ∣ ⟩ 0jφ ψ =  ∀i, j. K is symmetric, 
so � �ψ ψ ψ ψ=K Kj j⟨ ∣ ∣ ⟩ ⟨ ∣ ∣ ⟩ , which implies �

�=c cj
j  ∀i, j. Eventually, we have established that CK  is symmetric. 

From standard algebra17, there exists at least an eigenfunction 0 Cφ ∈ , and its eigenvalue e0 is real.
Applying the boundary triples theorem, the function φ0 is a solution of the differential equation 
 φ φ=+

∗H x e x( ) ( ) ( )0 0 0 , with particular boundary conditions. If e0 < 0, one finds immediately that φ ∈ ωB0 . If 
e0 ≥ 0, one must first write that 0k 0⟨ ⟩ϕ φ =  for all k (ϕk are the elements of Bω); following the previous construc-
tion, one eventually finds that φ ∈ ω0 F . We have proved D0φ ∈ ω, which contradicts Cφ ∈0 , so the maximality 
of ∼ωH  is proved.  ■

∼
ωH  is symmetric and maximal, that is, it is a self-adjoint extension. Furthermore, ∼ωH  is simple. Concerning 

bound states, this results from the elimination of functions proportional to gη. Concerning free states, it follows 
(8). Now, let φe be any eigenfunction included in the domain of H ( )ω +

∗ . This domain includes φ
ωe , so φe must be 

either orthogonal to eφ
ω
 or have eigenvalue eω. In the first case, φe belongs to Dω. In the second case, it is propor-

tional to φ
ωe  (still resulting from the elimination of functions proportional to gηω

). This proves that the domain of 

ω +
∗H ( ) is included in that of H∼ω, so ∼ωH  is an extension of ω +

∗H ( ). Self-adjoint extensions are maximal, so 
=

∼
ω ω +

∗H H ( ), which is therefore completely determinate.  ■

Classification in the attractive case. Set Sω contains the zeros of 
η





−






−λ
η ω( )g g e( )b b2

2
, which we rep-

resent for several values of ω in Fig. 1. To characterize each set Bω, we follow the results in ref. 12 and define 
ϕ ϕ λ ωϕ= ∈ + =

∼
ω

ϕ

λ+
∗ ∂

∂
L x ln x x{ ( )/ ( ) ( ) ( )}k

x

x k k
2 ( )kB . This condition differs from the more usual one 

ωφ=φ∂
∂

k x( )k x
x

( ) . Another possible characterization is given in ref. 13. For a given number ω ∈ , we define ηω to be 
any solution of gb(η) = −ω (one can chose the highest η, as we will prove further on that this set has a maximum).

Let us prove =
∼

ω ωB B . First, we will show that two functions in ∼ωB  are either proportional or orthogonal. One 
finds, for non Rydberg eigenfunctions ( η− ∉ ∗ ), 

( ) ( )

( )
( )

( )

f

x
f x f

x
f x ln x

g D

f x D f ln x

f
g

2 2
so lim

2
( )

( )
(1 )

while lim
2 (1 )

so lim
( )

( )

x

x

x

b

x x

f

x
x

x b

2

0

2

0 0

2

2

x
2

λ
η

λ
η λ

λ
η

λ
η

η

λ
η η

λ
η

∂

∂
=











∂

∂
+











= −
Γ +











=
Γ +

+
= − .

η
λ

η
η

η
λ

η
η

η

η
η λ η

λ
η

η
λ

η

′
→

→ →

∂

∂

η
λ

η

Thus, it comes that all elements in ∼ωB  verify ω = −gb(η), so, using (5), the proposition is proved, except for 
Rydberg states such that η− ∈ ∗ . For these, the last limit gives ∞. However, these eigenfunctions are well known 
and indeed orthogonal (see section ‘Dirichlet solutions’), so the result extends to this case immediately. 
Conversely, any index η corresponding to ϕ ∈ ωk B  verifies gb(η) = gb(ηω) = −ω. Eventually, this proves =

∼
ω ωB B . 

 ■

https://doi.org/10.1038/s41598-020-62144-2


6Scientific RepoRtS |         (2020) 10:7280  | https://doi.org/10.1038/s41598-020-62144-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Let’s define  λ ω= Ψ ∈ + Ψ = Ψ
∼

ω λ
∞

+
∗ ∂Ψ

∂
F L x ln x x{ ( ) ( ) ( ) ( )}k

x
x k k

( )k . We will prove now that =
∼

ω ωF F . We 
first show F F⊂

∼
ω. One finds 
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η

λ
λ η

λ
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η
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= −

η η

η
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η η

η
η

η
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η
η
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→ → →

→ →
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lim lim
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0; lim
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( ) 0;
2

the lim
2

1 and lim
2
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( )
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x x x

x

x x

x
f

0 0 0

2

0 0

2

so, considering any φ α β= + ∈ω
η η

ω
η ωFx F k x G k x( ) ( ) ( )e k  with 0kβ ≠ω , one gets 

α β

α β
λ ζ λ

η η η
η

η η

+

+
+ = + +

= − − = −

ω
λ η

ω
λ

ω
η

λ
η η

ω
η

λ
η

ω λ

η
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η

λ

η
λ

η

ω ω

→

∂

∂

∂

∂

→

∂

∂

→

∂

∂

η
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η η
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η η
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η η
λ
η

( ) ( ) ( ) ( )
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2 ( ( ) ( )) 1
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x x
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f f  

0
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b b .

while, for 0kβ =ω , which corresponds to Rydberg states, one gets 

λ+
= ∞.

λ η
λ

η

η
λ

η
→

∂

∂

η
λ

η ( )
( )

( )
F ln x

F
lim

( )

x

F

x
x

x0

2

2

x
2

This proves exactly that φe belongs to ∼ωF . Reversely, let us show that any element e Fφ ∈
∼

ω belongs to ωF . Using 
(2), one writes φe = αkFη + βkGη. Then, from the definition of ∼ωF , one gets 

�

�

C g

C C

f
C

g

f2

( ) 0 2 ( ( )) ;

0 ;
k k

f
k

k k f

k k

2α
η

β
η

η
β ω β ζ

η ω η

β ζ
− = ⇔










≠ = +

= = ∞

η

η
η

and the scalar product ⟨ ∣ ⟩ϕ φηω e  reads 

Figure 1. Here are the curves ⟨ ∣ ⟩

n2 2
η ϕ ϕ− −λ λ

η
, for n = −1/2 (dashed line), n = −3/4 (dotted line), n = −1 

(plain line), n = −5/4 (dot-dashed line), n = −3/2 (dashed line), n = −7/4 (dotted line) and n = −2 (plain 
line). The zeros of each curve read η = λ

−e2
 where ∈ ωe S , with ω = −gb(n), as explained further on. The 

curves seem to form pairs corresponding to (n, n + 1), in particular, one could believe that each pair intersects 
on the η-axis (abscissa), but this is wrong, except for (n, n + 1) = ( −2, −1) which correspond to the same 
Rydberg set S∞. All the other intersections are only close to zero, so that, indeed, ≠− − +S Sg n g n( ) ( 1)b b

. η = n is 
missing, because ϕ ϕ ≠− −λ λ⟨ ∣ ⟩ 0

n n2 2
.
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ϕ φ α ϕ β ϕ
μ λ
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ω η= + =
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=η η η η η

ω ω

η

η
ω ω ω

ω⟨ ∣ ⟩ ⟨ ∣ ⟩ ⟨ ∣ ⟩F G
k k

C
C

g
2( ) (1 ) 2

( ( ) 0e k k
k k k

f

3/2

2 2

so eφ ∈ ωF . The case βk = 0 corresponds to the Rydberg one, ζk =∞ = ω, and ∣ ⟩ϕη∞
 is orthogonal to all states in 

∞F .  ■
Our classification is coherent with that of ref. 12, all self-adjoint extensions of +

∗H( ) are classified by ω ∈ . 
The topology of the parameter space is studied in section ‘Structure for = +

∗D R  in the repulsive case’.

Classification in the repulsive case. We now consider the repulsive case. The physical situation is very 
different to the previous one, for instance, one observes that there is no Rydberg state, that is no eigenfunction 
obeying φe(0) = 0, however many steps of the calculations are similar, so we will only point out the differences.

Keeping the definition of gb with η > 0, one finds (4) with the opposite sign. Then, (5) has no solutions, but the 
existence of a bound state will hold in the repulsive case, which means that it is a unique bound state. This is true 
for all ω, see for instance Fig. 2, and confirmed by the bijectivity of η ↦ ω(η), as one observes on Fig. 3. However, 
(8) extends in the repulsive case, where ηω stands for the unique bound state in H ( )ω +

∗  and the sign is also 
changed.

In the free spectrum, a similar sign difference occurs: 

⟨ ∣ ⟩ λ η η
δ=

−

−
+ −η η

η η
G G

C C

g g

k k
k k

( ) ( )
( ),f f1 2

1
2

2
2 1 21 2

1 2

where the definition of gf is unchanged. The scalar product expression ⟨ ∣ ⟩G F
1 2η η  is unchanged but mind that its 

real sign is also changed after that of η. Eventually, the demonstration that all functions in Fω respect ⟨ ∣ ⟩Φ Φe e1 2
=0 

holds, and, consequently, the determination of ω +
∗H ( ) is formally identical.

The characterization of Fω is performed with index 

( )
( )

( )
ln x

( ) lim
( )

x

x e
x

e
x0

2

2

e
x

2

ω η
φ λ

φ
=

−
φ

λ
λ

η

λ
η

→

∂

∂

λ
η

(note the sign difference). With this new definition, index ω(η) has the same expression than in the attractive case. 
The demonstration is straight forward for the bound states; for free ones, one finds 

( )G

x
G x ln x

g

C
G x

C
lim

2
( )

( )
and lim

2
1 ;

x

x
f

x0

2

0λ
λ

η
λ

η λ
η

∂

∂
−











=










= −
η

λ
η

η
η

η
η→ →

the expression obtained for Fη are unchanged, but mind that the real sign is changed after that of η. Eventually, 
there is no sign change for index ω(η) in all cases. We plot this function in Fig. 3 and observe another major dif-
ference: it maps +

∗  on [ , 2 ]Eγ−∞ . As a consequence, ω is bounded from above. The particular value ω = 2γE 
brings a very peculiar situation and must be studied elsewhere.

Figure 2. 
2

ϕ ϕλ λ
η

 versus η in the repulsive case; the choice 1
1
2

η =  is arbitrary, curves obtained for other 

values are similar.
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existence of a bound state. The classification of self-adjoint extensions of +
∗H( ) is achieved, except that 

we did not prove the existence of a bound eigenstate ∣ ⟩kϕ
ω

 of H ( )ω +
∗  associated to the eigenvalue eω ≤ 0 in both 

attractive and repulsive cases.
We suppose ad absurdum that the spectrum is included in +. We consider two eigenfunctions k1

Ψ  and Ψk2
. 

We can choose momenta k1 ≠ k2, otherwise ω +
∗H ( ) would only act on functions F

1η  and G
1η , which norm are 

infinite; no integrable function could be constructed and this extension would not be physical. The same argu-
ment holds if there is only one eigenfunction.

Using (2) and (9), one gets 

λ α β

η

α β

η

β β
η ηΨ Ψ =

−






− + + −






= .

η

η

η

η η η
⟨ ∣ ⟩

k k
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g g

2 2
( ( ) ( )) 0k k

k k k k k k
f f

1
2

2
2

1 2
1 21 2

1 1 2

2

2 2 1

1

1 2

1 2

If 0k1
β =  and β ≠ 0k2

, one gets 0k1
α = , which is impossible since Ψ ≠ 0k1

. So, either both 
�

βk  are zero, or both 
are different from zero. In the first case, this property extends to all free states, which are therefore all Rydberg free 
ones; thus, ω +

∗H ( ) can extend on all standard Rydberg solutions, including bound ones, which contradicts our 
hypothesis.

The remaining case leads to 
�

β ≠ 0k  ∀i = 1, 2, which means that momenta ki correspond to non Rydberg 
states. Multiplying by 

β β

η ηC C

k k

1 2

1 2

, one gets 

ζ

η

ζ

η
η η− + + − = .

η ηC C
g g

2 2
( ) ( ) 0

(10)
k k

f f

2

1

2

2
1 2

1 1 2 2

One can assume ki
β  real, without loss of generality. Let us define the real and purely imaginary parts of eigen-

states ki
Ψ , RΨ = Ψ( )k

r
ki i

 and 
�

IΨ = Ψ( )k
i

ki
. Since (1) is real, both k

r
i

Ψ  and k
i

i
Ψ  are eigenfunctions associated to the 

same momentum ki. By construction (βki
 real), Ψ ∝ ηFk

i
i i

, which corresponds to a Rydberg state (because 

( )gb k2
= ∞λ , cf. section ‘Classification in the attractive case’, in which this item holds both for repulsive or attrac-

tive case) and is contradictory, unless Ψ = 0k
i

i
. Altogether, this implies that ki

ζ  is real  ∀i = 1, 2. Eventually, one gets 

C
g

C
g

2
( )

2
( ),

(11)
k

f
k

f

2

1
1

2

2
2

1 1 2 2
ζ

η
η

ζ

η
η− = −

η η

so g ( )
C

f2
k

2

η−
ζ

η
η  is a real constant, which we write ω. From the classifications above, one observes that all functions 

Ψk are eigenfunctions of ω +
∗

∼ H ( ), which proves an extension of ω +
∗H ( ) and therefore contains bound eigenstates. 

We have reached a contradiction. In all cases, we have shown that there is at least one bound state.  ■
In the repulsive case, it is the only one. In the attractive case, they are infinitely many; let us study that of 

highest energy.

Maximum of ωSS . For the attractive case, η < 0, so one is interested in the maximal value ηω max correspond-
ing to the maximum of ωS . There exists such a maximum, this is visible on Fig. 4, which is a close focus of Fig. 1 
in the interval 


− 


, 01

2
. To be more precise, the slope of curve 

η ϕ ϕ− −λ λ
η

⟨ ∣ ⟩
n2 2

 at η = 0 reads 
Γ n

2
( )

 which indicates 
that the curves corresponding to Rydberg eigenstates, − ∈ ∗n , are flat, while the sign of the slope of the other 
curves is positive for [n]+ even and negative for [n]+ odd. Therefore, the maximal η < 0, related to an energy 

S∈ ωe  is the first zero from the right. The only difficult case would be that of the flat curves; these however cor-
respond to the standard Rydberg solutions ∈ − ∗n , the maximal value of which is indeed  −1.  ■

Figure 3. ω versus η in the repulsive case. The asymptote ω = 2γE is drawn with a dashed line.
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Infinite energy state. In what precedes we exclude value η = 0. Limit η → 0 of eigenfunctions correspond-
ing to bound states reads f0(u) = e−u, but using rescaled ϕk(x) = fη(kx) and renormalizing by Dη, one gets 

λ
η





















=
η η→ ±

f xlim
2

0
0

for all x ∈ +
∗  but not for x = 0 ( ± = +  in the repulsive case,  ± = − in the attractive one). The so called infinite 

energy  −∞ would correspond to a singular distribution with {0} support. Looking for such a solution, one sub-
stitutes an n

n
0 0

( )ϕ δ= ∑ =
∞  in (1). In the η = 0 limit, all coefficients an are found zero, which definitely discards such 

solution.
The limit η → 0 of eigenfunctions corresponding to free states reads F x x( ) sin( )0 =  and G x x( ) cos( )0 = . Using 

rescaled Φ0(x) = α0F0(kx) + β0G0(kx) (but no renormalization is needed, since the limit of Cη is 1), one gets 

λ
η

λ
η











=










= .
η

η
η

η
→∞

±
→∞

±F x G xlim
2

0 and lim
2

1

The first is zero so the limit of eigenfunctions when e → +∞ is the constant function Ψ(x) = 1.
Eventually, we should compare these limits to the solutions of (1), where η is replaced by 0. They read 

φ∞(x) = ax + b, but a ≠ 0 gives divergent non physical functions, so, up to an arbitrary phase, one finds b = 1, 
which is the e = +∞ limit.  ■

Incidentally, we are in position to discuss the long-standing claim1 of a solution ∣ ⟩φ−∞  with energy  −∞: we 
see that this solution does not exist, putting an end to this old story.

Discussion of some particular cases. Dirichlet solutions. We consider the attractive case. When 
ω → ±∞, one gets the Dirichlet condition φe(0) = 0. For bound states, this can be shown by examining the limit 
ϕk(0+) = Dη/Γ(1 + η), which we give in section ‘Classification in the attractive case’ and which is also valid in the 
repulsive case. For free states, this follows, firstly, from the fact that ζk →∞, as shown in the same section, which 
implies βk → 0 so φe ∝ Fη, secondly from the limit Fη(0+) = 0, still proved in that section. Then, the corresponding 
values of ∞S  are exactly  −λ2/(4n2), for all ∈ ∗n , which is the standard Rydberg spectrum (in dimensionless 
unit). Moreover, the function η ↦ ω(η) = −gb(η) respects ω(η + 1) = ω(η) for all η = −n with n ∈ ∗  and only 
for these values.

In the repulsive case, one must recall that there is no Rydberg state, even in the limit ω → −∞, so this discus-
sion is not relevant for this case.

Neumann solutions. The case ω = 0 will be called the Neumann solutions, because the finite part18 of φ ∈′ De 0, 
where the essential divergent function ln k x( ) is left aside, is exactly zero at x = 0. These functions are very close 
to the anomalous solutions of ref. 11, however those do not belong to a single extension: they are proportional to 
Gη in the free spectrum and correspond to ζk = 0. We have shown previously that ζ η η= −η

η
g g( ( ) ( ))k C f b

2
2

, which 

zeros are not exactly periodic, on the contrary, each one belongs to a different extension. The very small difference 
between any such anomalous state and the closest Neumann one explains the small violation of orthogonality that 

Figure 4. Here is a zoom of Fig. 1 in the interval , 01
2



− 


.
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was calculated11 (when η →∞, the difference between Neumann and anomalous solutions tends to zero, as well 
as the scalar products between anomalous solutions).

As is well understood now, the correct choice is to consider functions in B0. On the contrary, it is not physical 
to consider any two anomalous states together19, because they do not belong to the same self-adjoint extension.

Physical interpretation of ω. We did not give any physical interpretation of ω yet. It is the limit of the ratio 
φφ

λ
∂

∂
x/ ( )x

x
( )  between the derivative of the wavefunction and the wavefunction itself when x → 0, after subtracting 

the divergent term  ln x( )λ±  ( ± = +  when the potential is attractive,  ± = − when it is repulsive).
This ratio relates to the initial condition that one fixes at x = 0 when solving Schrödinger equation Hφ = Eφ. 

An infinite ratio corresponds to choosing Dirichlet conditions, a zero ratio to Neumann ones, and any finite value 
in-between means fixing an intermediate condition, that mixes φ and φ′.

Solutions of zero energy. Writing +, we have indicated that 0 must be included in the free spectrum. This is 
worth giving some details.

The solutions of (1) for e = 0 and λ < 0 read 

x j x y x j x x J x y x x Y x( ) ( ) ( ); ( ) (2 ) ; ( ) (2 ) ,0 1 1α β λ λ λ λΨ = + = =

where J1 and Y1 are Bessel functions of, respectively, the first and second kind. That for λ > 0 read 

x x x x x i x x x K x( ) ( ) ( ); ( ) (2 ) ; ( ) (2 ) ,0 1 1α ι β κ ι λ λ κ λ λΨ = + = =

where I1 and K1 are modified Bessel functions of, respectively, the first and second kind.
We have extended the notations we use for free states, because these solutions are indeed the limit of those 

ones, j ∝ F−∞, y ∝ G−∞, ι ∝ F∞ and κ ∝ G∞. The attractive case η < 0 brings nothing special, solutions j and 
y have the standard properties of the eigenfunctions corresponding to free states; one may say that this limit is 
regular.

On the contrary, the repulsive case η > 0 is extraordinary. Instead of heavy mathematical considerations, let 
us explain the situation by hand. When one looks at the curves of functions x ↦ Fη(x) and x ↦ Gη(x), for increas-
ing η, one observes that there are two regions x ∈ [0, xη] and ∈ ∞ηx x[ , [, where xη is a separating parameter 
which we do not care to define properly here. In region [0, xη], Fη resembles eigenfunction gη (in other words, it 
grows considerably, as if it were diverging) and Gη resembles eigenfunction fη (in other words, it becomes expo-
nentially small). But, as these functions reach xη, they rapidly change shape and behave like those corresponding 
to standard free states (bounded and oscillating).

This peculiar behavior, resembling bound states in a first region then free ones afterwards, reaches its climax 
when η →∞, where xη →∞: indeed, solution ι is diverging, while ⋂κ ∈ +

∗
+
∗ L L( ) ( )1 2 . In this very case, F∞ must 

be discarded and the scalar products between G∞ and eigenfunctions fη reads 

κ
η

η
η η η=

Γ +
+ − Γ +η

η⟨ ∣ ⟩f
D

ln
2
(1 )

(1 2 ( ( ) (1 )))

and is non zero, as observed on Fig. 5. The orthogonal combination of eigenfunctions Fη and Gη is governed by 
ratio 

�
C

ln2 ( ( (1 )) ( ))2 R
α

β
η η η= Γ − − .η

η η

∞

∞

Our guess is that, in the repulsive case, a singular contribution δ(E) appears in the density of states, contrary 
to the situation of the attractive case. This belief is founded by the existence of a bound eigenstate, to which cor-
responds an integrable function, with eigenvalue e = 0.

Eventually, one is interested in the corresponding value of index ω(∞ ). One finds ω(∞ ) = 2γE. Moreover, the 
limit of regular bound eigenfunction ϕk, when η →∞, does not exist, so there is exactly one bound eigenstate of 
energy e = 0 corresponding to ω(∞ ) = 2γE, which is exactly that proportional to κ.

the real line problem
We discuss here the attractive case for D R= . We should point out that there was no need to use of any physical 
constraint in the previous cases, except when we have discarded the hypothesis of a unique energy e > 0 or that 
with only two energies e1 > e2 > 0. On the contrary, our determination of self-adjoint extensions for =D R is 
much more involved with physical laws. Our aim is to classify self-adjoint extensions that are compatible with 
physical constraints.

We note φe eigenfunctions defined on , eφ> their restriction on +
∗  and eφ< that on −

∗ . φ>
e  obeys (1), while φ<

e  
obeys 

φ λ φ φ−
∂
∂

− = ∀ < .
x

x
x

x e x x( ) ( ) ( ) 0
(12)

e
e e

2

2

The continuity of all functions φe as well as their derivatives is easily verified for all x ≠ 0 from (1) and (12). The 
only difficulty lies at x = 0. Let us define the self-adjoint extensions of H( ).
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Self-adjoint extensions. The mathematical classification of all self-adjoint extensions, for =D R, has 
already been done12 but no effort has been made yet to interpret these from a physical point of view. We want to 
select, among all extensions, only those, the eigenfunctions of which describe physical states.

Usually, authors impose continuous boundary conditions for all wavefunctions and their derivative20–23 but 
these conditions reveal often too restrictive and other boundary conditions have been suggested24,25. So, we 
choose weaker and universal constraints, which are compatible with any of these conditions and fit with all exper-
imental observations: the density of probability cannot vary discontinuously, therefore ρ = ∣φ∣2 must be continu-
ous. ρ also obeys the conservation of probability law (14). This implies eventually that dj/dx be defined at all 

∈ x .
We introduce boundary condition C( )θ : 

�

�

lim ( ( ) e ( )) 0;

lim ( ( ) ( ) e ( ) ( )) 0;
[0, 2 [;0

0

φ φ

φ φ φ φ
θ π

− − =

′ − − ′ − =









∈

θ

θ
→

→

ɛ ɛ

ɛ ɛ ɛ ɛ
ɛ

ɛ

we will find that physical states do respect conditions C( )θ . We will therefore construct self-adjoint extensions, 
with these boundary conditions. More precisely, we will show that there are at maximum two values θ1 and θ2, 
such that eigenfunctions obey C θ( )i , with i = 1, 2.

As for = +
∗D  , we will admit the existence of self-adjoint extensions and construct them as maximal symmet-

ric operators. We write them H ( )ϖ , where ϖ is a symbolic parameter, the meaning of which we will clarify fur-
ther on. We write Bϖ the set of eigenfunctions in the bound spectrum, Fϖ that of eigenfunctions in the free 
spectrum, ⋃=ϖ ϖ ϖD B F  and ϖS  the corresponding bound spectrum.

continuity of probability. Let φe be an eigenfunction of self-adjoint extension H ( )ϖ . We will first use the 
continuity of ρ(x) = ∣φe(x)∣2.

One put apart the case when φe(0+) = 0 or φe(0−) = 0. Indeed, the only eigenfunctions which have such limit 
are the Rydberg ones. In such case, the continuity of ρ gives φe(0+) = φe(0−) = 0 and φe is eventually continuous 
on .

We recall that non Rydberg functions do not cancel at x = 0. For such functions, the continuity of ρ implies  
∣φe(0−)∣ = ∣φe(0+)∣ ⇔ φe(0−) = eiθφe(0+) with [0, 2 [θ π∈ .

Let φe1
 and φ ∈ ϖe2

D  be two independent eigenfunctions, (0 ) e (0 )e
i

e1
1

1
φ φ= θ− +  and (0 ) e (0 )e

i
e2

2
2

φ φ= θ− + .  
∣ ⟩φe1

 and φe2
∣ ⟩  are eigenstates of hermitian operator H ( )ϖ  , their combination is physical; one can consider state 

ee
i

e1 2
∣ ⟩ ∣ ⟩ ∣ ⟩ψ α φ β φ= + ζ  with arbitrary coefficients α β ∈( , ) 2  and ξ π∈ [0, 2 [. The evolution in time of ∣ ⟩ψ  
is given by 

 
� � �∣ ⟩ ∣ ⟩ ∣ ⟩ψ α φ β φ= + .ζ− −t( ) e e e

e t
m e

e t
m e2 2

1

1

2

2

ρ(x, t) = ∣ψ(x, t)∣2 represents a density of probability and must be continuous with respect to x at all times. One 
finds 

R

I

�

�

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ρ α φ β φ αβ φ φ ζ

αβ φ φ ζ

= + + 
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m
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m

( , ) ( ) ( ) 2 [ ( ) ( )]cos ( )
2

2 [ ( ) ( )]sin ( )
2

e e e e

e e
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1 2

1 2 1 2

1 2

The continuity of x ↦ ρ(x, t), valid for all α, β, ζ and t, implies that of ( )e e1 2
R φ φ  and I( )e e1 2

φ φ ; so one gets 

Figure 5. 〈κ&#x2223;gη〉 versus η.
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φ φ φ φ= .+ + − −(0 ) (0 ) (0 ) (0 )e e e e1 2 1 2

If one of φ φ{ , }e e1 2
 is Rydberg and cancels at x = 0, this relation is always true. If they are both non Rydberg, it reads 
θ θ π= ⇔ =θ θ−e 1 (2 )i( )

1 2
1 2 , where (2π) means modulo 2π.
Eventually, we have proved the existence of [0, 2 ]θ π∈ϖ  such that, for all non Rydberg eigenfunctions, 

�φ φ= .θ− +ϖ(0 ) e (0 ) (13)e e

θ-symmetry. We still consider H ( )ϖ . We still assume there exists a non Rydberg eigenfunction φe in the 
bound spectrum (e < 0). From (3), one can write φ μ= η

> +fe k  and φ μ= η
< −fe k , where the transposition is defined 

by 

ϕ ϕ= −x x( ) ( ). Then, (13) implies μ μ= θ− +ϖek

i
k . Thus, φe is said to be θϖ-symmetrical, where θ-symmetry is 

also written  θ( ) and defined by 

( ): ee e
i

e
θ φ φ φ= + .θ> >

We assume now that there are two or more non Rydberg eigenfunctions in the bound spectrum, let us write them 
ϕk1

 and k2
ϕ . Note that ϕ ϕ ϕ ϕ∝ ⇔ ∝> >

k k k k2 21 1
 (where kϕ > is the restriction on +

∗ ). Their scalar product reads 

ϕ ϕ ϕ ϕ= .> >2k k k k1 2 1 2

When they are not proportional, k1
ϕ  and k2

ϕ  can be eigenfunctions of the same ϖ H ( ) only if ϕ >
k1

 and ϕ >
k2

, their 
restriction on +

∗ , are orthogonal each other. From part ‘Self-adjoint extensions in the +
∗  case’, we get 

ω(η1) = ω(η2). Let us call ωϖ this constant. Altogether, we have established the existence of parameters ωϖ and θϖ, 
such that all non Rydberg eigenfunctions φe, in the bound spectrum, obey ( )θϖ  and gb(η) = −ωϖ, with 

e/(2 )η λ= − , so Be kφ ϕ= ∈ ω
> >

ϖ
.  ■

We will examine now the situation, where there is also a Rydberg eigenstate in the domain of ϖ H ( ), and prove 
that this Rydberg states has the opposite symmetry to the non Rydberg one, in the following sense. Consider 
φ ∈ ϖBe1

, with (0) 0e1
φ ≠ , and e2

φ ∈ ϖD , with (0) 0e2
φ = . φe1

 obeys θϖ( )R , which reads ee
i

e1 1
φ φ= θ< >ϖ . One can 

expand φe2
 into a θϖ-symmetrical and a θϖ + π-symmetrical parts, e e e2 22

φ φ φ= +θ θ π+ϖ ϖ , as demonstrated 
in Appendix (see Supplementary Information). Then, one finds φ =θϖ 0e2 , writing 

⟨ ∣ ⟩ ⟨ ∣ ⟩ ⟨ ∣ ⟩ ⟨ ∣ ⟩
� ����� �����

φ φ φ φ φ φ φ φ= = + =θ θ π θ+

=

> >ϖ ϖ ϖ0 2e e e e e e e e2 2

0

21 2 1 1 1

(the second term is zero by symmetry, cf. appendix) so e2φ θ >ϖ  is orthogonal to φ >
e1

, which is impossible, since 
Dφ ∈ ω

>
ϖe1

 and Dφ ∈θ >
∞

ϖ
e2  because it is a Rydberg eigenfunction, unless φ =θ >ϖ 0e2 . This proves that 0e2

φ =θϖ  so 
φe2

 obeys  θ π+ϖ( ).  ■
Let us examine now free states. We consider a non Rydberg eigenfunction φe with e > 0. We will find that φe 

obeys ( )θϖ  and that φ = Ψ ∈ ω
> >

ϖe k F , but the demonstration is more involved and relies also on the current 
continuity. To begin with, following (2), one can write φ α β= +η η

> + +F Ge k k  and  F Ge k kφ α β= +η η
< − − . Applying 

(13), one gets β β= θ− +ϖek
i

k .

conservation of current. We still consider H ( )ϖ   and two independent eigenfunctions e1
φ  and e2

φ  in the 
domain of H ( )ϖ  and calculate the current associated to the mixed state ∣ ⟩ψ t( )  defined in section ‘Continuity of 
probability’. It becomes, after some calculation, 
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where j1 and j2 are constant. The conservation of probability law 

ρ∂
∂

+
∂
∂

=
x t
j 0 (14)

applies independently on the sinus and cosine terms, so it eventually reads 

φ
φ

φ
φ

φ φ
∂

∂
−

∂

∂
+ − =x

x
x x

x
x e e x x( ) ( ) ( ) ( ) ( ) ( ) ( ) 0e

e
e

e
e e

2

2

2

2 2 11
2

2
1

1 2

and must be verified ∀ ∈x . For x ∈ +
∗ , (14) ⇔ (1); for ∈ −

∗x , (14) ⇔ (12); so, a particular attention must be 
paid to the determination of ∂j/∂x when it is evaluated through x = 0. One has 
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ε ε
ε ε

∂
∂

=
− −
+

.
ε

ε

→

→

+

+
x
j j j(0) lim ( ) ( )

0
0

2 1

2 11

2

Let us continue the proof concerning non Rydberg free states, which was sketched in the previous section. We choose 
∣ ⟩φe1

 a non Rydberg bound state and ∣ ⟩e2
φ  a non Rydberg free one (we assume their existence; one observes that they 

are independent). So φ μ= η
> +fe k1 1 1

, fe k1 1 1
φ μ= η

< − , F Ge k k2 2 2 2 2
φ α β= +η η

> + +  and F Ge k k2 2 2 2 2
φ α β= +η η

< − −
  , with 

μ μ= θ− +ϖek
i

k1 1
 and β β= θ− +ϖek

i
k2 2

. All terms in the previous limit read  αβ. . .. + ↔ ↔αβ ( )sin( ) ( & sin cos)
m
R R I . 

One applies again the independence of sinus and cosine, and skips factor αβ
m

. The first order of the remaining term 
reads 

D C

2 (1 )
lim k k k k

2 1 0
0

1 2

1 2

1

2

1 2 1 2

η η

μ α μ α

ε εΓ +

−

+
η η

ε

ε

→

→

+ + − −

+

+

and exists if and only if μ α μ α=+ + − −
k k k k1 2 1 2

 which therefore gives �α α= θ− +ϖek k2 2
. The second order reads 

η η

η η η
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−

+
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+

+
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2
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and exists if and only if μ β μ β=+ + − −
k k k k1 2 1 2

 which therefore gives �ek k2 2
β β= θ− +ϖ . We have proved that all non 

Rydberg obey  θϖ( ), although we have not determined the set to which belongs φ>
e  when e > 0.  ■

Before taking advantage of this result, let us conclude on the current of probability. For e1
φ  and e2

φ  non 
Rydberg, j is odd and the limit of j(x)/x when x → 0 becomes 

d
dx C C

e e

D

C
e e

D D
e e
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This calculation is valid in both attractive or repulsive cases. For Rydberg states, the same three limits give zero 
(the case e1 < 0 and e2 < 0 extends exactly; the case e1 > 0 and e2 < 0 also extends, because the wrong normalisa-
tion vanishes in the zero limit; the case e1 > 0 and e2 > 0 is apart). Altogether, (14) is respected at all cases.  ■

Self-adjoint extensions. We still consider self-adjoint extension ϖ H ( ). We assume first that there exists a 
non Rydberg bound eigenfunction e1

φ . We have shown that there are two parameters ωϖ and θϖ such that it reads 

e k1 1
φ ϕ=> > and ee

i
k1 1
φ ϕ= θ< >ϖ  with ( )gb k2 1

ω= −λ
ϖ and ϕ ∈ ω

>
ϖ

Bk1
. In other words, φe1

 is a θ-symmetrical eigen-
function of Bϖ.

Let us achieve the proof concerning non Rydberg free states; so we assume there is such an eigenfunction e2
φ , 

with e2 > 0. We know φe2
 obeys ( )θϖ . So the scalar product ⟨ ∣ ⟩φ φe e1 2

 reads 

⟨ ∣ ⟩ ⟨ ∣ ⟩ϕ φ φ φ= = > >0 2 ;e e e e21 2 1

it is zero because they are both eigenfunctions of the same operator ϖH ( ). Now, the equality =
∼

ω ωϖ ϖ
F F  implies 

F{ }e e e1 2 2
∣ ⟩ ∣ ⟩φ φ φ⊥ ⇔ ∈ ω

> > >
ϖ

. This proves that φe2
 obeys  θϖ( ) with e2

Fφ ∈ ω
>

ϖ
. Altogether, all non Rydberg 

states obey ( )θϖ  with φ ∈ ω
>

ϖ
De .  ■

Let us eventually consider any Rydberg eigenfunction φe3
 of the same operator ϖH ( ) . We know that this 

function is θϖ + π-symmetrical. Reversely, all θϖ + π-symmetrical Rydberg eigenfunctions are orthogonal to any 
(here non Rydberg) θϖ-symmetrical function (cf. Appendix in Supplementary Information), so H ( )ϖ   can be 
extended into a symmetric operator (one can choose a trivial action ∣ ⟩ ∣ ⟩φ =ϖ H ( ) 0e ), acting on all eigenstates 
φe obeying R( )θϖ  with φ ∈ ω

>
ϖ

De  and on all eigenstates φe obeying  θ π+ϖ( ) with φ ∈>
∞De . This extension is 

maximal by construction and reads 

π π× ⊕ ×θ ω ω θ π+
∗

−
∗

+ ∞ +
∗

∞ −
∗

ϖ ϖ ϖ ϖ
H H H H( ( ) ( )) ( ( ) ( )) ,   

where πθ is the projector on θ-symmetrical functions. Since H ( )ϖ  is maximal by definition, it is equal to this 
extension, and our classification is complete, within the assumption that there are non Rydberg eigenfunctions 
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(one at least in the bound spectrum, one at least in the free spectrum). In such case, we define ϖ = (ωϖ, θϖ) and 
our results prove that ⋃π=ϖ θ ω ωϖ ϖ ϖ

D D D( ) ( )⋃π⊕ θ π+ ∞ ∞ϖ
D D  and =ϖ ω ∞ϖ

⋃S S S .  ■
Let us assume now that there are no non Rydberg states. In that case, all combinations of eigenstates are 

orthogonal, so the self-adjoint extension is defined on D D∞ ∞⋃  with no constraint. It is maximal by construction, 
so ϖH ( ) equals H H( ) ( )×∞ +

∗
∞ −

∗  . We define ϖ =∞ in that situation. Note that, however, H ( )∞  can be iden-
tified with H ( )( , )ω θ   for any [0, 2 [θ π∈  and ω →∞, because one can expand any eigenfunction as the sum of its 
θ-symmetrical and θ + π-symmetrical parts.

existence of a non Rydberg bound state. We consider a self-adjoint extension ϖH ( ). We assume there 
is at least a non Rydberg eigenstate, otherwise ϖ =∞, which situation exists and has been studied above.

We can rapidly exclude the situation, where there are no non Rydberg free eigenstates. Indeed, one knows that 
all non Rydberg bound states’ energies belong to some set ωϖ

S  and that their eigenfunctions obey  θϖ( ), with 
θ π∈ϖ [0, 2 [; so they belong to π=ϖ θ ω ωϖ

B B B( )⋃ . Thus, ϖH ( )  can be extended by H ( )( , )ω θϖ ϖ
 . Therefore, 

 H H( ) ( )( , )=ϖ ω θϖ ϖ
 and there are indeed non Rydberg free eigenstates.

On the contrary, the situation with non Rydberg free eigenstates and no bound ones can not be discarded so 
easily. The demonstration is close to that of section ‘Existence of a bound state’.

We first study the case of a unique non Rydberg free eigenstate ∣ ⟩φe1
. There must be a Rydberg free one ∣ ⟩e2

φ  
with e2 ≠ e1, otherwise, ϖ H ( ) would not be physical. (2) reads φ α β= +η η

> + +F Ge k k1 1 1 1 1
, φ α β= +η η

< − −
 F Ge k k1 1 1 1 1

, 
Fe k2 2 1

φ α= η
> +  and φ α= η

< −Fe k2 2 2
 .

We have found that there exists θϖ such that β β= θ− +ϖek
i

k1 1
. Then, φ φ =⟨ ∣ ⟩ 0e e1 2

 gives 

β α β α+ =+ + − − 0k k k k1 2 1 2

 so α α α= − =θ θ π− + + +ϖ ϖe ek
i

k
i

k
( )

2 2 2
. Since the eigenspace associated to e2 is of dimension 1 (because of the 

Dirichlet condition, since e2
φ  is Rydberg), one deduces that φe2

 obeys ( )θ π+ϖ . Thus, from the relation above, 

φe1
 obeys  θϖ( ). Therefore, α β α β ζ= ≡+ + − −/ /k k k k k1 1 1 1 1

, one defines ω η= − +
ζ

η

ηg ( )f

C

1 2
k1 1

2

1
, then ϖ H ( ) can be 

extended by H ( )( , )ω θϖ
 , which admits non Rydberg bound eigenstates. This is indeed contradictory and the case 

can be discarded.  ■
Let us assume now there are two independent non Rydberg free states ∣ ⟩φe1

 and e2
∣ ⟩φ . (2) reads 

φ α β= +η η
> + +F Ge k k1 1 1 1 1

,  φ α β= +η η
< − −F Ge k k1 1 1 1 1

, F Ge k k2 2 1 2 2
φ α β= +η η

> + +  and  F Ge k k2 2 2 2 2
φ α β= +η η

< − − . We have 
already found that there exist θϖ such that β β= θ− +ϖek

i
k1 1

 and ek
i

k2 2
β β= θ− +ϖ . We use the continuity of j the same 

way as before, constructing a state φ α φ β φ= +e e1 2
∣ ⟩ ∣ ⟩ ∣ ⟩  and calculating lim 0; 01 2ε ε→ → . One applies again the 

independence of sinus and cosine, and skips factor αβ
m

. Then, the first order of the remaining term reads 

C
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+

so the existence of the limit ε1 → 0 and ε2 → 0 gives 

C C C C
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η
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η

ζ

η
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η η η η
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The second order gives β β β β=+ + − −
k k k k1 2 1 2

, which one already knows. The scalar product φ φ⟨ ∣ ⟩e e1 2
 reads 

⟨ ∣ ⟩φ φ λ β α β α

η

β α β α

η

η η
β β β β

=
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−
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η

η

η

η

η η

+ + − − + + − −

+ + − −
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thus 0e e1 2
φ φ =  gives 

ζ

η

ζ

η
η

ζ

η

ζ

η
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η η η η
+ − + −C C

g
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k k
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Adding (15) and (16) proves that ζ ζ+ +( , )k k1 2
 obeys (10); thus, ζ +

ki
 are real and obey (11). Subtracting (15) and (16) 

proves that ζ ζ− −( , )k k1 2
 obeys (10); thus, ζ −

ki
 are real and obey (11). Then, (16) proves that the same ω can be associ-

ated to all functions k1
φ >, k1

φ < , φ >
k2

 and k2
φ < . Therefore, notwithstanding we did not establish ζ ζ=+ −

i i , one can 
introduce any bound state associated to ϕη with gb(η) = −ω, and extend the action of ϖH ( )  on these bound 
states, keeping the operator symmetric. This is contradictory, so the result is proved.  ■
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Discussion
Mathematical interpretation. We have determined all self-adjoint extensions. θ-symmetrical states obey 

( )C θ . So, all eigenfunctions φe of ω θ H ( ), , respecting  θ( ), with φ ∈ ω
> De , obey θC( ) and all eigenfunctions φe of 

ω θ H ( ), , respecting  θ π+( ), with Deφ ∈>
∞, obey θ π+C( ). For H ( )∞ , θC( ) reduces to Dirichlet conditions 

(all eigenfunctions obey θ′C( ) for any θ π∈′ [0, 2 [).

the dirichlet case in one dimension. We focus on the case ϖ =∞ and study eigenfunctions φe. Both 
attractive and repulsive case can be considered, but we will focus on the first one.

Let us consider the bound spectrum. From what precedes, μ in section ‘Description of a self-adjoint extension’ 
is entirely free. Therefore, φ φ> <∣ ⟩ ∣ ⟩{ , }e e  is a basis of the eigenspace Ee corresponding to energy e. This is an excep-
tional violation of the general result, which asserts that an energy in the bound spectrum is non degenerated in 
one dimensional systems. Here, the eigenspace Ee has dimension 2. However, examining the standard demonstra-
tion26, on observes that it is based on a Wronskian theorem, which can not apply here.

Another basis is composed of ∣ ⟩ ∣ ⟩{ , }e eφ φ+ − , the even and odd extensions on . For ω =∞, one observes that 
C( )eφ ∈−  for all e ∈ ∞ +S ⋃ . ∞ H ( ), defined on these basis, is closed and therefore self-adjoint. More generally, 

one can use { , }e e∣ ⟩ ∣ ⟩φ φθ θ π+ , for any [0, 2 [θ π∈ .

physical applications
We study different possible extensions of this work to real physical situations.

the hydrogenate case in three dimension. Let us focus on the case = 3D R , using the mapping 
Φ(r) = φ(r)/r, where φ is the one-dimensional solution and Φ the radial part of the three-dimensional wavefunc-
tion. We will only consider the attractive case here.

Let us connect our parametrization ω with that of ref. 14, which parameter is written α. We will show the 
connection for bound states only, but this can be done for all states. The first order expansion of any state φe with 
e < 0 reads 

x a axln x bx( ) ( ) ;eφ λ λ= + +

this expression holds both in attractive and repulsive cases. ω can be expressed in terms of b/a, which reads 

ω
λ

λ=




−


.

b
a

1

In ref. 14, where λ reads γ, one finds parameters φ0 = a and φ1 = b, so one gets 

α
π

ω
λ

πα λ= ⇔ = − .
b
a

1
4

1 (4 )

As it is well known27, for L > 0, the solutions of the Schrödinger equation which do not cancel at r = 0 do not 
belong to L ( )2 3  and must therefore be discarded. On the contrary, that, corresponding to the case L = 0, belong 
to L ( )2 3  (all gη solutions, which diverge at r →∞ are excluded from this discussion). This is the reason why the 
L ≠ 0 subspaces appearing in (2.1.13) of ref. 14 have no parametrization, contrary to the L = 0 one.

This helps us interpreting what these authors mean by  ≪Hγ,α,y describes the Coulomb interaction plus an 
additional point interaction ≫ : the eigenfunctions for α <∞ are divergent eigenfunctions and not physical, 
although they belong to L ( )2 3 , so they do not describe the physical Coulomb interaction. Most authors have 
similarly assumed that the only admissible Coulomb bound states are the Rydberg ones, given by the Laguerre 
polynomial 

λ
Φ = − ′r

n
L r( ) 2 e (2 )r

n3/2

with a specific normalization (assuming that the spherical function reads π1/ 4  for kinetic momentum L = 0). 
This solution exactly corresponds to the ω =∞ Dirichlet case, which is also the α =∞ one.

Actually, no fundamental principle of quantum mechanics justifies discarding solutions that diverge for r → 0, 
since the probability ∫ǀΦ(r)ǀ2r2dr is finite (in the basic meaning "not infinite”). However, experimental evidences, 
from the original Rydberg spectrum, are in excellent agreement with this assumption. We find that experimental 
data28 are only compatible with ǀωǀ > 27779. We have simply compared the ratio E E

E E
m

n

2

2

−
−

, for several (m, n) couples, 
as determined from these data, with that calculated from the exact values of ωS . Actually, (m, n) = (5, 3) gives the 
highest (best) limit of possible values for ω.

Based on these physical grounds, we will follow the common choice and, dealing with the case =D 3, dis-
card all divergent wavefunctions, therefore reducing the parameter range to ω =∞, the self-adjoint extension 
corresponding to Dirichlet solutions. We can justify this choice, from a mathematical point of view, by reminding 
that the deficiency coefficient of H( )3  is zero. We will discuss this point further on.

Explicit spectra for a semi-infinite line. The calculated spectra ω +
∗S ( ) vary significantly, for different 

values of ω. We show three of them in Fig. 6, corresponding to ω1 =∞ (Rydberg spectrum), ω2 = ω( −1/4) ≈ 2.3 
and ω3 = ω( −1/2) ≈ −0.27 (close to the Neumann case). As already pointed out, in any one-dimensional system 
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the experimental determination of this spectra would allow that of the limit φ φ′ + +(0 )/ (0 ) in the vicinity of the 
charge defect. Turning back to the one-dimensional attractive case, defined in = +

∗D R , one observes that the 
previous physical arguments used in the three-dimensional case cannot apply, because no wavefunction is ever 
diverging. Therefore, one must consider all parameters, ω ∈ −∞ ∞[ , ]  in the attractive case, ω γ∈ −∞[ , 2 ]E  in 
the repulsive one.

The determination of ω is highly system dependent. If any experimental spectrum, close enough to this case, 
can be measured in the future with high enough precision, like that of a one-dimensional quantum wire (like a 
carbon nanotube) with a charge defect at one extremity or an hydrogen atom in very intense magnetic field, then 
we argue that the limit condition (0)/ (0)φ φ′ , at that extremity, will be determined by examining the sequence of 
energies E1 < E2 < E3... and in particular the sequence of their ratio.

Regularization of the potential. We consider here the regularized potential λ= + ɛɛV x/ )2 2  in the 
attractive case, with D R= . This is a way to address the 1 + ε-dimensional case, since this potential describes the 
situation where the charge is lightly displaced from axis  in the 3-dimensional space. When ε → 0, it converges 
towards the Coulomb potential, Vε → V. We focus on the negative (bound) spectrum of the corresponding 
Hamiltonian H ( )ɛ , which is self-adjoint.

This spectrum is found discrete and non degenerate  ∀ ε ≠ 0. In this case, all eigenfunctions are orthogonal 
and form a complete basis, because they obey to H( )3 , which is self-adjoint, as explained before. They separate 
into two groups, odd functions χ p2

ɛ  with p ∈ ∗, and even ones p2 1χ +
ɛ  with ∈ p . We will note ep

ɛ the energies 
corresponding to odd solutions, and ɛep 1

2+  that of even solutions. Figure 7 shows the first (smallest) energies as a 
function of ɛln 1/ . When ε →  0, even wavefunctions χ χ φ→ = λ−p p p2 2

0
/(4 )

2 2
ɛ  while their energy rapidly 

reaches  −λ2/(4p2) the corresponding Rydberg energy. Odd ones also ɛχ φ→ λ+ −p p2 1 /(4 )
2 2  while their energy 

reaches  −λ2/(4p2) the Rydberg energy. This is conform with the 2-degeneracy that is proved in the case 
ϖ = {∞+,∞−}, which shows that → ∞ H H( ) ( )ɛ . An odd eigenfunction seems to be converging towards a zero 
energy eigenfunction, but it vanishes as ε → 0, in conformity with our discussion about these functions.

Spectral theorem
We discuss the way one should write the spectral theorem, in the case of incompatible self-adjoint extensions.

Spectral theorem in ∗
+ . For each value ω, ω +

∗H ( ) is self-adjoint, so the spectral theorem is valid. Therefore, 
any function ψ ∈ +

∗L ( )i
2  can be developed on the basis B ⋃ω +

∗( ) Fω +
∗( )

∑ ∫ψ ϕ
π

ϕ ψ ψ= + Ψ = = Ψ .
η∈ ω +

⟨ ∣ ⟩ ⟨ ∣ ⟩
S

x b kx c kx dk b c( ) ( ) ( ) with andi k
i

k k
i

k k
i

k i k
i

k i

endeqnarray* For ω =∞ and λ < 0 (attractive case), this formula is equivalent to Eq. 19.171, in ref. 26 with a dif-
ferent normalization (we preferred to use k parameter, rather than E). We have checked this formula numerically 
on several examples, x e x 2



− , x x e x 2− , etc. One can, in particular, expand a function ϕk, with ω ω≠λ( )k2 1 
on ⋃ ω ω+

∗
+
∗B F( ) ( )

1 1
, which we have done for functions ψ0 = ϕ−λ (setting ω ω= −( )0

1
2

) or 0 3
ψ ϕ= −λ  (setting 

ω ω= −( )0
3
2

), while choosing ω1 =∞.

Figure 6. Spectra for ωi (i = 1, 2, 3) defined in the text. On the left, we show the absolute values, on the right, we 
normalize energies so that the lowest energy is  −1. The variation of En+1 −En, when n is increased, is steeper for ω3.
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ω = ω0 or ω = ω1, is well defined by this expansion, writing for instance 

∣ ⟩
∑ ∫ψ ϕ

π
= − + Ψ .ω +

∗
− ∈ ω +

H k b k x k c k x dk( ) ( ) ( )
k k k k k0 1

2 0
1 1

2 0
1

1
1 1

2
1

1 1 1 1S

This result differs from ∣ ⟩ ψω +
∗H ( ) 00

, which reads 

H k k b k x k c k x dk
( ) ( ) ( )

k k k k k0 0
2

0 0
2 0

1 0
2 0

1
1

0 1
2

1
1 1 1 1

∣ ⟩ ∣ ⟩ ∑ ∫ψ ψ ϕ
π

= − = − − Ψ .ω +
∗

− ∈ ω +


S

Finally, one should be aware that, as a formal derivative operator, the action of H( )+
∗  on ψ0 is well defined. In 

particular, one is interested by its action on eigenfunctions φe. One eventually finds 

H e( ) e e∣ ⟩ ∣ ⟩φ φ=+
∗

which means that +
∗H( ) acts on ψe as H ( )ω +

∗  with ω = ω(e), the index of energy e. However, +
∗H( ) is not a good 

operator, because it does not correspond to the same self-adjoint extension, for each state.
Technically, the last result can be understood as follows: d/dx does not commute with ∫dk in the former devel-

opment. Indeed, when the derivation is performed inside the integral, it produces a factor η ∝ 1/k which makes 
it improper.

This analysis is common with that, which can be made for H = −d2/dx2; the divergence of the Coulomb poten-
tial is not entirely responsible of the loss of self-adjointness.

Spectral theorem in . The spectral theorem in  can be formulated after that in +
∗ . Each θ-symmetrical 

and θ + π-symmetrical part of any function can be expanded separately. Considering ϖ H ( ), with ϖ = (ω, θ), any 
function L ( )2φ ∈  expands into φ = φθ + φθ+π. Then φθ expands in ω ω B F( ) ( )⋃  exactly as φθ> in 

 ( ) ( )B Fω ω+
∗

+
∗⋃  but for a supplementary factor 1/ 2: one should take the expansion calculated for = +

∗D R  and 
allow ∈ x ; similarly φθ+π expands in B F∞ ∞( ) ( ) ⋃  exactly as φθ+π> in ∞ +

∗
∞ +

∗B F ⋃( ) ( ) but for a supple-
mentary factor 1/ 2 .

It applies also in the particular case ϖ =∞, choosing any arbitrary θ. In this case, one can also write f = f> + f< 
(where f> extends in −

∗  as zero and f< extends in +
∗  as zero). f> expands in  ∞ +

∗
∞ +

∗( ) ( )B F⋃  and f< expands in 
 ∞ −

∗
∞ −

∗⋃( ) ( )B F . This is the right place to observe that μ, defined in in section ‘Description of a self-adjoint 
extension’, is not determinate in this particular case. One can indeed choose μ = 0 (i.e. f = f>) or μ =∞ (i.e. 
f = f<). We discuss this supplementary degree of freedom further.

Topological classification of the extension parameter space
Structure for ∗D R= + in the repulsive case. The structure of the order parameter seems to be equivalent 
to the interval γ−∞[ , 2 ]E  in the repulsive case, which is topologically equivalent to interval [0, 1] . This is not-
withstanding the special case H ( )2 Eγ +

∗ , which we found for the zero energy. This case corresponds to ω = 2γE, 
but, what should now be pointed out is that the regular limit ω → 2γE, which can be constructed, using gη, does 
not exist. One finds indeed that eigenfunction gη tends to a singular distribution with {0} support. Looking for 

Figure 7. First energies of Vp
m2

2
+ ɛ ( ɛe1

2
, ɛe1 , ɛe3

2
, e2

ɛ, ɛe5
2

 and e3
ɛ from bottom to top) versus ɛln (1/ ) in dimensionless 

y-scale. The asymptotic limit is indicated by an arrow on the right, for each curve and by the horizontal straight 
lines.
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such a solution, one substitutes again ϕ δ= ∑ =
∞ an n

n
0 0

( ) in (1). When η →∞, one finds that all coefficients an are 
zero.

This indicates that the right boundary of γ−∞[ , 2 ]E  is apart, one should write, instead, γ γ−∞ ⋃[ , 2 ] {2 }E E  
and draw  to characterize this space, which is topologically equivalent to + ∞( , ).

U(1) structure for ∗= +D R  in the attractive case. Let us observe on Fig. 8 the curve of index ω(η) in the 
attractive case. It is not periodic, but there is an infinity of vertical asymptotes at positions η = −n, ∈ ∗n . Any 
interval [ −n −1, −n], for n ∈ , covers all indices ω. In other words, any eigenfunction ϕ ∈η +

∗L ( )2 , with index 
η, belongs to the bound spectrum of ω +

∗H ( ), where ω(η) is determined by this curve. ω → −∞ and ω →∞ are 
identified (to the Rydberg solutions), which proves that the set of all extensions of +

∗H( )  is mapped on a space, 
which is topologically equivalent to the circle U(1).

Structure for =D R. It is worth pointing out that, although the space of extension parameter is reduced, as 
a consequence of the continuity condition at x = 0, we get the same deficiency coefficients as Oliveira et al.12 in 
that D R=  case, which are (2, 2).

Since there is no Rydberg state in the repulsive case, the structure due to parameters (ω, θ) is very simple, it is 
an infinite cylinder π+ ∞ ×( , ) [0, 2 ] , with a closed boundary at one side, as represented in Fig. 9. The struc-
ture in the attractive case is more like a torus, with a strangling, that is a singular point of infinitely small narrow-
ness, corresponding to ω = ±∞, as seen on Fig. 9.

The θ-symmetry introduces a phase factor  ± eiθ when a particle passes x = 0. Factor eiθ is arbitrary but iden-
tical for all states associated to H ( )( , )ω θ  , similarly to standard gauge symmetry.

conclusion
The one-dimensional Schrödinger equation with a Coulomb λ/|x| potential brings unusual difficulties, for the 
physical interpretation of its solutions. Indeed, the corresponding hamiltonians +

∗H( ) and H( ) admit an infinity 
of self-adjoint extensions, classified by a real parameter ω. In the case of +

∗H( ) with an attractive Coulomb poten-
tial, ω is defined in the space  where  −∞ is identified with ∞; this space is topologically equivalent to the circle 
U(1). In the case of H( )+

∗  with a repulsive Coulomb potential, ω is defined in [ , 2 ]Eγ−∞ . In both cases, param-
eter ω must be chosen according to the limit φ λ±φ

λ
∂

∂
x ln x/ ( ) ( )x

x
( )  when x → 0, where  ±  is the sign of λ. In the 

attractive case, the particular value ω =∞ brings the Dirichlet solutions, which obey φ(0) = 0 and correspond to 
the standard Rydberg spectrum, while the other spectra are unusual and have never been observed yet. In the 
repulsive case, the particular value ω = 2γE gives a continuous spectrum R+, the zero energy eigenfunction of 
which is bounded.

In the case of H( ) , physical constraints yield a phase gauge θ, which describes the discontinuity of wavefunc-
tions at x = 0. If the Coulomb potential is attractive, two situations may occur: either one finds two separate 
spectra, the eigenstates of which are orthogonal and obey, respectively,  θ( ) and  θ + π( )2

 symmetry; or the 
spectrum is the standard Rydberg one, with an exceptional 2-degeneracy of all eigenfunctions. We did not study 
the repulsive case here, but we induce that there is also a supplementary symmetry  θ( ), giving the representation 
sketched in Fig. 9 (left).

This study brings up new considerations about quantum physics: in order to conciliate the classification of 
H( )+

∗  and H( )3  with standard experimental measures of the hydrogen electronic energy levels, one has to dis-
card all divergent wavefunctions, but we could not justify this choice. So we suggest to add a postulate in quan-
tum physics, stipulating that no divergent wavefunction can be admitted, in other words all wavefunctions are 
bounded. Indeed, this would give an explanation why one never observes any physical states with ω ≠∞.

This work shows that one must be very careful when using the spectral theorem for an unbounded hamil-
tonian. At a time when theoretical physics research includes new and mathematically unexpected objects (like 

Figure 8. ω versus η in the attractive case.
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complex eigenvalues for hamiltonians, skyrmions, Majorana fermions), advanced studies of non self-adjoint 
hamiltonians are necessary, and, what seemed old-fashioned physics reveals an essential source of inspiration 
and comprehension, to determinate whether a self-adjoint extension is valid or not.
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Figure 9. Representation of the order parameter space in the repulsive case (left) or attractive case (right). Left 
are represented the ω = 2γE closing circle, the ω axis (which is supposed to vary from  −∞ to 2γE) and the gauge 
parameter θ. Right is represented the ω = ±∞ point at the strangling point and a θ-circle is pointed out: all 
orthogonal lines to this circle vary with ω.
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