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optical coherence tomography 
angiography as a novel approach to 
contactless evaluation of sublingual 
microcirculation: A proof of 
principle study
Michael Hessler  1,6, Pieter nelis  2,3,6, Christian ertmer1*, Maged Alnawaiseh2, 
florian Lehmann1, Christina Schmidt1, Tim-Gerald Kampmeier1, Sebastian Willy Rehberg4, 
Philip-Helge Arnemann  1,6 & Alexandros Rovas  5,6

Microcirculatory disorders are crucial in pathophysiology of organ dysfunction in critical illness. 
Evaluation of sublingual microcirculation is not routinely conducted in daily practice due to time-
consuming analysis and susceptibility to artifacts. We investigated the suitability of optical coherence 
tomography angiography (octA) for contactless evaluation of sublingual microcirculation. Sublingual 
microcirculation was imaged in 10 healthy volunteers, using an OCTA device and an incident dark 
field (IDF) illumination microscopy (current gold standard). OCTA images were analyzed with regard 
to flow density and perfused vessel density (PVDbyoctA). IDF videos were analyzed following current 
recommendations. Flow density was automatically extracted from OCTA images (whole en face 48.9% 
[43.2; 54.5]; central ring 52.6% [43.6; 60.6]). PVDbyoctA did not differ from the PVD calculated from 
IDF videos (PVDbyoctA 18.6 mm/mm² [18.0; 21.7]) vs. PVDbyIDF 21.0 mm/mm² [17.5; 22.9]; p = 0.430). 
Analysis according to Bland-Altman revealed a mean bias of 0.95 mm/mm² (95% Confidence interval 
−1.34 to 3.25) between PVDbyoctA and PVDbyIDF with limits of agreement of −5.34 to 7.24 mm/mm². 
This study is the first to demonstrate the suitability of OCTA for evaluating sublingual microcirculation. 
comparison of the perfused vessel density between methods showed a plausible level of agreement.

In recent years, research has highlighted the importance of the microcirculation (vessels smaller than 100 μm) in 
the pathophysiology of diseases and organ dysfunction in critical illness. It is known that blood flow in the micro-
circulation is often impaired in critically ill patients and altered blood flow in the microcirculation is associated 
with outcome1–6. A decoupling of macro- and microcirculation (“loss of hemodynamic coherence”), as can occur, 
for example, in advanced stages of septic shock is of particular interest here7. In such conditions, macrohemo-
dynamic parameters such as cardiac output and perfusion pressure are no longer indicative of perfusion in the 
microcirculation. The aim of hemodynamic therapy should therefore be restoration not only of the macrocircu-
lation but also the microcirculation7. Hence the demand for bedside methods to monitor the microcirculation.

Bedside analysis of the microcirculation became possible with the introduction of modern handheld video 
microscopes using sidestream dark field (SDF) imaging or incident dark field (IDF) illumination technology8–10. 
Unfortunately, the analysis of the microcirculation has not yet become established in routine clinical practice, 
as video microscopy of capillary blood flow has so far been limited by artifacts (e.g., pressure artifacts at the 
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necessary point of contact with the tissue) and time-consuming semi-manual evaluation11,12. However, infor-
mation about microcirculatory perfusion would be of great interest in intensive care to predict outcome and 
potentially guide therapy13,14.

Optical coherence tomography angiography (OCTA) is relatively new and has so far been used mainly for 
high-resolution imaging of the retina and choroid vascularization. With OCTA, the blood flow in the microcir-
culation of retina and choroid can be evaluated non-invasively, reproducibly and with an automatic analysis at 
the bedside. As a result, the use of OCTA in ophthalmic research and clinical practice has become widespread in 
recent years15–23. Recent experimental studies have demonstrated the potential usefulness of OCTA for evaluating 
microcirculatory alternations in critical illness by investigating the microcirculatory changes in the retina during 
hemorrhagic shock, septic shock and resuscitation24,25.

The sublingual area is the most frequently used site for evaluating the microcirculation in critically ill 
patients26. However, no study has yet investigated the suitability of OCTA for evaluation of the sublingual micro-
circulation. The aim of the present pilot study was therefore to assess the feasibility of using OCTA for contactless 
evaluation of the sublingual microcirculation in healthy volunteers and to compare this new approach with an 
established method for monitoring sublingual microcirculation.

Results
Study participants. Ten healthy participants were recruited for the study from our research department. 
Median age was 30 [27; 32] years. The participants had had no previous illnesses and were not on any medication. 
Further demographic data are shown in Table 1.

imaging of sublingual microcirculation with octA. With OCTA it was possible to obtain detailed 
images of the sublingual microcirculation. In longitudinal sections of the sublingual mucosa (Fig. 1A), the strati-
fied squamous epithelium could be distinguished from the lamina propria. The median thickness of the stratified 
squamous epithelium was 120 μm [104; 149]. In these images, vessels could be identified by color coding as red 
dots (cross-cut) or as red lines (cut longitudinally). The vascular leading layer, which could be detected by OCTA 
had a median thickness of 409 μm [361; 451]. Most vessels were detected in the lamina propria and interdigitated 
with the rete ridges of the overlying epithelium. Single capillaries followed the connective tissue papillae of the 
lamina propria and reached up to half the thickness of the stratified squamous epithelium. Individual capillaries 
as well as larger, deeper vessels could be recognized in transversal images (en face images, Fig. 1,B–D) of the 
sublingual microcirculation. In addition, characteristic vessel formations of the oral microcirculation could be 
identified by OCTA (Fig. 2).

Compared to OCTA images, those produced by IDF were sharper so that individual vessels were more easily 
distinguishable (Fig. 2, B,D). In contrast, capillaries located deeper in the tissue were revealed with OCTA, which 
did not show up on IDF illumination imaging (for example, vascular connections between vessel loops; Fig. 2,C).

Quantification of sublingual flow density and perfused vessel density. The Flow densityWF and the 
Flow densityCentral were automatically calculated in the OCTA images of the sublingual microcirculation (Fig. 1,C 
and Table 2). The IDF illumination videos of the sublingual microcirculation used for the analysis yielded suf-
ficient image quality (MIQS 1.4 [1.3; 2.4]). Table 2 shows the results of the manual analysis of the IDF videos. 
The median perfused vessel density (PVD) PVDby OCTA of the sublingual microcirculation (Fig. 3) was similar to 
the PVDby IDF (p = 0.430; Table 2 and Additional File 1, Figure A3). Analysis according to Bland and Altman27 
revealed a mean bias of 0.95 mm/mm² (95% Confidence interval −1.34 to 3.24) between PVDby OCTA and PVDby 

IDF with Limits of Agreement (LOA) of −5.33 to 7.24 mm/mm² and no evidence of proportional bias. Figure 4 pre-
sents the Bland-Altman plot for PVDby OCTA and PVDby IDF. Spearman’s rank correlation coefficients (ρ) between 
the automatically calculated Flow densityWF in the superficial retinal OCT angiogram and the manually measured 
PVDby OCTA or PVDby IDF were as follows: PVDby OCTA ρ = 0.600, p = 0.067 and PVDby IDF ρ = −0.091, p = 0.803. 
For the relationship between the Flow densityCentral and PVDby OCTA or PVDby IDF the following Spearman’s rank 
correlation coefficients were calculated: PVDby OCTA ρ = 0.588, p = 0.074 and PVDby IDF ρ = −0.200, p = 0.580.

Variable (unit) Median [interquartile range]

N 10

Sex (No.)
male 5

female 5

Body weight (kg) 75 [60; 79]

Body height (cm) 174 [167; 181]

Body mass index (kg·m−2) 23.5 [20.1; 25.6]

SAP (mmHg) 130 [116; 139]

DAP (mmHg) 80 [73; 89]

MAP (mmHg) 96 [90; 104]

HR (beats per min) 82 [77; 85]

SpO2 (%) 99 [98; 99]

Table 1. Characteristics of the study participants. DAP, diastolic arterial pressure; HR, heart rate; MAP, mean 
arterial pressure; SAP, systolic arterial pressure; SpO2, peripheral oxygen saturation.
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Discussion
This study is the first to demonstrate the suitability of OCTA for contactless evaluation of the sublingual micro-
circulation in healthy volunteers. It was possible to identify in detail characteristic vessel configurations and the 
layered structure of the sublingual microcirculation. Comparison of the PVD based on OCTA images and IDF 
illumination videos of the sublingual microcirculation, as a surrogate for the diffusive capacity, showed a plausible 
level of agreement.

As a contactless and non-invasive procedure, OCTA has recently found clinical application, especially in oph-
thalmology, since it allows generation of high-resolution images of the perfusion of the anterior eye segment, 
choroid and retina. Several experimental and clinical studies have shown the reliability and validity of OCTA for 
monitoring microvascular perfusion of the eye28–31. In the present study, OCTA was used successfully to evaluate 
the sublingual microcirculation in detail. The (histological) layered structure of the sublingual mucosa could 
be reconstructed in OCTA B-scans. Among other things, the measured thickness of the sublingual stratified 
squamous epithelium corresponded to published values32,33. Due to a lack of concrete anatomical landmarks in 
the sublingual region (such as the macula or the entry of the optic nerve into the fundus for the eye), no direct 
comparison between IDF Illumination videos and OCTA images of exactly the same sublingual region was pos-
sible in the current study. However, it was possible to identify characteristic vessel configurations of the oral and 
sublingual mucosa, which were known from IDF and SDF videos of the microcirculation (Fig. 2).

Video microscopy using SDF and IDF is the current gold standard for evaluating the sublingual microcircula-
tion26. In this study, videos of the microcirculation were recorded using IDF illumination imaging, which allowed 
delineation of individual erythrocytes in capillaries (Fig. 3,B). Imaging by IDF and SDF is based on the absorption 
of green light by hemoglobin, while unabsorbed light is reflected by tissue, forming a bright background. In con-
trast, vessel detection by OCTA is based on the assessment of signal changes of light, emitted by the OCT device 
and reflected by tissue, through blood flow. This explains why no individual erythrocytes can be differentiated in 
vessels by OCTA and why the vessel borders are slightly blurred (Fig. 3,A). In this context, it is important to note 
that vessels delineated in OCTA images did not correspond with vessels in a still image of an IDF-generated video 
of the microcirculation. In contrast to a video still image, an OCTA image shows whether or not there is blood 
flow. As stated above, this allows automatic calculation of vessel density in a defined region.

In the current study, it was possible to determine perfused vessel density in the OCTA images of the sub-
lingual microcirculation which agreed broadly with that obtained from the IDF videos. The analysis according 

A B

C D
1

2

Figure 1. Optical coherence tomography angiograms of the sublingual microcirculation. Optical coherence 
tomography (OCT) angiograms of the sublingual microcirculation. Cross-sectional image (B-scan; (A) with 
perfused vessels visible as red dots. The white double arrow shows the stratified squamous epithelium. En face 
OCT angiograms (B,C) and color-coded OCT angiogram (D) of the same area of the sublingual mucosa. Circle 
2 (C) indicates the region which was used for calculation of the flow density (central ring). The flow density 
(whole en face) is the average flow density of circles 1 and 2. A: 1 × 1 mm; B – D: 3 × 3 mm scans.
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to Bland-Altman (Fig. 4) may be interpreted as a plausible agreement between the two measurement methods, 
which may be due to the similar principles by which the perfused vessel density was determined. The PVDby IDF 
was calculated from the proportion of vessel from the TVD, which were perfused at least sluggishly or continu-
ously. For the determination of the PVDby OCTA, as described above, a blood flow must be detected by the OCTA 
device, resulting in a vessel being delineated in the OCTA image. Although the PVDby IDF and PVDby OCTA did not 
differ statistically, the Bland-Altman plot tends to show higher values for PVDby IDF and LOA may be interpreted 
as relatively large (Fig. 4). Various factors may account for this observation: First, the vascular network for deter-
mining the PVDby OCTA was based on cross-sectional images (B-scans) of the sublingual microcirculation. The 
segmentation borders for vascular detection may therefore have been set wrong. Another reason could be that 

A B

C D

Figure 2. Comparison of characteristic vessel configurations of the oral mucosa imaged by optical coherence 
tomography angiography and incident dark field illumination. Vessels of the tongue papillae recorded by optical 
coherence tomography angiography (OCTA; (A), 0.75 × 0.75 mm) and incident dark field illumination (IDF; 
(B), 1.1 × 1.1 mm). Vascular loops of the sublingual microcirculation recorded by OCTA (C), 1.1 × 1.1 mm) and 
IDF (D), 1.1 × 1.1 mm).

Parameter (unit) Median [interquartile range]

IDF Illumination of sublingual microcirculation

TVD (mm ∙ mm−2) 21.9 [17.6; 23.4]

PVDby IDF (mm ∙ mm−2) 21.0 [17.5; 22.9]

PPV (%) 97.8 [96.3; 99.8]

MFIby quadrants 2.9 [2.9; 3.0]

OCTA of sublingual microcirculation

Flow densityWF (%) 48.9 [43.2; 54.5]

Flow densityCentral (%) 52.6 [43.6; 60.6]

PVDby OCTA (mm ∙ mm−2) 18.6 [18.0; 21.7]

Table 2. Results of sublingual microcirculation measured by incident dark field illumination and optical 
coherence tomography angiography. MFIby quadrants, microvascular flow index; OCTA, optical coherence 
tomography angiography; PPV, proportion of perfused vessel; PVDby IDF, perfused vessel density in IDF 
illumination videos; PVDby OCTA, perfused vessel density in OCTA images, TVD, total vessel density.
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blood flow velocity in vessels had to exceed a certain threshold before the blood flow was detected. However, this 
threshold is approximately <0.3 mm/s in modern OCTA devices34, while the mean capillary blood flow velocity 
in healthy subjects is approximately 1.3 mm/s4. Finally, the resolution of the OCTA device used in the current 
study is about 5–15 µm depending on the orientation (axial or transversal), so that small capillaries may not have 
been detected. In this context, OCTA devices with a transversal resolution of less than 5 µm have recently been 
developed35. In summary, this pilot study showed plausible agreement between IDF and OCTA-derived measures 
of PVD, but the novel approach to use OCTA to evaluate the sublingual microcirculation needs further improve-
ment and validation before comparability between the two methods can be assumed.

This study was not able to find a significant correlation between the automatically calculated flow density and 
the manually measured PVDby OCTA and PVDby IDF. However, this is likely to be explained by the fact that different 
assumptions for the calculation of flow densities and the PVDby OCTA or PVDby IDF were used. The automatic cal-
culation of flow densityWF and flow densityCentral principally included vessels of all diameters and the area covered 
by these vessels (see methods). In contrast, the manual determination of PVDby OCTA and PVDby IDF focused on the 
length of microvessels (<20 μm) in an area of interest. However, in this context it is noteworthy that in a recent 
study we show that automatically calculated retinal flow density showed concordant changes with conjunctival 
measured PVDby IDF in hemorrhagic shock and resuscitation in sheep25. Further studies are needed to investigate 
the relationship between automatically calculated flow density and manually measured parameters of microcir-
culatory analysis in critical illness and during interventions in patients.

A B

Figure 3. Analysis of the perfused vessel density in optical coherence tomography angiograms of the 
sublingual microcirculation. En face optical coherence tomography (OCT) angiogram (A) of the sublingual 
microcirculation. For analysis of the perfused vessel density (PVDby OCTA), a picture section (box with dashed 
line; 858 × 688 µm) was exported from the OCT angiogram, within which the vessel length relative to the image 
size was determined. Picture (B) shows a picture of the sublingual microcirculation recorded by incident dark 
field illumination (688 × 688 µm).

Figure 4. Bland-Altman plot for the perfused vessel density by incident dark field illumination and optical 
coherence tomography angiography (n = 10). Dotted, light gray line represents the mean difference whereas 
upper and lower dashed, light gray lines represent the limits of agreement (equivalent to ± 1.96 standard 
deviation of mean difference). Abbreviations: IDF, incident dark field illumination, OCTA, optical coherence 
tomography angiography; PVD, perfused vessel density; SD, standard deviation.
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In this context, the automatically calculated flow density as a surrogate of diffusion capacity may be an impor-
tant step towards establishing the evaluation of microcirculation in clinical routine and potentially enabling 
microcirculatory guided therapy. For example, hypovolemia as an expression of distributive shock following 
inflammation and sepsis frequently occurs in critically ill patients and has detrimental effects on organ perfusion 
and function. In this situation, the primary aim of fluid therapy is the restoration of tissue perfusion. However, 
targeting systemic hemodynamics (for example cardiac index or blood pressure) in the condition of distrib-
utive shock is not always indicative of adequate tissue perfusion (as initially mentioned, loss of hemodynamic 
coherence7), and it is well known that fluid overload, leading to edema with reduced diffusion capacity, increases 
mortality in critically ill patients36–39. In this context, surrogates of microcirculatory diffusion capacity may help 
to avoid hyper- and also hypovolemia14.

Some limitations must be considered when interpreting this study. First, the study used a commercially avail-
able OCTA device and an adaptor lens. Imaging of the sublingual microcirculation was possible, because healthy 
subjects were able to sit in front of the device and the lens was aligned to the sublingual region (Additional File 1, 
Figure A1,A2). For its use in critically ill patients (where abnormalities of the microcirculation are commonly 
present), the OCTA device would have to be modified. In this context, a OCTA device has been introduced, 
which enables imaging in recumbent patients (Flex-Modul for SPECTRALIS®, Heidelberg Engineering GmbH, 
Heidelberg, Germany)25. In addition, hand-held OCTA devices have been presented40,41.

Second, the current pilot study was able to demonstrate the basic feasibility of contactless evaluation of the 
sublingual microcirculation and present OCTA-derived parameters as surrogates for microcirculatory diffusion 
capacity. Nevertheless, to describe the functional state of the microcirculation, it would be essential to determine 
the blood flow velocity in OCTA images of the sublingual microcirculation (as a measure of convective flow)26, 
which was not possible with the device used. However, recent experimental and clinical studies describe an auto-
matic measurement of blood flow velocity in OCTA images of the retina42–44. Third, in OCTA images of the retina 
and choroid, single layers are automatically identified and flow density for the respective layer calculated. To 
determine flow density and the PVDby OCTA in the current study, the vessel leading layers of interest needed to be 
manually adjusted. In addition, determination of the PVDby OCTA was performed semi-manually as in the analysis 
of IDF videos. For clinical application, automatic segmentation of vascular layers and automatic determination of 
vessel density would be needed, as is already possible for OCTA imaging of the retina45,46.

Finally, this study investigated the sublingual microcirculation in a small group of healthy subjects and each 
subject was evaluated only once in resting conditions. Hence the capability of OCTA to detect microcirculatory 
changes has not been assessed. Further research will be needed to establish whether previous findings obtained 
by SDF imaging and IDF illumination in critically ill patients with microvascular abnormalities can be transferred 
to OCTA-derived measures of the sublingual microcirculation. Due to the rapid development currently taking 
place in the area of OCTA technology, it is reasonable to expect these technical limitations to be overcome in the 
near future.

conclusions
The current study shows for the first time the suitability of OCTA for the evaluation of sublingual microcir-
culation in healthy volunteers. Contactless imaging of the sublingual microcirculation of sufficient quality was 
achievable with OCTA. Comparison of the perfused vessel density based on OCTA images and IDF illumination 
videos as surrogates of diffusive capacity showed a plausible agreement. This makes OCTA a promising tool for 
contactless in vivo evaluation of the sublingual microcirculation in critical illness. However, this study identified 
some technical limitations for bedside imaging of sublingual microcirculation, which need to be overcome before 
OCTA can be used for bedside analysis of the sublingual microcirculation in critically ill patients.

Methods
ethical approval and study participants. The study was performed in accordance with the Declaration 
of Helsinki and was approved by local ethics committee of the Medical Chamber Westphalia-Lippe and the 
Westphalian Wilhelm University of Muenster, Muenster, Germany (2016–073-f-S). Voluntary study participants 
were recruited from our research department. To participate in the current study, patients declared their informed 
consent after they had been informed about the aims of the study, the examination procedure, potential benefits, 
and risks.

Study protocol. The study was conducted as a prospective, observational study without intervention and 
examinations took place from November 2018 to January 2019. Imaging of the sublingual microcirculation with 
both OCTA and IDF illumination was performed while participants were physically resting. First, contactless 
measurement of the sublingual microcirculation was performed with OCTA as described below. Afterwards, vid-
eos of the sublingual microcirculation were recorded with IDF illumination. In addition, demographic data were 
noted, and systemic hemodynamics (blood pressure and heart rate) and peripheral oxygen saturation measured 
non-invasively. All images of the sublingual microcirculation (with OCTA and IDF) were recorded by the same 
experienced operator under the same standardized mesopic lighting conditions in the same location.

optical coherence tomography angiography of the sublingual microcirculation. OCTA technol-
ogy has been described in detail previously45,47,48. Briefly, optical coherence tomography (OCT) scans of a certain 
region of the sublingual mucosa were performed repeatedly and OCT images were then evaluated for changes. 
Static tissue shows little or no change, whereas blood flow in the capillaries and larger vessels will produce differ-
ences between consecutive scans49. Split-spectrum amplitude-decorrelation angiography (SSADA) algorithm was 
used to facilitate extraction of information from the OCT angiography50.
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Imaging of the sublingual microcirculation was conducted with a commercially available spectral domain 
OCT-system (AngioVue, RTVue XR Avanti SD-OCT, Optovue, Fremont, CA, USA; Additional File 1, Figure A1). 
The OCT device had an A-scan rate of 70,000 scans per second and used a light source centered at 840 nm (band-
width of 50 nm). A cross-sectional image was obtained by collecting 340 adjacent punctual A-scans along a 
transverse coordinate, (B-scan; Fig. 1A). An OCT angiography footage of the sublingual microcirculation was 
composed from two times 340 B-scans, which were orthogonal to each other to correct for motion artifacts51,52. 
This resulted in a 3 × 3 mm² image (en face image, Fig. 1,B,C) of the sublingual microcirculation with an axial 
resolution of approximately 5 µm, a transversal resolution of approximately 15 µm and an acquisition time of 
around 3 seconds per image.

For imaging of the sublingual region, a cornea‐anterior module long adaptor lens (Optovue CAM-L S/N 
43115; Optovue Inc, Fremont, California, USA) was placed in front of the imaging unit of the OCT device to ena-
ble non-contact measurements of the sublingual region (Additional File 1, Figure A2). For measurements study 
participants were asked to sit in front of the OCT device. The adaptor lens was aligned to the sublingual region 
by changing the participant’s head position (e.g., by padding with towels). Participants were allowed to maneuver 
the lens casing with their teeth or lips.

Only OCTA images of good quality and a quality index ≥6 were included in the analysis. Analyses of OCTA 
images were performed with proprietary software (ReVue 2017.1.0.151; Optovue, Fremont, CA, USA). To apply 
the standard quantification scheme for the macular region to the sublingual region, the sublingual vascular lead-
ing layer was manually selected in B-scans (Fig. 1A). Afterwards the flow density was automatically calculated 
by extracting a binary image of the vessels from the gray-scale en face OCTA image, and then computing the 
percentage of pixels of vessels in the area of interest45. In particular, the flow density of the central ring of the OCT 
angiogram (Flow densityCentral; circle 2 in Fig. 1C) and the flow density whole en face (Flow densityWF; the average 
flow density of circles 1 and 2 in Fig. 1C) were calculated. At least three scans of the sublingual region at different 
positions were performed for each subject, and results of the examinations were noted as mean value per subject.

Incident dark field illumination of the sublingual microcirculation. Sublingual microcirculation 
was measured with an IDF video microscope (CytoCam™, Braedius Medical BV, Huizen, the Netherlands). At 
least 5 videos of different regions of the sublingual microcirculation, each 5 s in length, were recorded for each 
participant. Videos of the sublingual microcirculation were reviewed using the microcirculatory image quality 
score (MIQS)53 and discarded if necessary. Analysis was conducted online using dedicated software54 (Capillary 
Mapper 1.4, University of Muenster Medical Centre, Muenster, Germany) according to the consensus confer-
ence criteria for analysis of the microcirculation in microvessels (<20 μm) following established protocols26,55,56. 
From 3–5 high quality videos of the sublingual microcirculation were analyzed in a blinded manner for each 
participant, noting values of microvascular flow index (MFIby quadrants), total vessel density (TVD), perfused vessel 
density (PVDby IDF) and proportion of perfused vessels (PPV).

Comparison of the perfused vessel density in OCTA images and IDF videos. The segmentation 
of OCTA B-scans of the sublingual region were manually adjusted to include a vascular network, which was 
as single-layered as possible and located directly below the stratified squamous epithelium. This was done to 
establish whether perfused vessel density can be measured in OCTA images as effectively as in videos recorded 
by IDF illumination (Fig. 1A). Based on this selection, an en face OCTA image of the sublingual microcirculation 
was recalculated, which resembled a still image of an IDF illumination video of the sublingual microcirculation 
(Fig. 3). To compare the perfused vessel density in OCTA images (PVDby OCTA) with the PVDby IDF, image sections 
corresponding to the size of analyzed IDF videos (858 × 688 μm) were exported from en face OCTA images (box 
with dashed line; Fig. 3). Afterwards the vessel length relative to the image size was determined in each of the 
exported image sections using dedicated software (Capillary Mapper 1.4, University of Muenster Medical Centre, 
Muenster, Germany)54.

Statistical analysis. Statistical analyses were performed using IBM SPSS® Statistics 25 for Windows 
(IBM Corporation, Somers, New York, United States). Data are presented as median with interquartile range. 
Non-parametric tests were used due to the small sample size. Comparison between PVDs (by IDF and OCTA) 
was made using the Wilcoxon signed-rank test. Agreement between methods was analyzed following the sug-
gestions of Bland and Altman, and a Bland-Altman-plot was drawn27. The Bland-Altman plot was constructed 
by plotting the mean difference of two values (PVDby IDF and PVDby OCTA) for each subject against the average of 
those two values. The mean bias (95% confidence interval) was calculated as well as the limits of agreement (LOA) 
as 1.96-fold of the standard deviation of the mean bias. In addition, agreement was analyzed taking proportional 
bias into account. The degree of correlation between two variables was expressed as Spearman’s rank correlation 
coefficient ρ. The global statistical significance level was set to 0.05. Inferential statistics are intended to be explor-
atory (i.e. forming a basis for hypotheses), rather than confirmatory, and are interpreted accordingly.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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