
1Scientific Reports |         (2020) 10:5522  | https://doi.org/10.1038/s41598-020-62082-z

www.nature.com/scientificreports

Effect of Thomas Rotation on 
the Lorentz Transformation of 
Electromagnetic fields
Lakshya Malhotra1*, Robert Golub2, Eva Kraegeloh3, Nima Nouri1,4,5,6 & Bradley Plaster1

A relativistic particle undergoing successive boosts which are non collinear will experience a rotation of its 
coordinate axes with respect to the boosted frame. This rotation of coordinate axes is caused by a 
relativistic phenomenon called Thomas Rotation. We assess the importance of Thomas rotation in the 
calculation of physical quantities like electromagnetic fields in the relativistic regime. We calculate the 
electromagnetic field tensor for general three dimensional successive boosts in the particle’s rest frame as 
well as the laboratory frame. We then compare the electromagnetic field tensors obtained by a direct 
boost β δβ

→
+

→
 and successive boosts β

→
 and β∆

→
 and check their consistency with Thomas rotation. This 

framework might be important to situations such as the calculation of frequency shifts for relativistic spin-
1/2 particles undergoing Larmor precession in electromagnetic fields with small field non-uniformities.

As pointed out by Thomas1, two successive non collinear Lorentz boosts are not equal to a direct boost but to a 
direct boost followed by a rotation of the coordinate axes. That is, 
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( )  is the direct boost, β
→

 and δβ
→

 are two successive boosts in the lab frame, β∆
→

 and ∆ Ω
→

 (not 
shown) are, respectively, the successive boost and the angle of rotation with respect to the frame with boost β

→
 

(Fig. 1). A( )β δβ+
→ →

, β δβ+
→ →

A( ), β δβ
→ →

A A( ), ( ) and β∆
→

A( ) are the usual boost matrices for the direct boost 
and the successive boosts respectively, and ∆ Ω

→
R ( )tom  is the rotation matrix2,3.

This rotation of the space coordinates under the application of successive Lorentz boosts is called Thomas 
rotation. This phenomenon occurs when a relativistic particle is undergoing accelerated motion. Now since we 
have to show the acceleration, we added an infinitesimal boost vector δβ

→
 to the original boost β

→
.

In general, for boosts 1β
→

 and β
→

2 which are parallel to each other or more specifically boosts corresponding to 
(1 + 1)-dimensional pure Lorentz transformations, the transformation matrix forms a group which satisfies the 
equation: 
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=
→

A A A( ) ( ) ( ) (2)1 2 12

 where β12 is the velocity composition of two boosts which is given by the equation: 

β
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 But successive boosts which are non collinear, in general, result in Thomas rotation of the space coordinates 
or in other words, the boosted frames which are accelerating in the sense that their direction is changing will 
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experience Thomas rotation. So the values of the physical quantities obtained by applying just Lorentz transfor-
mation are not correct in such cases.

This work is inspired by the ideas discussed in4–11 but in a slightly different manner. Ungar et al. defined three 
inertial reference frames Σ, Σ′, and Σ″ in such a way that their corresponding axes are parallel to each other (Σ 
being the lab frame). It is assumed that the relative velocity of Σ′ with respect to Σ and the relative velocity of Σ″ 
with respect to Σ′ is known beforehand. The relativistic velocity composition law can then be used to calculate the 
velocity of Σ″ with respect to Σ. Usually the velocity of Σ″ with respect to Σ′ is not known so the above mentioned 
approach cannot be used directly. To circumvent this issue, in this paper we present a calculation in which we 
calculated a matrix AT

3 from β δβ
→

+
→

A( )  and β−
→

A( )  which contains all the information about relativistic 
composition of velocities and Thomas rotation.

To our knowledge, the case of non-collinear boosts and its effects on the electromagnetic field tensor has not 
been discussed in the literature. The aim of this paper is to see how the electromagnetic field tensor transforms 
with the Lorentz transformations for general three-dimensional boosts and to show that the field tensor in the 
direct boosted frame A( )β δβ

→
+

→
 and successive boosted frames β

→
A( ) and δβ

→
A( )  are consistent with Thomas 

rotation.

Survey of some concepts of the Special Theory of Relativity
Lorentz transformations.  For two inertial reference frames Σ and Σ′ which have a relative velocity of →v  in 
such a way that the coordinate axes of Σ are parallel to Σ′ and Σ′ is moving in the positive x direction as seen from 
Σ, the position 4-vector of Σ′ is related to the position 4-vector of Σ by the standard Lorentz transformation 
equations12:
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(1 ) : Lorentz factor
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The generalization of Eq. (4) for the relative velocity of Σ′ in an arbitrary direction but with the coordinate axes 
of the two frames still parallel to each other is given by: 

Figure 1.  Schematic of the boosts. β δβ
→

+
→

: Direct boost, β
→

: First successive boost, δβ
→

: Second successive 
boost in lab frame, β∆

→
: Second successive boost with respect to the inertial frame with boost β

→
.
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Addition of velocities.  Consider two inertial reference frames Σ and Σ′ such that the relative velocity of Σ′ 
with respect to Σ is →v . A particle is moving in Σ′ such that its velocity with respect to Σ′ is u→

′
. The velocity of the 

particle with respect to Σ is then given by13: 
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 where u∥ and →⊥u  refer to the components of velocity parallel and perpendicular, respectively, to v→.
It can be shown that the Lorentz factor of →v , →u , and →

′u  are related to each other by 
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 More generally, the velocity composition law for two arbitrary velocities can be written as4–10,13:
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 where symbol  ⊕  refers to the direct sum of the vector space of the velocity vectors.

Matrix representation and boost matrix.  For the rest of the paper, we will be using matrix methods to 
calculate Lorentz transformations as they are very convenient to use and are more explicit. All of the equations in 
Eqs. (4) and (5) can easily be obtained by using the boost matrices for Lorentz transformations. For example, for 
a boost along the x axis, the boost matrix can be written as3: 
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 For an arbitrary boost, the general form of the boost matrix A takes a form in which the matrix elements can be 
written as: 

A
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A A ( 1)
(11)
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δ γ
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 where δij is the kronecker delta. The general form of Eq. (9) can therefore be written as2: 
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Set-up.  To start with, consider two arbitrary boosts β
→

 and δβ
→

 in three dimensions: 
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^ ^ ^

^ ^ ^

 In order to calculate the boost matrix for various boosts, we will apply a passive transformation which will rotate 
our lab frame (xy) coordinate axes in such a way that its x-axis is aligned with β

→
. This rotated frame will hereafter 

be called the longitudinal-transverse (ℓt) frame.
This whole transformation can be imagined as a product of two rotations: The first rotation is about the z axis 

by an angle φ which will align the x axis along the projection of the boost vector in the xy plane (Fig. 2). The rota-
tion matrix associated with this rotation can be written as: 

φ φ
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=
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−
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R
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0 cos sin 0
0 sin cos 0
0 0 0 1 (14)

1

 The second rotation is about the y1 axis (Fig. 3) by an angle 
2

θ−π . The effect of this rotation is that it aligns the x1 
axis to the boost vector β

→
. For the second rotation, the rotation matrix can be written as: 

Figure 2.  Rotation about z axis by an angle φ. The new x, y and z axes are called the x1, y1 and z1 axes 
respectively.
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 The overall effect of the two rotations can be combined in a single transformation matrix R: 
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 It is clear from Fig. 4 that if: 
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 where the parameters λ1 and η1 are defined in the Supplementary Information (Section 1).
Using Eq. (17), the matrix R can be written as: 
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As mentioned earlier, this rotation matrix will transform the lab frame coordinates of any 4-vector (xy-frame) to 
its coordinates in the rotating frame also called longitudinal-transverse frame (ℓt-frame): 

Figure 3.  Second rotation about the y1 axis by an angle 
2

θ−π . x, y, and z axes in this new frame are called the 
x2, y2 and z2 axes respectively.

https://doi.org/10.1038/s41598-020-62082-z


6Scientific Reports |         (2020) 10:5522  | https://doi.org/10.1038/s41598-020-62082-z

www.nature.com/scientificreportswww.nature.com/scientificreports/









R

R

0 0 0

0
0

(19)

t xy

x
t

y
t

z
t

x
xy

y
xy

z
xy

1

β β

β

β

β

β
β

β

λ

→
= ⋅

→













= ⋅













=













 where the superscripts ℓt and xy refer to the components in longitudinal-transverse frame and laboratory frame, 
respectively, and for the sake of simplicity in notation we assumed: 
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 where λ1, λ2, λ5, λ6 and η1 are defined in the Supplementary Information (Section 1).
To calculate the 
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Figure 4.  General boost in three-dimensions. Dotted line represents the projection of β
→

 on the xy-plane.
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 Using the above equation we calculate: 

γ λ λ

λ
λ

λ

= − −

≈ −




 +

−







β δβ
→

+
→

−

−

(1 2 )

(1 ) 1
1

( ) 1
2

2

1
2

1
2

1
2 2

1
2

 Hence, γ
β δβ+
→ →

( )
 can be written as: 

γ γ γ λ≈ +β δβ
→

+
→ (1 )( )

2
2

 where 1

1 1
2

γ =
λ−

 is the Lorentz factor.

Using Eq. (19), the boost matrix for boost 
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Similarly, using Eqs. (19) and (20), to the first order in δβ, the boost matrix for the direct boost β δβ
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Transformations of the Electromagnetic Field Tensor
The main idea of this paper is to see how the electromagnetic fields transform relativistically when there is an 
accelerated motion. It can be further divided into transformations in the longitudinal-transverse and lab frame.

Longitudinal-transverse ℓt-frame.  To see the effects on electromagnetic fields, we first need to bring the 
electromagnetic field tensor to the rotating ℓt-frame so that all the boosts and electromagnetic fields are in the 
same frame to start with. The electromagnetic field tensor Fμν in the lab frame is given by14: 
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 For the rest of the paper we will write Fμν = F.
To get the field tensor in the ℓt-frame, we can apply the rotation matrix R on Fμν: 
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where the superscript T refers to matrix transpose. After plugging in the values of R and F from Eqs. (18) and (23), 
we can write Fℓt as: 

F

0

0

0

0

t

1

1

2

1

3

1 1

1

1

6

1 1

5

1
2

1

6

1 1

4

1

3

1 1

5

1

4

1

κ
λ

κ
η

κ
η λ

κ
λ

κ
η λ

κ
η

κ
η

κ
η λ

κ
λ

κ
η λ

κ
η

κ
λ

=







− − −

−

−

−






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 where 

κ β β β

κ β β

κ β β β β β β

κ β β β

κ β β

κ η β β β

= + +

= −

= − + −

= + +

= −

= − +

E E E
E E

E E E E
B B B
B B

B B B

( )

( )

x x y y z z

x y y x

z x x z x y y z z y

x x y y z z

y x x y

z x x y y z

1

2

3
2

4

5

6 1
2

 To the electromagnetic field tensor obtained in Eq. (24), we will apply boost matrix for the first successive boost 
β
→t

 and the direct boost ( )
t

β δβ
→

+
→

 using the well-known equation15: 

= ⋅ ⋅′F A F A (25)T

 where ′F  and F are the electromagnetic field tensors in the boosted frame and the lab frame (or any inertial 
frame) respectively and A is the boost matrix.

For boost 
t

β
→

, the transformation of F t can be calculated using Eqs. (21), (24) and (25): 

β β=










⋅ ⋅




















′
→ →









F A F A( ) t
t

t
t T

The following table has the elements of F( ) t′  after matrix multiplication: Electromagnetic fields in Table 1 are 
consistent with the standard field transformation equations7,15.

E E B E

B B E B

( )
1

( )

( )
1

( )
(26)

2

2

γ β γ
γ

β β

γ β γ
γ

β β

→
=

→
+

→
×

→
−

+
→ →

⋅
→

→
=

→
−

→
×

→
−

+
→ →

⋅
→

′

′

 Similarly, for the direct boost β δβ
→

+
→

( ) t, the electromagnetic field tensor transformation is given by: 

( ) ( )F A F A( ) t
t

t
t T

β δβ β δβ=





+





⋅ ⋅





+





′′
→ → → →









 After simplification and keeping terms to linear order in δβ, (F″)ℓt can be calculated and the detailed expressions 
of its elements are provided in the Supplementary Information (Section 2.1).

Because of the way we set up the problem, the electromagnetic field tensor described by the direct boost 
β δβ
→

+
→

( ) t already consists of rotations. To get the electromagnetic fields which do not have any rotations (pure 
Lorentz boost)3, we will use the successive boosts. As mentioned earlier in the Introduction, we will calculate a 
matrix AT: 

β δβ β=
→

+
→

⋅ −
→

A A A( ) ( ) (27)T

 For the ℓt-frame, AT looks like: 

′ F( ) t10
E( )x

t′ β β β

λ

+ +xEx yEy zEz

1

′ F( ) t20
E( )y

t′ γ η β β β β β β

η

− + + − +( )Bz Bx x z By y z Ex y xEy1
2

1

′ F( ) t30
′E( )z
t γ β λ β λ β β β β β β

η λ

− + − − +( )By x Bx y x Ez xEx z yEy z y Ez1
2

1
2 2 2

1 1

′ F( ) t32


B( )x
t′ Bx x By y Bz z

1

β β β

λ

+ +

′F( ) t13
′B( )y
t ( )By x Bx y x Ez xEx z yEy z y Ez

2 2

1

γ β β β β β β β β

η

− + − − +

′F( ) t21
B( )z

t′ γ η β β β β β β β β β β β β β β

η λ

− − − + − + − +( )Bz Bx x z By y z x Ey x Ex y x y Ey Ex y xEy z Ex y z1
2 3 2 2 3 2 2

1 1

Table 1.  Expressions for the indicated components of the electromagnetic field tensor after being transformed 
by the first boost β

→t
 in the longitudinal-transverse frame.
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A

1

1 ( 1) ( 1)

( 1) 1 0

( 1) 0 1
(28)

T
t

2
2

1

6

1

5

1 1
2

2

1

6

1 1

5

1 1
2

6

1

6

1 1

5

1 1

5

1 1
2



γ λ
λ

γλ
η

γλ
η λ

γ λ
λ

γ λ
η λ

γ λ
η λ

γλ
η

γ λ
η λ

γλ
η λ

γ λ
η λ

=







−
− −

− − −

− −
−

− −
−







 The matrix AT contains all the information regarding relativistic composition of velocities and Thomas rotation 
which can be seen if we write AT as3: 

  

 

β β= ∆ ⋅ ∆Ω =



 − ∆ ⋅






⋅



 − ∆Ω ⋅






→ → → → → →
A A R I K I S( ) ( )

(29)
T

t t t
t t

tom

 where: 


β∆
→ t

 = successive boost with respect to frame with boost β
→

; ( )t t t1
2 β δβ∆ Ω

→
=







→
×

→ 





γ

β

−  

 is the angle 

of rotation associated with Thomas rotation.
It can be easily shown that if the boosts and rotations are infinitesimal then: 

β β∆
→

⋅ ∆ Ω
→

= ∆ Ω
→

⋅ ∆
→

A R R A( ) ( ) ( ) ( )tom tom

 Matrices 
→
K  and 

→
S  are the generators of Lorentz boosts and rotations respectively: 

K K K

S S S

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

,
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

,
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

,
0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

,
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

1 2 3

1 2 3

=












=












=













=






−






=





 −






=







−






 Extracting the matrix form of β∆
→

A( ) t and R ( ) t
tom

∆Ω
→

 from AT, we get: 

A

R

( )

1

1 0 0

0 1 0

0 0 1

( )

1 0 0 0

0 1 ( 1) ( 1)

0 ( 1) 1 0

0 ( 1) 0 1
(30)

t

t

2
2

1

6

1

5

1 1
2

2

1

6

1

5

1 1

tom

6

1 1

5

1 1
2

6

1 1

5

1 1
2





β

γ λ
λ

γλ
η

γλ
η λ

γ λ
λ
γλ
η

γλ
η λ

γ λ
η λ

γ λ
η λ

γ λ
η λ

γ λ
η λ

∆
→

=







−
− −

−

−

−







∆ Ω
→

=







− −

−
−

−
−







 In order to find the electromagnetic fields due to pure Lorentz boosts, we calculate the electromagnetic field 
tensor due to the successive boosts 



β
→ t

 and β∆
→t

: 

F A A F A A

A F A

( ) ( ) ( ) ( ( ) ) ( ( ) )

( ) ( ) ( ( ) ) (31)

t t t t t T t T

t t t T

β β β β

β β

= ∆
→

⋅
→

⋅ ⋅
→

⋅ ∆
→

= ∆
→

⋅ ⋅ ∆
→′

‴ 

 



 






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 After simplification and keeping the terms which are linear in δβ, we get the matrix ‴F( ) t whose elements are 
provided in the Supplementary Information (Section 2.2).

It should be noted that since F( ) t‴  and (F″)ℓt are different from each other by just a rotation, so F( ) t‴  can be 
obtained by operating an inverse Thomas rotation on (F″ )ℓt. In fact, we used this as a check for verifying if the 
expressions of electromagnetic fields calculated using Eq. (32) are correct.

= −∆ Ω
→

⋅ ″ ⋅ −∆ Ω
→









‴F R F R( ) ( ) ( ) ( ( ) ) (32)t t t t T

tom tom

Laboratory xy-frame.  After getting the expressions of electromagnetic fields in the ℓt-frame obtained by 
different boosts, we now calculate the electromagnetic fields by the same boosts with respect to the lab frame. The 
overall approach stays the same but all the boost matrices are needed to be transformed in the xy-frame before 
being used to calculate the electromagnetic field tensor. Another way of calculating the electromagnetic field 
tensor is to directly transform the field tensors obtained in ℓt-frame.

In order to calculate the electromagnetic field tensor for various boosts in the lab xy-frame, we will just use 
the field tensor F as defined in Eq. (23). Since R is the rotation matrix for passive coordinate transformations (18), 
we have: 

R R R R I (33)T T⋅ = ⋅ =

 therefore we can write the electromagnetic tensors and boost matrices in the lab xy-frame as: 

= ⋅ ⋅
= ⋅ ⋅





F R F R
A R A R (34)

xy T t

xy T t

 After matrix multiplication, A( )
xy

β
→

 can be written as: 

A( )

( 1) ( 1)

( 1) ( 1)

( 1) ( 1)

(35)

xy

x y z

x
x y z x y x z

y
x y x y z y z

z
x z y z x y z

2 2 2

1
2

1
2

1
2

1
2

2 2 2

1
2

1
2

1
2

1
2

2 2 2

1
2

β

γ γβ γβ γβ

γβ
γβ β β

λ

γ β β

λ
γ β β

λ

γβ
γ β β

λ

β γβ β

λ

γ β β

λ

γβ
γ β β

λ

γ β β

λ

β β γβ

λ

→
=







− − −

−
+ + − −

−
− + + −

−
− − + +







 which is in agreement with Eq. (12) if we substitute in 

x y z
xy

x y zβ β β β β= = + +
→ →

^ ^ ^

 Using Eqs. (25) and (34) we can calculate the electromagnetic field tensor ′F( )xy which corresponds to the boost 
xy

β
→

:
Again, the components of the electromagnetic field tensor in Table 2 can be verified from the standard field 

transformations as shown in Eq. (26).
Similarly, for the direct boost β δβ

→
+

→
( )xy, we can use Eq. (34) to calculate the boost matrix. The detailed 

expression of β δβ
→

+
→

A( )xy is too long to write here but it shares the same features as3 which can be seen if we let 
δβz = βy = βz = 0: 

( )F
xy10′ E( )x

xy′
E B B( )x z y y z

x xEx yEy zEz
2 ( )

1γ γ β β+ − −
γ β β β β

γ

+ +

+

′( )F
xy20 ′E( )y

xy
E B B( )y x z z x

y xEx yEy zEz
2 ( )

1γ γ β β+ − −
γ β β β β

γ

+ +

+

′( )F
xy30 ′E( )z

xy
γ γ β β+ − −

γ β β β β

γ

+ +

+
E B B( )z y x x y

z xEx yEy zEz
2 ( )

1

′( )F xy
32 ′B( )x

xy
γ γ β β+ − −

γ β β β β

γ

+ +

+
B E E( )x y z y z

x Bx x By y Bz z
2 ( )

1

′( )F
xy13 ′B( )y

xy
B E E( )y z x z x

x Bx x By y Bz z
2 ( )

1γ γ β β+ − −
γ β β β β

γ

+ +

+

( )F
xy21′ ′B( )z

xy
γ γ β β+ − −

γ β β β β

γ

+ +

+
B E E( )z x y x y

x Bx x By y Bz z
2 ( )

1

Table 2.  Expressions for the indicated components of the electromagnetic field tensor after being transformed 
by the first boost 

xy
β
→

 in the laboratory frame.
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β δβ

γ γ β δβ γβ γ δβ γδβ

γβ γ δβ γ γ β δβ γ
β

β δβ

γδβ γ
β

β δβ

→
+

→
=







+ − + −

− + +





− 




−





− 










A( )

( ) 0

( )
1 0

1 0 1

0 0 0 1 (36)

xy

x x x x y

x x x x
x

x y

y
x

x y

3 3

3 3
2

2

 The above matrix is identical in form to the one shown in3. After calculating the boost matrix Eq. (36), we can 
again use Eq. (25) to calculate the electromagnetic field tensor in the direct boosted frame with respect to the 
laboratory frame whose detailed expressions are provided in the Supplementary Information (Section 3.1).

In order to calculate electromagnetic fields in the inertial frames which are boosted upon by pure Lorentz 
boosts (no rotation), we use successive boosts β

→
 and β∆

→
. For that we have to calculate the expression of AT

xy first 
as done in Eq. (27) which is: 

λ
γλ γ β λ

λ
γλ γ β λ

λ
γλ γ β λ

λ
γλ γ β λ

γ λ

λ

γ λ

λ

λ
γλ γ β λ

γ λ

λ

γ λ

λ

λ
γλ γ β λ

γ λ

λ

γ λ

λ

=







− + − + − +

− +
−

−
−

− + −
− −

− +
−

−
−







( )

( )

(37)

A

1 1
( )

1 1
( )

1
( ) 1

( 1) ( 1)

1 ( 1)
1

( 1)

1
( )

( 1) ( 1)
1

T
xy

x y z

x

y

z

1
2 3

2
2

1
2 4

2
2

1
2 5

2
2

1
2 3

2
2

6

1
2

8

1
2

1
2 4

2
2

6

1
2

7

1
2

1
2 5

2
2

8

1
2

7

1
2

As we know from Eq. (29), β∆
→

A( )xy and ∆ Ω
→

R ( )xy
tom  can be extracted from AT

xy which can be written as: 

β

λ
γλ γ β λ

λ
γλ γ β λ

λ
γλ γ β λ

λ
γλ γ β λ

λ
γλ γ β λ

λ
γλ γ β λ

γ λ

λ

γ λ

λ
γ λ

λ

γ λ

λ
γ λ

λ

γ λ

λ

∆
→

=






− + − + − +

− +

− +

− +







∆ Ω
→

=







−
−

−

−
− −

−
−

−







( )

( )

(38)

A

R

( )

1 1
( )

1 1
( )

1
( ) 1 0 0

1 0 1 0

1
( ) 0 0 1

( )

1 0 0 0

0 1
( 1) ( 1)

0
( 1)

1
( 1)

0
( 1) ( 1)

1

xy

x y z

x

y

z

xy

1
2 3

2
2

1
2 4

2
2

1
2 5

2
2

1
2 3

2
2

1
2 4

2
2

1
2 5

2
2

tom

6

1
2

8

1
2

6

1
2

7

1
2

8

1
2

7

1
2

 where λi, (i = 1, 2, … , 8) and η1 are defined in the Supplementary Information (Section 1).
Using Eq. (38) we can now calculate electromagnetic fields due to pure Lorentz boosts whose detailed expres-

sions are provided in the Supplementary Information (Section 3.2).

‴F A A F A A

A F A

( ) ( ) ( ) ( ( ) ) ( ( ) )

( ) ( ) ( ( ) ) (39)

xy xy xy xy xy T xy T

xy xy xy T

β β β β

β β

= ∆
→

⋅
→

⋅ ⋅
→

⋅ ∆
→

= ∆
→

⋅ ⋅ ∆
→′

Validation of Results
All the framework that we have constructed can be verified by two ways: 

	 1.	 Verifying the form of boost matrices and electromagnetic field tensor for some special cases as discussed 
here3,13.

	 2.	 Applying this whole formalism on a 4-vector like position.
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For the first approach, in order to see the identical nature of results we will assume the special case of 
βy = βz = δβz = 0. Applying this assumption on Eqs. (21) and (22) will give us: 

β

γ γβ
γβ γ

β δβ

γ γ β δβ γβ γ δβ γδβ

γβ γ δβ γ γ β δβ γ
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 Similarly, AT
t can be reduced to a familiar result3: 

γ δβ γδβ
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In the lab xy-frame, we get the exact same results as Eqs. (40) and (41) for the above mentioned special case. This 
makes perfect sense since letting βy = βz = δβz = 0 would just make the original passive coordinate transforma-
tions redundant and both the ℓt- and xy- frames will be identical.

To see if the matrix for Thomas rotation R ( )tom ∆ Ω
→

 is correct we can directly calculate it from its definition: 

R I S( ) ( ) (42)tom ∆ Ω
→

= − ∆ Ω
→

⋅
→

 where 

1
2

γ
β

β δβ∆ Ω
→

=

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
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

− 



→

×
→





The Thomas rotation matrix calculated from the Eq. (42) using the corresponding representations of the boost 
vectors in ℓt/xy -frames matches with Eqs. (30) and (38).

For the verification of Electromagnetic Field Tensors, we can calculate them in different ways. As an example, 
we calculated F( )xy‴  using: 

F A A F A A

R F R

R F R

( ) ( ) ( ) ( ( ) ) ( ( ) )

( ) ( ) ( ( ) )

( )

xy xy xy xy xy T xy T
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T t
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‴

β β β β= ∆
→

⋅
→

⋅ ⋅
→

⋅ ∆
→

= −∆ Ω
→

⋅ ″ ⋅ −∆ Ω
→

= ⋅ ⋅

All three equations yielded same results. Similar verification also holds for other electromagnetic field tensors 
involved.

Our second approach for verification is based on Ungar et al.4,12,15 in which we apply direct boost ( )β δβ
→

+
→

 
and successive boosts β

→
 and β∆

→
 to a position 4-vector. We can check if the results are consistent and share the 

same overall features as the electromagnetic field tensor. To see that we start with a general position 4-vector in 
the lab frame and for simplicity, we ignore the time component in the position 4-vector: 

r
x
y
z

( )
0

(43)
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
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Transforming it in the ℓt- frame using the rotation matrix R Eq. (18), we get: 
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We can calculate the expression of (r)ℓt transformed by the first successive boost β
→t

 using Eq. (21) in the same 
way we calculated the electromagnetic field tensor Fμν: 
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which is nothing but the standard Lorentz transformation of coordinates. Similarly, for the direct boost 
β δβ

→
+

→
( ) t and successive boosts β

→t
 and 
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β∆
→ t

, after letting βz = δβz = 0 for simplicity, we have: 
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 One way to check if Eqs. (45) and (46) are correct is to show that the invariant interval ds216: 
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= = − − −μν
μ νds g dx dx dx dx dx dx( ) ( ) ( ) ( ) (47)
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 remains the same, where gμν is the metric tensor: 
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 In our case we are concerned with the invariance of 

= − − −s x x x x (48)2
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 To see if that is the case, we can apply Eq. (48) to ′ r( ) t, (r″)ℓt and ‴ r( ) t calculated above. The invariant 

= − − −s x y z2 2 2 2

 indeed stays the same for each case. This makes sense since we ignored the time component.
Similar results can be obtained for the position 4-vector r in the lab xy -frame and it can be easily proved that 

the invariant does not change. We also compare our approach with Ungar’s in the Supplementary Information 
(Section 4).

Conclusion
The work presented in this paper is another confirmation of the fact that two successive boosts are not equal to a 
single direct boost. In the case of the electromagnetic field, just applying the usual electromagnetic field transfor-
mation equations will not result in the correct form of electromagnetic fields in the case of non-collinear boosts 
(accelerating frames) as Thomas rotation must be included.

Apart from the validations made in the previous section we will see if the electromagnetic field tensors in the 
direct boosted frame β δβ

→
+

→
 and the successively boosted frames β

→
 and β∆

→
 are consistent with the Thomas 

rotation. To see that we can take the difference between the corresponding elements of F″ and F‴ in both the 
longitudinal-transverse ℓt and lab xy-frames.

After taking the difference of the electromagnetic field tensors F″ and F‴ we found that 

‴ γ″ − ∝ −F F( ) ( ) ( 1) (49)ij ij

for both ℓt- and xy-frames. This makes sense because both F″ and F‴ just differ by Thomas rotation. Although 
taking the difference of F″ and F‴ is not very significant physically it does show what we expected.

To our knowledge, this is the first time that someone has calculated the expressions of the electromagnetic 
fields in the frames corresponding to general three-dimensional non-collinear boosts.

One application of this work concerns the calculation of shifts in the Larmor frequency of highly relativistic 
particles moving through non-uniform magnetic and electric fields. Such a formalism was developed for the 
motion of non-relativistic particles17–19; however, this formalism is not directly applicable to relativistic particles 
because the formalism assumes the electromagnetic fields are known in the particle rest frame. For a highly 
relativistic particle undergoing acceleration (e.g., relativistic charged particles stored by electromagnetic fields 
within a circular storage ring), one can then apply the formalism developed here in this paper to determine 
the electromagnetic fields in an appropriate reference frame, where any residual motion of the particle is then 
non-relativistic, and then proceed to calculate the frequency shifts per the formalism of17–19.
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