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functional identity enhances 
aboveground productivity of a 
coastal saline meadow mediated by 
Tamarix chinensis in Laizhou Bay, 
china
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ning Du1,2* & Weihua Guo1,2*

Research in recent decades has confirmed that biodiversity influences ecosystem productivity; 
however, the potential mechanisms regulating this process remain subject to controversy, due to 
variation across ecosystems. Here, the effects of biodiversity on ecosystem productivity were evaluated 
using three variables of biodiversity (taxonomic diversity, functional identity, and functional diversity) 
and surrounding environmental conditions in a coastal saline meadow located on the south coast 
of Laizhou Bay, China. At this site, the shrub and field layers were primarily dominated by Tamarix 
chinensis and natural mesic grasses, respectively. our results showed that functional identity, which 
is quantified as the community weighted mean of trait values, had greater explanatory ability than 
taxonomic and functional diversity. thus, ecosystem productivity was determined disproportionately 
by the specific traits of dominant species. T. chinensis coverage was a biotic environmental factor 
that indirectly affected ecosystem productivity by increasing the community weighted mean of plant 
maximum height, which simultaneously declined with species richness. the present study advances 
our understanding of the mechanisms driving variation in the productivity of temperate coastal saline 
meadows, providing evidence supporting the “mass ratio” hypothesis.

With the increasingly severe decline in biodiversity, it is crucial to evaluate the underlying consequences on 
ecosystem functioning caused by biodiversity loss1. Hence, the relationship between biodiversity and ecosystem 
functioning has been a hot and controversial topic in ecology in recent decades2–5, especially when considering 
ecosystem productivity across different vegetation types6–9.

Initial studies on biodiversity-productivity relationships mainly focused how taxonomic attributes (i.e. spe-
cies richness as a traditional proxy of biodiversity) affect productivity10–13. One study that reviewed hundreds of 
articles showed that the effects of taxonomic diversity on productivity cannot be predicted, with the underlying 
mechanism being equally complex14. However, there is increasing evidence that functional traits represent the 
functional dissimilarity among species that coexist in a given community15,16, and that they are closely associated 
with niche difference processes. Thus, functional traits might have a stronger predictive power than taxonomic 
diversity on the biodiversity-productivity relationship6,8,15,17. Several recent studies have also elucidated a clear 
link between productivity and the physiological traits of dominant species4,16, highlighting the relevance of the 
trait-based approach to explain the variation in community productivity18,19.

Two conceptually different, but not mutually exclusive, mechanisms have emerged to explain how biodiversity 
affects ecosystem productivity: (1) selection and (2) complementarity effects. Selection effects influence biomass 
accumulation determined by the dominance of species20 with the highest yield or its functional traits in a com-
munity17. Specifically, ecosystem biomass is mainly determined by its functional identity, which is quantified 
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as the community weighted mean (CWM) of trait values and is supported by the “mass ratio” hypothesis6,21–23. 
Some studies suggest that the “mass ratio” hypothesis is the foundation of the relationships between functional 
attributes and ecosystem productivity6,24,25. The different dimensions of diversity, such as taxonomic diversity 
and functional diversity, enhance productivity through the mechanism of complementary resource use in more 
diverse communities, which is described as complementarity effects2,26. The complementarity effects are sup-
ported by studies which have observed markedly positive relationships between diversity and productivity27,28.

The environment drives the relationship between biodiversity and ecosystem productivity3,7,29,30. In particular, 
primary productivity is influenced by soil fertility when sampling across highly variable environmental con-
ditions3,4. The life-history strategies of species are influenced by the surrounding environment, leading to sys-
tematic changes of particular trait values along the environmental gradient18,31,32, thereby linking surrounding 
environment and community productivity31. This phenomenon could explain a significant amount of variation 
in productivity2,3,21,33.

This study aimed to determine how different dimensions of biodiversity influence productivity due to the 
impact of environmental factors. Specifically, we evaluated the effects of three different dimensions of biodiversity 
(taxonomic diversity, functional identity, and functional diversity), soil properties, and aboveground biomass of a 
coastal saline meadow located on the south coast of Laizhou Bay, China. We tested which biodiversity dimension 
best explains variation in the productivity of the saline meadow, and whether it reflected selection or complemen-
tarity effects. We also tested how environmental factors mediate biodiversity-productivity relationships, and the 
potential processes that influence the biomass dynamics of the coastal meadow in our study region.

Results
predictors of biotic and environmental variables. Tamarix chinensis coverage was used as a biotic 
environmental factor that explained large amounts of variation in aboveground biomass of meadows (AGB), 
while none of the environmental factors were significant in the multiple linear regression analysis (Table 1). 
Species richness was better at explaining variation in AGB than species evenness for the taxonomic diversity var-
iables (Table 1). For the functional attributes of community, we found that the CWM of plant maximum height 
(Hmax) and the functional dispersion (FDis) of leaf dry matter content (LDMC) were the most important pre-
dictors explaining AGB accumulation for the functional identity and functional diversity variables, respectively 

Variable sets Variables SW
Estimate 
value

Standard 
error

95% confidence 
interval p

Environmental

SMC 0.24 0.073 0.136 (−0.194, 0.341) 0.604

EC 0.49 −0.182 0.127 (−0.430, 0.067) 0.152

TN 0.30 0.095 0.163 (−0.225, 0.415) 0.573

TP 0.28 −0.113 0.131 (−0.371, 0.144) 0.396

CEC 0.27 −0.111 0.152 (−0.409, 0.186) 0.472

OC 0.28 0.102 0.148 (−0.188, 0.392) 0.499

AN 0.24 0.001 0.124 (−0.242, 0.244) 0.993

EP 0.24 −0.004 0.130 (−0.259, 0.251) 0.977

AK 0.30 −0.105 0.151 (−0.401, 0.192) 0.499

T. chinensis 
coverage 0.68 0.261 0.138 (−0.009, 0.531) 0.058

Taxonomic diversity
Species richness 0.90 −0.286 0.114 (−0.509, −0.064) 0.012

Species evenness 0.71 −0.218 0.114 (−0.441, 0.004) 0.054

Functional identity

CWM.Hmax 1.00 0.532 0.110 (0.316, 0.747) <0.001

CWM.LDMC 0.32 −0.109 0.112 (−0.328, 0.111) 0.337

CWM.N 0.25 0.018 0.124 (−0.226, 0.261) 0.896

CWM.P 0.37 −0.143 0.127 (−0.392, 0.105) 0.262

CWM.SM 0.25 −0.085 0.120 (−0.321, 0.151) 0.489

Functional diversity

FDis.Hmax 0.35 −0.121 0.126 (−0.367, 0.125) 0.340

FDis.SLA 0.40 −0.089 0.151 (−0.385, 0.207) 0.568

FDis.LDMC 0.74 0.359 0.148 (0.069, 0.648) 0.015

FDis.N 0.69 −0.274 0.170 (−0.607, 0.058) 0.106

FDis.P 0.38 −0.143 0.153 (−0.442, 0.156) 0.354

FDis.SM 0.41 −0.117 0.148 (−0.406, 0.173) 0.438

Table 1. Results of the multiple linear regression and model averaging of environmental, taxonomic diversity, 
functional identity, functional diversity variables, and aboveground biomass. SW, sum of weight; SMC, soil 
moisture content; EC, electrical conductivity; TN, total nitrogen; TP, total phosphorus; CEC, cation exchange 
capacity; OC, organic carbon; AN, available nitrogen; EP, extractable phosphorus; AK, available kalium. CWM, 
community weighted mean; FDis, functional dispersion index; Hmax, maximum height; SLA, specific leaf area; 
LDMC, leaf dry matter content; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; SM, 
seed mass. The predictors selected are presented in bold. Variables with variance inflation values greater than 
three are not displayed.
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(Table 1). Therefore, based on multiple linear regression and model averaging, T. chinensis coverage, species rich-
ness, CWM of Hmax, and FDis of LDMC best predicted AGB in the coastal saline meadow.

correlation between predictors and AGB. All biodiversity predictors were particularly sensitive to AGB 
compared to the selected environmental predictor, T. chinensis coverage (Fig. 1). Specifically, the CWM of Hmax 
had a relatively and strongly positive correlation with AGB (R2 = 0.326, p < 0.001). In comparison, species rich-
ness (R2 = 0.112, p = 0.002) and the FDis of LDMC (R2 = 0.072, p = 0.012) had significantly negative effects on 
AGB. However, no significant effect was detected between T. chinensis coverage and AGB.

Structural equation model. The model that best fitted our observation data included AGB, species 
richness, CWM of Hmax, FDis of LDMC, and T. chinensis coverage (χ2 = 0.800, p = 0.371, RMSEA < 0.001, 
GFI = 0.995). AGB was positively and strongly correlated with the CWM of Hmax (Fig. 2, λ = 0.49), while the FDis 
of LDMC and species richness had no significant direct effect on AGB. T. chinensis coverage was not affected by 

Figure 1. Relationship between aboveground biomass (AGB) and standardised predictors (T. chinensis 
coverage, CWM of maximum height, FDis of LDMC and species richness) in the coastal saline meadow located 
on the south coast of Laizhou Bay, China. T. chinensis, Tamarix chinensis; CWM, community weighted mean; 
FDis, functional dispersion index; LDMC, leaf dry matter content. Significant relationships are marked as solid 
lines (p < 0.05).

Figure 2. Structural equation model testing the relationship between biodiversity predictors and aboveground 
biomass (AGB) on the change of T. chinensis coverage. For abbreviations of predictors, see Fig. 1. Significant 
impacts are marked as solid lines, whereas non-significant impacts are marked as dotted lines. Positive impacts 
are marked in blue, whereas negative impacts are marked in red. Covariance relationships are marked as lines 
with a two-way arrow.
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AGB directly, but it largely promoted the CWM of Hmax (Fig. 2, λ = 0.36) and contributed to a clear decline in 
species richness (Fig. 2, λ = −0.23).

Discussion
This study identified the key predictors of biodiversity that drive dynamic changes to productivity, elucidating 
how biodiversity influences productivity in saline meadow. Specifically, we showed that selection effects strongly 
influenced ecosystem productivity, while complementarity effects did not. In particular, the maximum height of 
dominant species significantly enhanced productivity mediated by T. chinensis coverage.

The environment was hypothesised to be primarily important for productivity in the resource-limited habitat, 
and should, therefore, provide better predictive power than measurements of biodiversity3. Unexpectedly, none 
of the univariate edaphic variables captured the variation in AGB. However, T. chinensis coverage served as an 
appropriate proxy for environmental variables in SEM, indicating that T. chinensis influences meadow species, 
but with no clear direct effect. Previous work reported that T. chinensis exhibits the facilitation effect on coex-
isting herbaceous species in the same region34,35. T. chinensis transfers nutrients from the deep soil layer to the 
surface, producing the “fertile island” to enhance the available nutrients for meadow species34. Species richness 
represented an important and logical approach for estimating the realised niche differentiation. Theoretically, 
this parameter, is related to the extent of niche differentiation in biomes12. Furthermore, species richness showed 
better independence from other biodiversity indexes than evenness (see Appendix S1). This parameter might 
independently capture variation in AGB well. For the functional identity variables, the CWM of Hmax was vital 
for AGB, rather than leaf and seed traits. Maximum plant height, was an indicator for competition for available 
resources (e.g. nutrients, light)36. It was also important for the biomass production of plants37. The CWM of Hmax 
was correlated with the plant growth of the most abundant species, and represented one of the main drivers of 
biomass in grasslands and forests25,38. For the measurements of functional diversity, the FDis of LDMC was asso-
ciated with AGB. LDMC was an independent strategy axis related to plant tolerance for stressful environment, 
indicating that conservative strategy and environment tolerance are important for biomass production in saline 
meadows36.

As the environmental predictor, T. chinensis coverage did not improve AGB in the linear regression. However, 
T. chinensis coverage improved AGB through the functional identity variables, even though there was no direct 
correlation between T. chinensis coverage and AGB in SEM. In our study, we identified some soil fertility fac-
tors, including soil organic carbon, total nitrogen, available kalium, and cation exchange capacity. These factors 
were notably and positively related to T. chinensis coverage based on the Pearson correlation test (r = 0.4–0.7, 
see Appendix 1), indicating soil fertility increased with T. chinensis coverage, and confirming the existence of 
the facilitation effect. Previous studies also demonstrated that net facilitation effect was more likely to occur in 
stressful environments39. Specifically, the formation of fertile islands is an important process driving the positive 
interactions between shrubs and grass39.

For taxonomic diversity, our results indicated that species richness was negatively correlated to AGB in the 
linear regression, and lost significance when accounting for the selected environmental predictor, T. chinensis. 
Negative and non-significant correlations between species richness and AGB have been observed in previous 
studies4,5,40,41, with the opposite being found for complementarity effects. This negative association has been doc-
umented in fertilisation experiments42 and in communities with high productivity5. In our study, the distribution 
of resources was inequitable among species within meadow communities, when soil fertility conditions shifted 
from poor to benign with increasing T. chinensis coverage. Consequently, certain dominant species with a greater 
fitness advantage obtained more resources disproportionately in the saline meadow. This phenomenon might 
cause the competitive exclusion of subordinate species, leading to a decline in species richness, which is consistent 
with previous studies5,40,43.

The linear regression showed that the CWM of Hmax explained the greatest variation in AGB, with this signif-
icant correlation also being obtained in the SEM that included the selected environmental predictor, T. chinensis. 
This result was consistent with many previous studies in diverse ecosystems8,15,41, indicating that selection effects 
drive ecosystem productivity. Our results suggest that productivity was primarily determined by the maximum 
height of the dominant plant species in the coastal saline meadow. Therefore, the functional identity performed 
better and was more sensitive in promoting AGB accumulation than other biodiversity dimensions, supporting 
the “mass ratio” hypothesis2,21. Additionally, T. chinensis coverage also improved the CWM of Hmax in the SEM. 
In general, higher soil fertility was positively associated with more efficient photosynthesis and a higher rela-
tive growth rate of grasses. This process, in turn, promoted primary production, leading to dominant species 
having disproportionate benefits21. The dominant species obtained more nutrient from the soil, which led to 
increased biomass and maximum height. This phenomenon was consistent with that of studies conducted in the 
Inner Mongolia grasslands15 and the Tibetan alpine meadows42 of China, indicating that the maximum height 
of the dominant species markedly improved with increasing soil fertility. Simultaneously, increasingly limited 
light availability to subordinate grasses, as a result of higher height of dominant grasses, intensified competition 
for light within the meadow community. The CWM of Hmax was a good predictor for intensive competition for 
light when nutrient availability increased36,44. This result was supported by previous work showing that increased 
CWM of Hmax promotes community productivity by enhancing light capture45. In addition, we found that the 
functional identity variable explained biomass dynamics more than taxonomic diversity. This finding was con-
sistent with the results of studies in temperate grasslands6 and forest ecosystems46, which showed that functional 
identity is a more efficient predictor of ecosystem productivity than taxonomic diversity.

Of the functional diversity variables considered, the FDis of the LDMC exhibited a more convergent pattern 
to promote AGB in the linear regression but had no significant correlation with AGB in the SEM. Thus, increased 
variation in LDMC might have a negative influence on productivity, supported by previous work47. Species sur-
vival tended to be a conservative life-history strategy, showing a pattern of functional convergence in response 
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to strong environmental pressures via higher LDMC48. These results were supported by the findings of studies 
in temperate forests, which showed that trees promote carbon storage by improving stem specific density4,9. This 
phenomenon arises because LDMC was closely related to stem specific density, which is considered to be an ana-
logical index to stem specific density in herbaceous species49. However, many studies have stated that functional 
diversity enhances productivity through optimal resource use1,50. In particular, because barren environments 
have a weak competition intensity, complementarity effects are more likely to drive productivity7. Yet, our results 
showed the opposite effect, in which functional dispersion was negatively correlated with AGB. This phenome-
non is probably explained by the presence of highly productivity species that had similar specific trait values and 
low-levels of community functional dispersion51 in the stressful environment. Thus, complementarity effects had 
a negligible role in driving variation in AGB in our study.

Our results show that T. chinensis clearly promotes the maximum height of dominant species and decreases 
species richness, which, in turn increases the productivity of saline meadows indirectly in the temperate coastal 
zone. Our study demonstrates the important role of functional identity and selection effects on the relationship 
between biodiversity and ecosystem productivity, supporting the “mass ratio” hypothesis. Our study indicates 
that conservation measures should concentrate on protecting woody species that facilitate grasses to optimise the 
production of saline meadows in temperate coastal zones.

Methods
Study area. The natural coastal saline meadow examined in this study is located in a marine reserve (37°03′–
37°07′N; 119°20′–119°23′E) in the south part of Laizhou Bay, China. The mean annual temperature of the study 
area is 12 oC and the mean annual precipitation is 630 mm. In this region, we can find the youngest coastal wet-
land ecosystems in China, with dramatic changes in environment and landscape from shoreline to inland area52,53. 
The saline meadow is the most important vegetation type in this region which contributes towards stabilising 
sandy habitat and preventing seawater encroachment. T. chinensis is the dominant species of shrub and the only 
arboroid species within the study area. This species, has been previously confirmed to facilitate the growth of 
herbaceous plants by improving the availability of nutrient resources in microhabitats34,35. For the herb layer, 
Artemisia capillaris, Artemisia scoparia, Setaria viridis and Conyza Canadensis were the dominant species in the 
study area. Moreover, our study area encompassed a broad environmental gradient, extending from the shoreline 
to inland area. Consequently, the productivity and species composition of biomes noticeably changed. Therefore, 
it is necessary to examine how biodiversity influences productivity in coastal wetland ecosystem.

establishment of plots. We separated a 2.5 km × 2.5 km area into twenty-five 500 × 500 m grid blocks in 
the core of the reserve (Fig. 3), that has never been cultivated, but it has been disturbed artificially by the con-
struction of canals and roads. For each block, three plots (10 m × 10 m) were established to characterize the T. 
chinensis in terms of coverage, average height and the number of branches that was at least 50 m from the closest 

Figure 3. Location of study area and sampling plots on the south coast of Laizhou Bay, China. The study area 
is indicated as a red quadrangle, the grid blocks are indicated as yellow dotted quadrangles, and the sampling 
plots are indicated as red points. Three plots (10 m × 10 m) are established within each block and three quadrats 
are nested (1 m × 1 m) in each plot. The satellite imagery is obtained from Google Earth (Version 7.3.0), 2020 
CNES/Airbus (https://www.google.com/earth/).
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artificial facilities (canal or roads), resulting in 75 plots in total. Within each plot, three quadrats (1 m × 1 m) were 
established at the centre and the opposite two corners of a plot that were not shaded by the T. chinensis canopy.

In each quadrat, all herbaceous plants were taxonomically identified and the coverage per species was 
recorded. Subsequently, we harvested all aboveground biomass per quadrat to assess the primary productivity 
of the saline meadow community at the end of the growing season (August to September 2017). Because the 
biomass has reached the annual peak during sampling, the aboveground biomass is close to the net primary pro-
ductivity of saline meadow54. We calculated the aboveground biomass of meadows (AGB) at the plot level as an 
average mass following drying at 80 oC for 48 h. The AGB ranged from 47.61 g/m2 to 544.89 g/m2, with an average 
of 257.72 g/m2. Because we lost one AGB dataset, we implemented the subsequent analyses on the data from the 
remaining 74 plots.

trait measurements. We chose six functional traits to assess different functional strategies for each species 
that was identified. Specifically, maximum plant height was associated with a strategy axis of competition; leaf 
traits (specific leaf area, leaf dry matter content, leaf nitrogen and phosphorus concentration) represented the leaf 
economics spectrum, and were related to an acquisitive or conservative resource use strategy; and seed mass was 
correlated with dispersal capability36,55. With the exception of seed mass, each functional trait was measured for 
at least 10 individual replicates per species sampled in each plot to incorporate intraspecific variation into trait 
measures. This is because intraspecific trait variation influences community composition and, hence, ecosystem 
productivity32. We collected and measured functional traits in the plots by following standardised protocols56. 
For overall plant traits, we used maximum plant height (Hmax), which was determined as the shortest distance 
between the upper boundary of main photosynthetic tissues and the ground. For the leaf morphologic traits, we 
chose mature and healthy leaves exposed to sunshine with petioles and rachis to calculate specific leaf area (SLA) 
and leaf dry matter content (LDMC). SLA was calculated as the rehydrated leaf area divided by its oven-dried 
mass. LDMC was calculated as the oven-dry mass divided by its fresh mass. To determine leaf chemical traits, 
leaves without any petiole or rachis were collected, oven-dried, and ground before measuring leaf nitrogen con-
centration (LNC) and leaf phosphorus concentration (LPC), respectively. Seed mass (SM) was based on the 
oven-dried mass of 1000 seeds obtained from both the study area and the Germplasm Bank of Wild Species in 
Southwest China (http://www.genobank.org). This parameter represented a species-level trait value.

environmental variables. For each plot, 12 biotic and abiotic environmental variables were collected and 
quantified in our study. Three biotic environmental variables influencing the growth of meadows, including T. 
chinensis coverage, average height, the number of branches, were obtained from the field site. We used T. chinensis 
coverage as a proxy for biotic variables because it was closely associated with AGB and was strongly correlated 
with other biotic variables. Among the abiotic variables, we measured nine soil properties, including soil moisture 
content (SMC, g/g), electrical conductivity (EC, μS/cm), total nitrogen (TN, mg/kg), total phosphorus (TP, mg/
kg), cation exchange capacity (CEC, cmol/kg), organic carbon (OC, mg/kg), available nitrogen (AN, mg/kg), 
extractable phosphorus (EP, mg/kg), and available kalium (AK, mg/kg). Three replicates were obtained at each 
quadrat and were combined to form a single sample per plot. These variables were used to assess the diversity of 
coastal soil properties, including water utilisation, salinity gradient, and soil fertility. These parameters are essen-
tial for the ecosystem processes of coastal saline meadows. Every environmental variable was standardised by 
subtracting its mean and then divided it by the standard deviation for the subsequent analysis.

Quantification of biodiversity variables. To predict variation in AGB, we focused on biodiversity levels, 
which were grouped into two categories: functional attributes and taxonomic attributes. Functional attributes 
were further categorised into functional identity and functional diversity.

Taxonomic variables were computed as two measures: species richness and species evenness. Both measures 
represented taxonomic diversity to evaluate the effects of biodiversity on ecosystem productivity30,46,57. Functional 
identity was quantified as the community weighted mean (CWM) trait value of a single continuous trait sepa-
rately. The calculation was based on the species relative abundance and trait values,

∑= ×
=

p traitCWM
i

n

i i
1

where pi is the relative abundance of species i; traiti is the value of a specific trait of species i; and n is the number 
of species58.

This parameter was an aggregated value of given species and its relative abundance in a plot20. The CWM trait 
value was widely used in biodiversity-ecosystem functioning studies, potentially representing the most sensitive 
indicator of biodiversity composition on ecosystem functioning, because ecosystem functioning is dispropor-
tionately determined by the more abundant species that is correlated to the mechanism of selection effects3,6,9,24. 
Since all trait data are continuous variables and the values are greater than 0, the logarithmic transformation is 
used to make the trait data follow the normal distribution prior to statistical analysis. We used trait values at the 
plot scale and considered plot-level intraspecific trait variability in calculation. For functional diversity variables, 
we calculated functional dispersion (FDis) indices based on a log-transformed monoculture trait value to assess 
community functional diversity. This variable is rarely correlated with species richness; thus, it was used to ensure 
that functional diversity variables were independent of taxonomic diversity variables59. Indeed, we found that 
functional dispersion had low correlations with species richness (Appendix 1). Moreover, single-trait functional 
dispersion indices have been shown to capture important information on trait variation across the environmental 
gradient60, as well as in ecosystem processes61,62. In addition, to avoid bias in the results of the selected indices, we 
calculated Rao’s Quadratic entropy index, which was calculated as the abundance-weighted functional distance 
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of two random individuals in a community59,63. Because Rao’s Q index was highly correlated with functional 
dispersion indices, we did not describe these results further. All functional diversity indices were calculated using 
the R package ‘FD’59.

Statistical analyses. We applied structural equation modelling (SEM) to test the direct and indirect impacts 
of environmental factors and biodiversity variables on ecosystem productivity. Our conceptual model was con-
structed using existing knowledge of biodiversity-ecosystem functioning, validated by the observational data of 
previous studies3,5,64. In our study, we tested three alternative pathways from biodiversity to AGB, which cause 
variation in AGB accumulation in the coastal saline meadow. As sample size was limited, the SEM based on our 
observational data required simplification5,64. Specifically, we only selected the best individual predictor per set of 
variables (environment, functional identity, functional diversity, and taxonomic diversity) that was expected to 
have the greatest influence on variation in AGB.

Multiple linear regression and multi-model inference analyses were conducted to evaluate the relative strength 
of different individual factors on AGB simultaneously. For these analyses, we used the original AGB data that were 
normally distributed as dependent variables, and we standardised all biodiversity factors as independent varia-
bles. We excluded individual factors for which variance inflation factors scores were greater than three during the 
calculation to avoid notable and substantial multi-collinearity in the models65. The corrected Akaike Information 
Criterion (AICC) was used to identify model performance66; that is, the best model had the lowest AICC value. 
In some cases, we obtained multiple candidate models that had differences of less than two units for the AICC 
with the lowest AICC. Therefore, we conducted a full model averaging procedure to identify the best predictor for 
AGB per set of variables66. We calculated the full standardised effect size to evaluate which individual factor was 
the most sensitive predictor67,68. Factors with a 95% confidence interval of standardised effect size that excluded 
zero and had a sum of weight (SW) value greater than 0.9 were determined as the best predictors on variation of 
AGB69. If none of the factors met our criteria, we selected the factor with the largest SW value as the best predic-
tor. In addition, we also tested exponential, lognormal, and unimodal correlations between different variables 
and AGB; however, we did not find any other function shape for the correlations. Multiple linear regression and 
multi-model inference analyses were conducted using the R package ‘MuMIn’70.

We examined the relationships between selected predictors and AGB using linear regression to evaluate 
biodiversity-productivity relationships. We then imported observational data into our conceptual SEM to assess 
the impacts of all predictors. The initial SEMs were conducted using the R package ‘lavaan’71, and included all 
predictors selected from the set of variables and AGB. We aggregated the existing covariant relationship between 
different biodiversity predictors into SEMs. We assessed the utility of SEMs using a Chi-square test, root mean 
square error of approximation (RMSEA), and goodness-of-fit index (GFI). The final SEM was adopted with a 
good fit (p > 0.05), a RMSEA < 0.05, and a GFI > 0.9572.

Data availability
The datasets analysed during the current study are available from the corresponding authors on request.
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