
1Scientific Reports |         (2020) 10:4831  | https://doi.org/10.1038/s41598-020-61657-0

www.nature.com/scientificreports

Ground state and collective 
excitations of a dipolar Bose-
Einstein condensate in a bubble 
trap
Pedro C. Diniz1, Eduardo A. B. Oliveira1, Aristeu R. P. Lima2* & Emanuel A. L. Henn1*

We consider the ground state and the collective excitations of dipolar Bose-Einstein condensates in a 
bubble trap, i.e., a shell-shaped spherically symmetric confining potential. By means of an appropriate 
Gaussian ansatz, we determine the ground-state properties in the case where the particles interact by 
means of both the isotropic and short-range contact and the anisotropic and long-range dipole-dipole 
potential in the thin-shell limit. Moreover, with the ground state at hand, we employ the sum-rule 
approach to study the monopole, the two-, the three-dimensional quadrupole as well as the dipole 
modes. We find situations in which neither the virial nor Kohn’s theorem can be applied. On top of that, 
we demonstrate the existence of anisotropic particle density profiles, which are absent in the case with 
repulsive contact interaction only. These significant deviations from what one would typically expect 
are then traced back to both the anisotropic nature of the dipolar interaction and the novel topology 
introduced by the bubble trap.

The realization of Bose-Einstein condensation inaugurated a fertile and ever growing research field in physics. 
First obtained in dilute atomic gases1,2, Bose-Einstein condensates (BEC) have provided a series of remarkable 
breakthroughs. In a far from exhaustive list, one could include the observations of vortex-lattices3, the BCS-BEC 
crossover4, the Mott to superfluid quantum phase transition in an optical lattice5, the Bose-nova collapse6, 
and more recently of the supersolid state in dipolar gases7–9. In particular for the supersolid systems, beyond 
mean-field physics has been shown to play a crucial role so that studies including quantum fluctuations in dipolar 
BECs10,11 concerning the ground-state and excitations12, the self-bound character of the droplet solutions13 as well 
as vortices14 have been carried out.

Very commonly, breakthroughs are associated to the introduction and/or a higher level of control upon inter-
action terms15–17 or the control of the trapping potential landscape, either through the geometry of the system 
or its dimensionality. In special, quantum gases of Erbium and Dysprosium or Chromium close to a Feshbach 
resonance, whose static and dynamic properties are dominated by dipole-dipole interactions (DDI), strongly 
profit from geometric and dimensional freedom in quantum gases systems: DDI of a polarized quantum gas is 
anisotropic, showing both attractive and repulsive characters, and long-range18.

On a totally different perspective, the BEC physics might be on the verge of opening one further promising 
road. Indeed, in the absence of gravity the exploration of several phenomena is possible. The recent realization 
of a space-born BEC19 is a part of a large set of experiments planned for the microgravity conditions inside the 
Space Station. Moreover, a recent proposal to implement a realistic experimental framework for generating a 
BEC with shell geometry using radiofrequency (RF) dressing of magnetically-trapped samples has been made20, 
opening further perspectives and reassuring the interest of the community. In summary, for these experiments, 
a BEC is created by evaporative cooling of a sample of atoms trapped in a purely magnetic trap, generated on the 
surface of an atom-chip. The bottom of the trap is very well approximated by a 3D harmonic potential. At a later 
moment, RF with proper polarization and frequency is applied to the atoms, connecting different spin states, 
usually several at once. This dressing of the magnetic trap by RF effectively deforms the potential and, with the 
correct set of parameters, allows to create a bubble potential landscape which can be well approximated by Eq. (1).  
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Further information can be obtained, e.g., in Lundblad et al.20, where a detailed description of the realistic pro-
tocol is presented.

In particular, BECs trapped in shell-shaped potentials would benefit in such microgravity environment: at 
Earth’s surface, atoms in such trap just sag to the bottom of the shell21–24. Indeed, the availability of such envi-
ronment triggered several theoretical efforts in order to unveil the collective modes and expansion dynamics in 
a bubble trap25. Also, the hollowing transition, brought about by a suitable manipulation of the trap parameters, 
was shown to imprint its signature in the collective excitations of the system26. On top of that, a recent systematic 
investigation of both the static and dynamic properties of shell-shaped BECs has been presented, which contains 
a comprehensive approach to the ground-state properties and collective excitations by means of both analytic 
and numerical results27. Recently, the fundamental aspects of Bose-Einstein condensation itself in the surface of 
a sphere had been investigated28 together with the possibility of cluster formation29 and the superfluid properties 
are studied in different regimes, including the Berezinski-Kosterlitz-Thouless phase transition30.

The current efforts aiming for a deeper understanding of shell-trapped BECs share an important feature: the 
atoms interact only via the short range and isotropic contact interaction. The investigation of BECs displaying 
anisotropic dipole-dipole interactions, trapped in spherically symmetric thin shells is a natural extension of such 
a problem that presents unique characteristics: while the trapping is locally quasi-2D, the dipole-dipole interac-
tion remains 3D and its anisotropic character breaks the spherical symmetry of the system. The ground state and 
stability parameters of such configuration have been investigated numerically31 for a very specific set of trapping 
parameters in a more general context that focused on rings and vortices.

The present work is concerned with shell-shaped BECs featuring the long-range and anisotropic dipole-dipole 
interaction (DDI) in the thin-shell limit (TSL) of a strong bubble trap without gravity. We choose to focus on 
this limit, as it highlights the particular effects brought about by the interplay between the bubble trap and the 
dipole-dipole interaction. We show that both the static and dynamical properties of the system are modified while 
we still recover results from previous publications without dipolar interactions. In the following, we investigate 
the ground-state configuration as well as the most important excitation modes.

Results
In this section, we present our approach to a dipolar Bose gas in a bubble trap in the thin-shell limit, where the 
width of the spherical shell is much smaller than the corresponding radius. In this regime, the most important 
features which are uniquely attached to the DDI can best be highlighted.

Variational approach.  Consider a set of N bosonic dipoles aligned along the z-direction, possessing mass 
M and trapped in a potential of the form 

U M r rr( ) 1
2

( ) , (1)B 0
2

0
2ω= −

which corresponds to a bubble potential32,33, where the average radius r0 and the oscillation frequency ω0 can be 
experimentally tuned27. Notice that one can define an oscillator length corresponding to the usual form 

 ω=a M/osc 0, with ℏ being the reduced Planck constant.
The full interaction potential reads34,35
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where g = 4πℏ2as/M characterizes the strength of the usual short-range and isotropic contact interaction with 
s-wave scattering length as, while the second term stands for the long-range and anisotropic dipole-dipole inter-
action for dipoles polarized in the z-direction. Here Cdd is a constant related to the strength of the dipoles, either 
Cdd = μ0μ2 in the magnetic case or 


=C d

dd
2

0
 in the electric case, with μ and d the respective magnetic and electric 

dipole moments. Moreover, we define ϵdd = Cdd/(3g) as the relative magnitude of the interaction. Figure 1(a,b) 
illustrate the coordinate system, polarization direction and trapping potential landscape, as well as the radial part 
of the ansatz shown in Eq. (7).

Within this framework, the total Gross-Pitaevskii energy is given by 

E E E E[ ] (3)intGP kin BΨ = + +

 with the one-body part consisting of the kinetic 
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 and the bubble trapping energy 
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Spherical ansatz in the thin-shell limit.  In previous studies, where only the short-range and isotropic 
contact interaction was present, a spherically symmetric ansatz for the wave function was used26. Due to the 
presence of the DDI, however, one looses the spherical symmetry. Therefore, we apply a normalized trial wave 
function which is capable of exhibiting possible corresponding changes in the cloud profile 

π
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such that the radial part features a Gaussian distribution x e( ) x /22
F = −  and the angular part is given in terms of 

spherical harmonics 
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with normalization ∑ =∗a a 1l m l m l m, , , . In what follows, the present ansatz is applied with R0 and R1 being kept 
fixed, while the coefficients al,m represent variational parameters. It should be emphasised that this configuration 
allows the ground state density distribution to equilibrate on the surface of the shell, despite both local and 
long-range effects of the trapping potential (Eq. (5)) and interatomic interactions (Eq. (6)). It would be possible to 
generalize R0 = R0(θ, φ) and R1 = R1(θ, φ) to allow the density distribution to look like an empty ellipsoid with 
variable thickness but, in the present work, we restrict ourselves to fixed trap parameters, which correspond to a 
sufficiently tight trapping frequency ω0.

In a filled sphere, the usual effect of the DDI is to elongate the cloud along the polarization direction of the 
dipoles, as demonstrated previously in both bosonic and fermionic systems (see34,35 and references therein). In a 
thin spherical shell, with the width much shorter than the radius, the distance between particles in different parts 
of the sphere renders this effect negligible and the DDI becomes mainly responsible for the rearrangement of the 
particles over the shell.

In what follows, we restrict ourselves to the thin-shell limit (TSL), in which most of the particles are at dis-
tance R0 from the origin. Therefore, in the thin-shell limit, we apply the ansatz (7) and retain only the leading 
terms in R1∕R0 in the total energy. Under typical experimental conditions, this limit can be realized even in the 
Thomas-Fermi approximation25,27. The latter, however, is not assumed here.

Figure 1.  (a) Schematic of the bubble trap system under study indicating the coordinate system, polarisation 
direction of the dipoles, bubble trap (density distribution) mean radius r0 (R0) and usual angular coordinates 
θ and φ. Dipoles are spread on the surface of the sphere. For clarity we show dipoles only along a φ line along 
equator and a partial θ line. Inset: detail of the bubble trap with radial cut from which we plot in (b) the 
harmonic potential landscape (black line) and radial part of the ansatz function Eq. (7) (red dashed line). (c) 
Schematics of the toy model (see text for detail) showing corresponding coordinate system. (d) Illustration on 
how the sheet-like toy model “rolls around” the quasi-flat equatorial region of the sphere (see text for details).
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Ground-state configurations.  Performing a numerical minimization of the energy (3) with respect to the 
coefficients al,m of expansion (7), we obtain the ground-state configuration of the system. In the absence of the 
DDI, the particle density reflects the spherical symmetry of the trap. For non-vanishing ϵdd, however, the orienta-
tion axis of the dipoles constitutes a preferred direction so that the particles rearrange correspondingly. While the 
spherical symmetry is broken, the azimuthal symmetry around the polarization axis remains.

For definiteness, we choose experimentally realistic values for the parameters which represent a feasible finite 
thin shell. We consider 104 particles and then constrain the radial coordinate to be r = R0 and adopt R0 = 20aosc 
and R1 = aosc, so that one has R1 = R0/20. Also, ω0 = 2π × 200 Hz. In a harmonically trapped, even in the 
Thomas-Fermi regime, the condensate radius is just a few times the oscillator length. In the case of a bubble trap, 
the Thomas-Fermi shell width is actually much smaller25. Therefore, our choice for the shell parameters is, indeed, 
reasonable. Moreover, these parameters are in the range of those used in the TSL of ref. 27 in order to allow for 
a direct comparison, where possible, in the vanishing dipole-dipole interaction limit. Therefore, the variational 
parameters of interest in the thin-shell limit are contained in the angular part |h(θ, φ)|2, which we proceed to 
optimize numerically by minimizing the total energy. More details are described in the methods section below. 
As expected, there is no dependence on the azimuthal φ angle.

In Fig. 2(a), we show angular distribution of ground-state density |h(θ)|2 over the sphere as a function of the 
polar angle for several values of ϵdd. Calculations are performed for 164Dy (μ = 10 μB) and varying s-wave scatter-
ing length aS, which allow for varying ϵdd. We see that, for increasing values of the dipolar strength ϵdd, the density 
becomes larger at the equator and it eventually vanishes at the poles. In Fig. 2(b) we quantify this effect by doing 
a simple gaussian fit to the angular distributions and plotting full width at half minimum (FWHM) of the angular 
distribution as a function of ϵdd. While for small ϵdd = 0.0625, the width amounts to  ≈ 0.5π rad, it saturates to a 
minimum value around 0.17π rad, as ϵdd is increased to a very large value ϵdd = 100.

We interpret this result in terms of the pictorial representation of the DDI, according to which dipoles aligned 
along a given direction tend do repel each other, if they are oriented side by side, while an attraction takes place 
between them in a head-to-tail orientation. In the bubble trap, dipoles along the equator experience attraction 
from other dipoles located above and below them along the meridian lines while they are repelled by the ones 
along the equator. Dipoles located at the poles, on the contrary, only experience repulsion from the surrounding 
particles. Therefore, a configuration in which more particles are on the equator leads to a lower total energy.

The saturation of the FWHM for large values of ϵdd can also be understood in terms of a simple physical pic-
ture. Indeed, in a quasi-2D dipolar BEC with dipoles lying in the plane, the energetic cost to narrow the width in 
the polarization direction beyond some threshold width is higher than the one associated with the increase of the 
homogeneous density in the perpendicular direction.

To support this interpretation and gain some insight on the problem, we have developed a toy model without 
any free parameter focusing on the particle density around the equator. We consider dipolar particles confined in 
a thin rectangular plate, such that the direction with the shortest length (y) is perpendicular to the polarization 
direction (z) as depicted in Fig. 1(c). We then assume Gaussian density distributions in both z and y directions 
with corresponding widths σ and β, respectively. The density along the third direction (x) is taken to be homoge-
neous inside the plate, for simplicity, and vanishing outside, given by ( )n x y z A( , , ) exp z y

2 2

2

2

2

2= − −
σ β

. Moreover, 

the length in the x-direction is taken to be finite at first, ranging from x = −L to x = L. Later on, we take the limit 
L → ∞ to mimic periodic boundary conditions. If one would roll such a thin plate around the z-axis to match the 
ends on x-direction, that would resemble the density distribution in a bubble trap in the TSL for large ϵdd, as the 
BEC occupies a narrow, quasi-flat, region around the equator, as it is illustrated in Fig. 1(d). In this case, for the 
density in the y-direction we identify β = R

2
1  and for the z-direction we should have FWHMR

ln2 (4)
0σ = × , 

respectively.
In this configuration, the interaction is the most important energy contribution, as kinetic and trapping ener-

gies are nearly frozen out. Therefore, we calculate the contact and dipolar interaction energies and obtain 
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which could throw light upon the particle concentration on the equator. We plot this expression from ϵdd = 2 to 
ϵdd = 100 as a dashed line with open dots in Fig. 2(b) also displaying an asymptotic behavior at large ϵdd. Indeed, 
what we find is a good overall agreement over nearly two orders of magnitude, despite neglecting the one-body 
energy contributions.

We remark that this simple sheet-like toy model loses validity as we approach ϵdd = 1 from above, since the 
density distribution widens and starts to probe the curvature of the bubble, but the good quantitative agreement 
indicates that the interaction energy is responsible for this compression of the cloud towards the equator in con-
trast to the filled trap, which elongates itself. Moreover, we remark that also the presence of a threshold value for 
the FWHM can be understood in terms of the present toy model, as a plateau can be readily identified for large 
values of ϵdd in Fig. 2(b).
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Collective excitations.  Now that we have obtained the ground state of a dipolar BEC in a thin shell, we are 
in position to investigate the collective excitations of the system. We do so by means of the sum-rule approach, 
which has been applied successfully to both bosonic36 and fermionic37 gases in a harmonic trap. In this approach, 
an upper limit for the excitation energy of a given operator F, written in first quantized form, can be estimated 
through the ratio 

ω =
m
m

,
(11)

upper 3

1

where ω≡ ∑m F n0 ( )i n n
i2

0  is the i-th moment of the operator F. The convenience of the method lies in the 
fact that these moments can be put in the form 

†m F H F1
2

0 [ , [ , ]] 0 , (12)1 = 〈 | | 〉

†m F H H H F1
2

0 [[ , ], [ , [ , ]]] 0 , (13)3 = 〈 | | 〉

where the expectation values are to be calculated with respect to the ground state. Moreover, the hamiltonian 
= ∑ + + ∑ −<H p m U Vr r r[ /2 ( )] ( )i i i i j i j

2
B int  is also written in first quantized form.

Figure 2.  (a) Polar distribution of the ground-state particle density |h(θ)|2 as a function of the polar angle θ for 
different values of ϵdd. The larger the value of ϵdd, the more the particles tend to accumulate along the equator of 
the sphere. (b) Full width at half maximum of gaussian fits to the ground-state distributions of (a) as a function 
of ϵdd (squares) showing the tendency of the ground state to saturate at a minimum width. Dashed line with 
open dots are the same quantities obtained by our toy model (see text).
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Two-dimensional quadrupole mode.  The two-dimensional quadrupole mode corresponds to a vibration, such 
that the oscillations are out of phase in the xy-plane while the z direction remains frozen. It is excited by the oper-
ator = ∑ −=F x y( )m i i i2

2 2  and we obtain that, in general, its frequency is given by 

( )E NM r

NM x

2 2 0 1 0

0 0
,
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2 2

2
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ω
ω
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where Ekin⊥ and = +⊥r x y2 2 2 represent the kinetic energy and the square radius in the xy-plane. Here, we have 
used equation (11) for the frequency, which therefore consists in an upper bound. We remark that such results, 
however, are usually indistinguishable from the ones given by other methods.

Since we are working in the thin-shell limit, the ground state is concentrated in the region r ≈ r0. Therefore, 
we obtain 

ω ≅
| |
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2
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kin
2 2

Due to the usual precision with which excitation frequencies are measured (a few Hz), comparison between 
(14) and (15) provides an useful experimental tool to determine the achievement of the TSL. The prospects for 
detecting the influence of the DDI in this regime are, however, not very promising, as the difference appears only 
in the first decimal place as one ranges from a very strongly dipolar system ( 0dd

1 →− ) to a virtually non-dipolar 
one (large dd

1− ), as shown in Fig. 3 (red circles, dashed line). Notice that in Fig. 3 we plot excitation frequencies as 
a function of −dd

1 so the horizontal axis is directly proportional to the s-wave scattering length as which is the 
experimentally accessible quantity to manipulate while maintaining the possibility to scale our results to any 
dipolar system. We remark that, as ϵdd tends to zero, our result approaches the non-dipolar excitation frequency27 
obtained via hydrodynamical equations very accurately and that such very low-frequency modes are characteris-
tic of the TSL regime and non-existent in filled traps.

Monopole and three-dimensional quadrupole modes.  Let us now present the collective excitation frequencies for 
the monopole and three-dimensional quadrupole modes. The former is characterized by in-phase expansion and 
compression of the whole system, while the latter features out-of-phase oscillations in the radial and z-directions. 
In the absence of spherical symmetry, which is removed by the DDI, these modes are coupled. We follow a previ-
ous study38 and overcome this difficulty by using the operator α= ∑ −⊥F r z( )i i i,

2 2 , where the sum extends over 
all the particles. Then, the monopole (three-dimensional quadrupole) frequency is obtained by maximizing (min-
imizing) the upper limit (11) with respect to α. The formulas obtained for the frequencies in this manner are not 
enlightening and we omit them while focusing on the graphical result exhibiting their dependence on the relative 
interaction strength ϵdd.

In Fig. 3, we show the ratio between the frequencies of the monopole and three-dimensional quadrupole 
modes and the trap characteristic frequency ω0 as a function of the dipolar interaction strength ϵdd. Notice that 
the monopole frequency remains unaltered for all practical purposes ( ( ) 0 1%mon

0
∆ ≈ .ω

ω
 over the whole range 

shown) although again the non-dipolar limit matches very well the one obtained in ref. 27 through hydrodynamic 

Figure 3.  Monopole (downward black triangles) and three-dimensional quadrupole (upward gray triangles) 
excitation frequencies in units of ω0 and two-dimensional quadrupole (red circle) in Hz, as functions of −dd

1 for 
ω0 = 2π × 200 Hz and = 20R

R
0

1
. The curves serve as guides to the eye. For the two-dimensional quadrupole 

mode, we also indicate the non-dipolar frequency, calculated from the result of ref. 27, as a horizontal dashed 
line.
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equations (ωmon ≈ 1.002 ω0). This is remarkably different from what happens in both fermionic and bosonic dipo-
lar gases in harmonic traps. For a dipolar BEC in a harmonic trap, the monopole frequency is always larger for a 
dipolar gas than for a non-dipolar one39, while dipolar Fermi gases in the hydrodynamic regime display similar 
behaviour40,41.

The three-dimensional quadrupole frequency, on the other hand, displays, in the non-dipolar limit, a fre-
quency much smaller than trap frequency, in contrast with the filled trap and also exhibits a substantial variation 
as ϵdd increases ( →− 0dd

1 ), marking a clear signal of the interaction upon the collective excitations in the bubble 
trap. For this reason, we remark that this mode is the most promising one with respect to the detection of the DDI 
in BECs in bubble traps. Notice that, for this mode, we do not have hydrodynamic calculations to compare with.

Dipole mode.  Let us now discuss the center-of-mass (COM) motion, excited by the operators Fx = ∑ixi and 
Fz = ∑izi, whenever the motion is to take place in the x or z directions, respectively. In a harmonic trap, irrespec-
tive of the presence and nature of the interactions, the COM oscillates with the same frequency as the trapping 
potential, as demanded by Kohn’s theorem. In a bubble trap, however, this is not the case. Using the sum-rule 
approach, we obtain 

r
N r
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for the oscillation frequencies of the COM motion in the x and z directions, respectively. Notice that the direction 
in which the oscillations occur influences the frequency both explicitly, by means of the last term in the square 
root, and implicitly, through the expectation value in the ground state. The dipole frequencies in units of ω0 are 
shown in Fig. 4. To the non-dipolar limit, all three frequencies are the same and equal to 0 583

3
i

0
= ≈ .ω

ω
, since 

the ground state is isotropic. As the dipolar character increases ( →− 0dd
1 ), ωx,y increases while ωz decreases. The 

softening of the axial COM motion as the atoms move away from the poles towards the equator of the bubble can 
be understood as the atoms probing an increasingly “flat” potential with lower effective trapping frequency along 
the polarization axis.

It is worth noting that in the TSL and for BECs with contact interaction only, expressions (16) lead to a 
non-vanishing excitation frequency. This is in contrast to what is found for the dipole mode in the literature27, 
where the dipole oscillation frequency vanishes in the TSL. In order to understand this result better, we have 
investigated this mode also by means of a linearization of the density oscillations around the Thomas-Fermi 
density within the hydrodynamic approach42. In this configuration, an analytic solution can be obtained for both 
frequencies which are identical 

ω ω=





−
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r
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and differ from the sum-rule solutions by the additive term inside the square root in (16). This term, on one hand, 
shows that the sum-rule solution gives a finite excitation frequency, even in the TSL, and, on the other hand, 
warrants that this solution is larger than the hydrodynamic one, as expected.

A word of caution is in order here, as the dipole mode is significantly modified by the presence of the DDI in a 
bubble trapped system. This feature is exclusively due to the shape of the trap, while the role of the DDI is seen in 

Figure 4.  Dipole mode excitation frequencies in units of ω0 as a function of −dd
1.
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the anisotropy of the modification. Indeed, the frequency of the corresponding mode in a non-dipolar BEC has 
been found to change all the way from the trap frequency to zero, as the system is moved from a filled sphere to 
the thin-shell limit27. In addition, other situations have been found, in which Kohn’s theorem cannot be applied. 
For instance, in photonic BECs43 and also in BECs with time-dependent scattering lengths44.

Dicussion
Bose-Einstein condensates in spherical bubble traps represent a recent major experimental achievement and have 
led to important theoretical developments in the context of the short-range and isotropic contact interaction. We 
have expanded the understanding of ultracold quantum gases by investigating the influence of the long-range and 
anisotropic dipole-dipole interaction in the limit of a thin shell, with the dipoles along the z-direction. By means 
of a Gaussian ansatz for the radial part of the wave function and a spherical harmonics expansion for the angular 
part, we were able to obtain analytic expressions for the total energy, which were then minimized with respect to 
variational parameters. Concerning the ground state, we have found that the equilibrium configuration displays 
azimuthal symmetry and the particles tend to accumulate along the equator of the sphere, an effect which can be 
best demonstrated in the absence of gravity. This reflects the fact that the DDI only distinguishes one direction, 
namely that of the dipoles. This is a key feature of the thin-shell limit, as in the case of a filled shell, particles tend 
to assume head-to-tail orientations, thereby stretching the cloud along the dipolar directions. We have confirmed 
this tendency by means of a sheet-like model, mimicking the vicinity of the equator in the situation of a spheri-
cal shell with an infinite ratio between its radius and its width. The collective excitations were investigated with 
the help of the sum rule approach36–38. Significant deviations with respect to the non-dipolar cases have been 
demonstrated, providing important evidence for the experimental detection of both excitation properties of the 
system and the onset of the TSL. We emphasize that, upon setting r0 = 0 and ϵdd = 0 on the present expressions, 
the well known hydrodynamic results for the corresponding modes of a harmonically trapped non-dipolar BEC 
are recovered36. As a result, the first demonstration of dipolar effects in bubble trapped Bose gases, as carried out 
here, can serve as a guide to future theoretical as well as experimental investigations.

Methods
Applying ansatz (7) and neglecting terms of order R1

2/R0
2, we obtain the following expressions for the trapping and 

kinetic energies 

 ∑ω
= − =





 +

+ 





∗E NM R r E N
M R

a a l l
R2

( ) ,
2

1
2

1 ( 1) ,
(18)l m l m l mB

0
2

0 0
2

Kin

2

1
2 , , ,

0
2

respectively, so that the former is minimized by requiring that R0 = r0. For this reason, for a sufficiently strong 
trap, particles tend to accumulate at a fixed distance R0 of the center, thereby causing a hole in the cloud. This 
changes completely the properties of the system and has important consequences. Notice that, for vanishing 
l, the radius of the sphere plays no role and all the kinetic energy is stored in the shell width. Moreover, for 
non-vanishing l, the second term in the kinetic energy agrees with the energy of a particle in a sphere of radius 
R0

30.
The short-range interaction energy reads 

∑π
=δ

∗ ∗E gN
R R

a a a a I l m l m l m l m
2 2

( , , , , , , , )
(19)l m l m l m l m

l m l m l m l m

2

0
2

1 , , , , , , ,
, , , , 4 1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

with the auxiliary coefficient I4 being discussed in the Appendix. Here, we remark that these coefficients being 
explicitly positive for m = 0 leads to l = 0 being a preferred state.

The DDI energy is given by 

E N
R R

C a a a a I8
5 3 (20)l m l m l m l m l m l

l m l m l m l m DDdd

2

0
2

1

dd

, , , , , , , , , ,
, , , ,

1 1 2 2 3 3 4 4 5 5 6

1 1 2 2 4 4 5 5∑π
= ∗ ∗

with 

π
δ

π
δ

π
δ

= −





+





 − +





 +





 − −












.+ −

I I l m l m l m I l m l m l m I l m l m

l R
R

l R
R

( , , , , , ) ( , , , , , )( 1) ( , , 2, 0, , )

2 2
1 (2 3)

2
1 (2 1)

2 (21)

DD
m

l l l l l l

3 1 1 2 2 3 3 3 4 4 5 5 6 3 3 3 3 6 3

, 3
0

1
, 2 3

0

1
, 2

3

6 3 6 3 6 3

Notice that the DDI has angular momentum-conserving contributions, which resembles the contact ones and 
have no influence from R

R
0

1
-terms. In addition, it also contains contributions which connect states with different 

angular momentum, which is an exclusive feature of anisotropic interactions.
We implement the TSL numerically for 104 particles by choosing the values ω0 = 2π × 200 Hz for the bubble 

trap frequency, R0 = r0 = 20aosc for the trap radius, and R1 = R0/20 and evaluate all our ground-state expectation 
values for this set of parameters. On top of that, we fix the dipolar strength Cdd and vary the s-wave scattering 
length so as to obtain a variation in the relative magnitude ϵdd = Cdd/(3g). This is justified, since actual experi-
ments are carried out in this way, with the help of Feshbach resonances.
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Matrix elements of the interaction terms
Let us briefly state the matrix elements which were used to obtain both the dipolar and contact interactions.

The coefficient I4 can be evaluated analytically by means of standard techniques and we obtain 

I l m l m l m l m l l l l

l

l l l l l l
m m m m

l l l l l l
m m m m

( , , , , , , , ) (2 1)(2 1)
4

(2 1)(2 1)
4

(2 1)

0 0 0 ( )

0 0 0 ( )
,

(22)

l

m m m m

4 1 1 2 2 3 3 4 4
1 2 3 4

1 2 1 2

1 2 1 2

3 4 3 4

3 4 1 2
,1 2 3 4

∑
π π

δ

=
+ + + +

+












 − +






×











 − +




 + +

where l l l
m m m
1 2

1 2









 denotes the Wigner 3-j symbol.

Proceeding in an analogous manner with respect to I3 leads to 

I l m l m l m l l l l l l l l l
m m m( , , , , , ) ( 1) (2 1)(2 1)(2 1)

4 0 0 0 (23)
m

3 1 1 2 2 3 3
1 2 3 1 2 3 1 2 3

1 2 3
1

π
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+ + + 








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

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Received: 11 November 2019; Accepted: 24 February 2020;
Published: xx xx xxxx

References
	 1.	 Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein Condensation in a 

Dilute Atomic Vapor. Science 269, 198 (1995).
	 2.	 Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995).
	 3.	 Abo-Shaeer, J. R., Raman, C., Vogels, J. M. & Ketterle, W. Observation of Vortex Lattices in Bose-Einstein Condensates. Science 292, 

476 (2001).
	 4.	 Greiner, M., Regal, C. A. & Jin, D. S. Emergence of a molecular Bose-Einstein condensate from a fermi gas. Nature 426, 537 (2003).
	 5.	 Esslinger, T., Hänsch, T. W., Greiner, M., Mandel, O. & Bloch, I. Quantum phase transition from a superfluid to a mott insulator in a 

gas of ultracold atoms. Nature 415, 6867 (2002).
	 6.	 Roberts, J. L. et al. Controlled collapse of a Bose-Einstein condensate. Phys. Rev. Lett. 86, 4211 (2001).
	 7.	 Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).
	 8.	 Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).
	 9.	 Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).
	10.	 Lima, A. R. P. & Pelster, A. Quantum fluctuations in dipolar Bose gases. Phys. Rev. A 84, 041604 (2011).
	11.	 Lima, A. R. P. & Pelster, A. Beyond mean-field low-lying excitations of dipolar Bose gases. Phys. Rev. A 86, 063609 (2012).
	12.	 Wächtler, F. & Santos, L. Ground-state properties and elementary excitations of quantum droplets in dipolar Bose-Einstein 

condensates. Phys. Rev. A 94, 043618 (2016).
	13.	 Baillie, D., Wilson, R. M., Bisset, R. N. & Blakie, P. B. Self-bound dipolar droplet: A localized matter wave in free space. Phys. Rev. A 

94, 021602 (2016).
	14.	 Cidrim, A., dos Santos, F. E. A., Henn, E. A. L. & Macrì, T. Vortices in self-bound dipolar droplets. Phys. Rev. A 98, 023618 (2018).
	15.	 Griesmaier, A. et al. Comparing contact and dipolar interactions in a Bose-Einstein condensate. Phys. Rev. Lett. 97, 250402 (2006).
	16.	 Lahaye, T. et al. Strong dipolar effects in a quantum ferrofluid. Nature 448, 672 (2007).
	17.	 Lin, Y. J., Compton, R. L., Jiménez-Garcìa, K., Porto, J. V. & Spielman, I. B. Synthetic magnetic fields for ultracold neutral atoms. 

Nature 462, 628 (2009).
	18.	 Müller, S. et al. Stability of a dipolar Bose-Einstein condensate in a one-dimensional lattice. Phys. Rev. A 84, 053601 (2011).
	19.	 Becker, D. et al. Space-borne Bose-Einstein condensation for precision interferometry. Nature 562, 391 (2018).
	20.	 Lundblad, N. et al. Shell potentials for microgravity Bose-Einstein condensates. npj Microgravity 5, 30 (2019).
	21.	 Heathcote, W. H., Nugent, E., Sheard, B. T. & Foot, C. J. A ring trap for ultracold atoms in an RF-dressed state. New J. Phys. 10, 

043012 (2008).
	22.	 Nugent, E.Novel Traps for Bose-Einstein Condensates Ph.D. thesis, St. Catherine’s College, Oxford University, (2009).
	23.	 Colombe, Y. et al. atoms confined in rf-induced two-dimensional trapping potentials. Europhys. Lett. 67, 593 (2004).
	24.	 White, M., Gao, H., Pasienski, M. & De Marco, B. Bose-Einstein condensates in rf-dressed adiabatic potentials. Phys. Rev. A 74, 

023616 (2006).
	25.	 Lannert, C., Wei, T.-C. & Vishveshwara, S. Dynamics of condensate shells: Collective modes and expansion. Phys. Rev. A 75, 013611 

(2007).
	26.	 Padavic, K., Sun, K., Lannert, C. & Vishveshwara, S. Physics of hollow Bose-Einstein condensates. EPL (Europhysics Letters) 120, 

20004 (2017).
	27.	 Sun, K., Padavić, K., Yang, F., Vishveshwara, S. & Lannert, C. Static and dynamic properties of shell-shaped condensates. Phys. Rev. 

A 98, 013609 (2018).
	28.	 Bereta, S. J., Madeira, L., Bagnato, V. S. & Caracanhas, M. A. Bose-Einstein condensation in spherically symmetric traps. Am. J. Phys. 

87, 924 (2019).
	29.	 Prestipino, S. & Giaquinta, P. V. Ground state of weakly repulsive soft-core bosons on a sphere. Phys. Rev. A 99, 063619 (2019).
	30.	 Tononi, A. & Salasnich, L. Bose-Einstein condensation on the surface of a sphere. Phys. Rev. Lett. 123, 160403 (2019).
	31.	 Adhikari, S. K. Dipolar Bose-Einstein condensate in a ring or in a shell. Phys. Rev. A 85, 053631 (2012).
	32.	 Zobay, O. & Garraway, B. M. Two-dimensional atom trapping in field-induced adiabatic potentials. Phys. Rev. Lett. 86, 1195 (2001).
	33.	 Zobay, O. & Garraway, B. M. Atom trapping and two-dimensional Bose-Einstein condensates in field-induced adiabatic potentials. 

Phys. Rev. A 69, 023605 (2004).
	34.	 Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 

126401 (2009).
	35.	 Baranov, M. A. Physics Reports 464, 71 (2008).
	36.	 Stringari, S. Collective excitations of a trapped Bose-condensed gas. Phys. Rev. Lett. 77, 2360 (1996).

https://doi.org/10.1038/s41598-020-61657-0


1 0Scientific Reports |         (2020) 10:4831  | https://doi.org/10.1038/s41598-020-61657-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

	37.	 Vichi, L. & Stringari, S. Collective oscillations of an interacting trapped fermi gas. Phys. Rev. A 60, 4734 (1999).
	38.	 Kimura, T., Saito, H. & Ueda, M. A variational sum-rule approach to collective excitations of a trapped Bose-Einstein condensate. J. 

Phys. Soc. Jpn. 68, 1477 (1999).
	39.	 O’Dell, D. H. J., Giovanazzi, S. & Eberlein, C. Exact hydrodynamics of a trapped dipolar Bose-Einstein condensate. Phys. Rev. Lett. 

92, 250401 (2004).
	40.	 Lima, A. R. P. & Pelster, A. Collective motion of polarized dipolar fermi gases in the hydrodynamic regime. Phys. Rev. A 81, 021606 

(2010).
	41.	 Lima, A. R. P. & Pelster, A. Dipolar fermi gases in anisotropic traps. Phys. Rev. A 81, 063629 (2010).
	42.	 Stringari, S. & Pitaevskii, L. P. Bose-Einstein Condensation. Oxford University Press (2003).
	43.	 Stein, E., Vewinger, F. & Pelster, A. Collective modes of a photon Bose-Einstein condensate with thermo-optic interaction. New J. 

Phys. 10, 043012 (2008).
	44.	 Ramos, E. R. F., dos Santos, F. E. A., Caracanhas, M. A. & Bagnato, V. S. Coupling collective modes in a trapped superfluid. Phys. Rev. 

A 85, 033608 (2012).

Acknowledgements
We thank F. E. A. dos Santos, A. Pelster, and S. Stringari for fruitful discussions. This work was supported by 
the São Paulo Research Foundation (FAPESP) under the grants 2015/20475-9 and 2013/07276-1. P.C.D. 
acknowledges support of CNPq scholarship. E.A.B. acknowledges support through FAPESP scholarship 
2018/16369-7. A.R.P. Lima acknowledges financial support from the Brazilian Fundação Cearense de Apoio ao 
Desenvolvimento Científico e Tecnológico (Grant No. BP3-0139-00281.01.00/18).

Author contributions
E.A.L.H. and A.R.P.L. conceived the idea and supervised the work. E.A.L.H. developed the toy model. A.R.P.L. 
developed the fundamentals of the theory and overall theoretical guidance. P.C.D. carried out numerical 
calculations, E.A.B.O. developed the analytical expressions for the collective excitations. All authors analysed and 
interpreted the results. All authors wrote and reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.R.P.L. or E.A.L.H.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-61657-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Ground state and collective excitations of a dipolar Bose-Einstein condensate in a bubble trap

	Results

	Variational approach. 
	Spherical ansatz in the thin-shell limit. 
	Ground-state configurations. 
	Collective excitations. 
	Two-dimensional quadrupole mode. 
	Monopole and three-dimensional quadrupole modes. 
	Dipole mode. 


	Dicussion

	Methods

	Matrix elements of the interaction terms

	Acknowledgements

	Figure 1 (a) Schematic of the bubble trap system under study indicating the coordinate system, polarisation direction of the dipoles, bubble trap (density distribution) mean radius r0 (R0) and usual angular coordinates θ and φ.
	Figure 2 (a) Polar distribution of the ground-state particle density |h(θ)|2 as a function of the polar angle θ for different values of ϵdd.
	Figure 3 Monopole (downward black triangles) and three-dimensional quadrupole (upward gray triangles) excitation frequencies in units of ω0 and two-dimensional quadrupole (red circle) in Hz, as functions of for ω0 = 2π × 200 Hz and .
	Figure 4 Dipole mode excitation frequencies in units of ω0 as a function of .




