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Multivariate climate departures 
have outpaced univariate changes 
across global lands
John t. Abatzoglou  1,2*, Solomon Z. Dobrowski3 & Sean A. parks4

changes in individual climate variables have been widely documented over the past century. 
However, assessments that consider changes in the collective interaction amongst multiple climate 
variables are relevant for understanding climate impacts on ecological and human systems yet are 
less well documented than univariate changes. We calculate annual multivariate climate departures 
during 1958–2017 relative to a baseline 1958–1987 period that account for covariance among 
four variables important to Earth’s biota and associated systems: annual climatic water deficit, 
annual evapotranspiration, average minimum temperature of the coldest month, and average 
maximum temperature of the warmest month. Results show positive trends in multivariate climate 
departures that were nearly three times that of univariate climate departures across global lands. 
Annual multivariate climate departures exceeded two standard deviations over the past decade for 
approximately 30% of global lands. Positive trends in climate departures over the last six decades were 
found to be primarily the result of changes in mean climate conditions consistent with the modeled 
effects of anthropogenic climate change rather than changes in variability. These results highlight the 
increasing novelty of annual climatic conditions viewed through a multivariate lens and suggest that 
changes in multivariate climate departures have generally outpaced univariate departures in recent 
decades.

Climate change represents a key challenge to Earth’s biota. These changes will require understanding climate 
change impacts across multiple timescales and variables1. Place-based climate impacts to human-environment 
systems are often assessed with respect to local climate variability for a variable of interest (e.g., mean annual tem-
perature), as systems are often adapted to such variability2–4. Individual climate attributes have already departed 
from historical ranges of variability in some regions, thereby contributing to climate impacts5–9. However, climate 
is intrinsically multivariate; many organisms and socio-ecological systems are adapted to and impacted by multi-
ple climate variables and their interactions10–15. While climate change is typically portrayed by changes in individ-
ual climate variables, often considered independently of one another, changes in multivariate climatic conditions 
may be more appropriate for anticipating impacts to many systems.

Climate variables exhibit covariance on a variety of timescales through dynamic processes and land-surface 
interactions16,17. Covariance is particularly acute for water balance variables that are coupled through surface 
energy-water fluxes10,18 which are widely recognized as important factors controlling the distribution and pro-
ductivity of agriculture and ecosystems, ecosystem disturbance, and water scarcity19–22. The covariance structure 
among climate variables results in combinations (e.g., warm and dry summers) that occur more frequently than 
if the variables were independent23. In contrast, variable combinations that are orthogonal to the canonical axis 
of variability (e.g., warm and wet summers) are more unusual in a climatic context and represent larger climate 
departures (Supplemental Methods). Covariance between variables is apparent on short time scales and contrib-
utes to meteorological extremes such as heat waves, and at longer timescales and contributes to climatological 
extremes such as droughts16. Herein, climate departures refer to absolute departures from a reference climate 
state in a univariate or multivariate sense. We argue that climate departures may be a valuable metric for tracking 
potential climate impacts that arise with anomalies of either sign from reference conditions24,25.
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Here, we examine trends in multivariate annual climate departures for global land surfaces during 1958–
2017 relative to 1958–1987 baseline conditions. We focus on four variables that encapsulate the climatic basis for 
Earth’s biota and have distinct impacts on human and natural systems: the coldest monthly average minimum 
temperature (Tn,min), warmest monthly average maximum temperature (Tx,max), annual actual evapotranspiration 
(AET), and annual climatic water deficit (D). These four variables collectively span thermal and moisture climatic 
axes and define the climatic niche of many species as well as climate impacts thereof. For instance, Tn,min influ-
ences the life history and distributions of species due to the physiological, ecological, and evolutionary impacts26 
and is the basis of hardiness zones in the agricultural sector, while Tx,max has been shown to have impacts on 
electricity demand27 and crop yields28. AET and D are a reduced set of biologically relevant climate variables 
that represent the supply and unmet atmospheric demand components of the water balance29. AET is a proxy 
for productivity in natural systems30, while D is widely-used metric for ecosystem disturbance and the terrestrial 
carbon cycle19,31. In addition, various combinations of these variables are predictor variables for modeling species 
distributions32,33 and climate impacts34,35.

We use Mahalanobis distance and its standardization based on the Chi distribution3,36 to compute annual mul-
tivariate climate departures (σd). The Mahalanobis distance compactly quantifies multiple variables, accounts for 
their covariance structure, and measures the distance in multivariate space away from a centroid through princi-
pal components analysis of standardized anomalies. σd can be interpreted as a multivariate z-score which scales 
climate departure with respect to local interannual climate variability. We compare σd to its univariate counterpart 
for individual variables using standardized Euclidean distance (e.g., σTx,max). To quantify the relative contribution 
of anthropogenic climate forcing to trends in climate departures, we develop a counterfactual simulation that 
removes the modeled climate change signal from observations. Two sensitivity experiments are used to elucidate 
the relative contribution of changes in means and changes in intra-annual to inter-annual variability on observed 
changes in climate departures. Both experiments remove the linear trends for variables during 1958–2017; the 
first experiment excludes linear trends in annual mean temperature, precipitation, and reference evapotranspi-
ration, while the second only excludes linear trends in annual precipitation. Lastly, we compare observed trends 
in climate departures with those from internal climate variability using a 500 year control climate simulation.

Results
Positive trends in climate departures are evident in recent decades, particularly for σd (Fig. 1a,b). The four indi-
vidual calendar years with the greatest global median σd coincided with the four warmest years globally over 
the period of analysis (2010, 2015–2017). The 60-year median trend in σd across global terrestrial surfaces was 
+0.78σ. Positive trends in climate departures over the 60-year period were observed for Tx,max, Tn,min, AET and 
D, but the magnitude of global median trends in σd was approximately three times greater than trends in climate 
departures for individual variables (Fig. 1e). Similarly, the geographic extent of land with σd exceeding 2 standard 
deviations increased markedly from a baseline of ~5% of land during the reference period (1958–1987) to ~30% 
during the most recent decade (2008–2017); increases in the geographic coverage of land >2 standard devia-
tions for σd outpaced increases for individual variables (Fig. 1c,d,f). Similar results were seen using a truncated 
non-parametric approach for transforming individual variables, although the magnitude of trends was reduced 
due to the conservative approach (Supplemental Methods). In addition to observed trends, we found a weak cor-
relation (r = 0.21, p = 0.1) between global median σd and the Multivariate ENSO Index37 averaged over Jan-Jun, 
highlighting the tendency for larger climate departures during El Niño years.

Widespread positive trends in σd were observed over the past six decades across most terrestrial surfaces with 
statistically significant increases present for 58% of lands and the largest increases in southern Europe, southeast 
Asia, Africa, and the Amazon (Fig. 2a; Supplementary Fig. 1). Significant positive trends in σTx,max and σTn,min 
were seen across 16–18% of global lands (Fig. 2b,c). Significant positive trends in σAET were seen for 16% of global 
lands, primarily across high latitudes of the Northern Hemisphere and equatorial regions. Significant positive 
trends in σD were found for 11% of global lands. In contrast, significant negative trends in climate departures were 
confined to small geographic areas of 1–5% of land area depending on variable.

Geographic hotspots of large positive trends often occurred in areas with low interannual variability. This is 
further demonstrated by examining trends in climate departures and the magnitude of interannual variability by 
latitude and biome. Latitudinal patterns show large positive trends in σd and σTn,min near the equator co-located 
with regions with low variability during the reference period (Fig. 3a). Additionally, larger positive σd trends 
were seen in the Northern Hemisphere than the Southern Hemisphere (Fig. 3a). Trends for temperature-based 
departures generally exceeded moisture-based departures from 40°S to 50°N. At higher-latitudes, trends in σAET 
outpaced trends in temperature departures consistent with higher temperature variability at higher latitudes 
(Fig. 3b). Trends in climate departures by biome were generally largest where interannual variability among the 
four climate variables was low (Fig. 3c,d), with the largest positive σd trend in the Tropical Forest biome and the 
smallest positive trend in the Temperate Grassland biome.

Larger positive σd trends compared to univariate climate departure trends can be understood by considering 
the covariance structure and trends in the underlying climate variables. AET and D exhibited strong negative cor-
relations on interannual timescales across most terrestrial surfaces, with Tx,max exhibiting positive correlation to 
D (Supplementary Fig. 3). By contrast, Tn,min was weakly correlated to the other climate variables, consistent with 
Tn,min being seasonally out of phase with the primary climatic factors that influence surface water availability. The 
principal components (PC) used in the Mahalanobis distance calculation largely reflect these relationships with 
the first loading projecting onto patterns of water limitations, loadings 2 and 3 projecting onto orthogonal dimen-
sions related to Tn,min and Tx,max, respectively, and loading 4 projecting to same signed anomalies of AET and D 
(Supplementary Fig. 4). Positive trends in Tx,max and Tn,min were seen across most terrestrial surfaces with AET 
and D trends showing more spatial variability but generally positive trends during 1958–2017 (Supplementary 
Fig. 5). Trends in σd, by definition, arise from trends in Euclidean distances of PC scores. While no single loading 
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predominantly accounted for σd trends, trends in PC4 and PC3 accounted for a majority of positive σd trends 
for 22% and 16% of the globe, respectively (Supplementary Table 1). Positive trends in AET and D were jointly 
observed for 46% of terrestrial surfaces that map onto the PC4 loading. Likewise, joint significant increases in 
Tx,max and Tn,min were observed for 24% of the globe and contributed to the positive trend in σd as Tx,max and Tn,min 
were poorly correlated on interannual timescales during the reference period outside of the tropics.

Approximately half of the observed increase in σd can be accounted for by anthropogenic climate change 
(Fig. 1e, Supplementary Fig. 2a). The counterfactual simulation produced: 1) σd trends with a global median of 
+0.36σ and were spatially similar to that observed, 2) mostly non-significant trends in temperature based depar-
tures, and 3) trends in moisture based departures that were approximately a third the magnitude of observed 
trends. Similarly, excluding the effect of anthropogenic climate change led to a 45% reduction in the extent of 
global land area with σd > 2σ (Fig. 1f).

Several factors account for the σd increase after excluding the modeled influence of anthropogenic climate 
change, including changes in climate variability and divergence between observed and modeled changes in cli-
mate. The sensitivity experiment that excluded trends in annual temperature, precipitation, and reference evap-
otranspiration had σd trends that were approximately a third of those observed and trends in climate departures 
for individual variables that were less than 30% of those observed (Fig. 1e, Supplementary Fig. 1c). By contrast, 
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Figure 1. Annual time series and trends in median global climate departures. (a) Median annual multivariate 
climate departures (σd), results from a counterfactual simulation that removed the modeled influence of 
anthropogenic climate change (σd,No-ACC), and results from sensitivity experiments that removed the linear 
trend in annual precipitation (σd,dP/dT) and annual precipitation, reference evapotranspiration, and temperature 
(σdALL/dT). (b) Observed univariate climate departures for average maximum temperature of the warmest 
month (Tx,max), average minimum temperature of the coldest month (Tn,min), actual evapotranspiration (AET), 
and climatic water deficit (D). Annual percent of land surfaces with climate departures> 2σ for (c) σd and (d) 
individual variables. Global median sen-slope trends in (e) climate departures and (f) percent of land area>2σ 
during 1958–2017.
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the sensitivity experiment that excluded trends in annual precipitation had nominal influence in attenuating 
observed trends in climate departures thus highlighting the importance of changes in temperature and evapora-
tive demand (Supplementary Fig. 1b). Our results further suggest that most of the observed increase in climate 
departures have materialized through changes in mean climate conditions rather than changes in climate vari-
ability. Changes in the interannual variability of individual variables showed confounding signals spatially and 
across variables (Supplemental Methods; Supplementary Table 2). The most notable and widespread change was a 
global median 15% reduction in the standard deviation of Tn,min during 1958–2017. The larger fraction of trends 
accounted for by explicitly detrending observations versus those using the counterfactual model is expected given 
that observed σd trends include changes arising from internal variability.

Lastly, the magnitude of observed changes in climate departures exceeded those estimated from natural vari-
ability in a stationary climate. A null model based on 500-years of climate model output run under pre-industrial 
control simulations38 yielded a global median σd trend comparable to that of the detrended sensitivity experiment 
(average trend +0.24σ over 60-years, maximum of +0.29σ; Supplementary Fig. 6). Internal decadal variability 
along with the use of a reference period from which climate departures are calculated and associated sampling 
biases generally results in positive σd trends even in a stationary climate. However, the substantially larger mag-
nitude of observed changes versus those obtained using the null model suggest that the observed increases in 
climate departures over our study period are unlikely due to internal climate variability.

Figure 2. Trends in climate departures during 1958–2017. Linear trends (sen-slopes, 1958–2017) for (a) 
multivariate climate departure (σd), (b) departure of warmest monthly maximum temperature (σTx,max), (c) 
departure of coldest monthly minimum temperature (σTn,min), (d) departure of actual evapotranspiration (σAET), 
and (e) departure of climatic water deficit (σD). Land areas where annual D or AET was 0 for a majority of the 
years in the baseline period are shown in grey.
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Discussion
We demonstrate that annual climate conditions over the past three decades have departed substantially from 
previous decades, that these climate departures exceed what would be expected from natural climate variabil-
ity, and that approximately half of the magnitude of these changes can be attributed to anthropogenic forcings. 
While previous studies have highlighted the importance of multivariate extremes and changes thereof11,13, we find 
that multivariate climate departures assessed at annual time scales have rapidly outpaced univariate departures, 
highlighting the potential latent impacts imposed by observed change to systems adapted to multiple interacting 
climate variables. The largest positive σd trends occurred in regions of historically low variance (e.g., equatorial 
regions)8,39,40, in regions such as southern Europe that have seen large changes in climate trends in the variables 
considered41, and in boreal regions that saw joint increases in AET and D that are orthogonal to the historical 
covariance of these variables. The growing extent of lands with annual multivariate climate departures>2σ in 
recent decades complements other studies that have considered univariate departures42. While our results were 
specific to the four variables than span moisture and thermal constraints in a given year, trends in multivariate 
climate departures may differ as a function of the variables chosen.

Trends in multivariate climate departures were largely accounted for by changes in climate means rather than 
changes in climate variability. While there is a perception that observed climate change has resulted in height-
ened variability, observational and modeling studies generally do not support widespread detectable changes 
to date43,44. Nonetheless, while observed changes in variability have generally been small, some studies sug-
gest increased hydroclimatic variability or intensification over the 21st century that would further exacerbate 
increased climate departures45–47.

Our framing of univariate and multivariate departures builds on previous studies3,39,48 while emphasizing 
more nuanced ways in which climate has differed from reference conditions on annual timescales. Only consider-
ing changes in mean conditions or changes for multi-decadal timescales can obscure departures that occur annu-
ally. This type of interannual variability is critical for assessing climate change impacts. For example, years with 
concurrent high D and Tx,max enable fire activity in flammability-limited forests19, while years with high mois-
ture availability (high AET, low D) and low Tx,max promote recruitment pulses in water-limited forests49. Warm 
summers accompanied by surface water availability (high Tx,max, high AET) may impact human health directly 
through heat stress and indirectly through promoting environmental conditions that favor certain vector-borne 
diseases50,51. Annual climate departures are also relevant to impacts on agricultural systems, land-use planning, 
and built infrastructure52,53.

As the climate becomes increasingly unfamiliar to the flora and fauna at a specific location, organisms, includ-
ing humans, must adapt to changing local conditions or move to maintain suitable climates54. Indeed, Earth’s 

Figure 3. Latitudinal and biome based trends in climate departure. (a) Observed trends in median climate 
departures by latitude smoothed using a 1-degree moving mean. Panel (b) shows median standard deviation 
during 1958–1987 for the four individual climate variables by latitude, smoothed using a 1-degree moving 
window. (c) Observed trends in climate departures by biome ordered from the smallest to largest increase in σd. 
Bars with asterisk indicate that at least 75% of the land area within each ecoregion had positive trends. Panel (d) 
shows median standard deviation for each of the climate variables by biome during 1958–1987.
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biota is already adapting to climate change. For example, migration and thermophilization of biotic communities 
has been observed55,56. Additionally, humans are increasingly adopting crop varieties, seed provenances, and 
horticultural practices from other locations with climates that are anticipated to resemble future conditions3,57. 
Unfortunately, the adaptive capacity of systems is not necessarily commensurate with their climate change 
exposure. For example, thermal specialists in the tropics may be uniquely vulnerable to the large climate depar-
tures seen in these regions58,59. Collectively, our results suggest that annual multivariate climate departures have 
changed more dramatically in the last 60 years than univariate estimates of departures for individual climate 
variables.

Methods
Monthly data from TerraClimate during 1958–2017 were used for our primary analysis60. TerraClimate combines 
high-resolution multi-decadal climatologies from WorldClim61 with coarser-scale temporally varying data from 
reanalyses and CRU Ts4.062 to create 4-km (1/24°) spatial resolution surfaces of monthly first-order climate var-
iables (e.g., temperature, precipitation), as well as surface water balance products such as AET and D. The water 
balance model is an accounting-based approach that simulates moisture fluxes using a simple snow model and 
soil water balance approach for a reference vegetation type. This modeling framework has been widely used in 
hydrological and ecological studies10,63. Other gridded datasets provide similar outputs, including those using 
more sophisticated surface hydrologic models. However, they do not cover the 60-year period of observational 
record or are of much coarser spatial resolution. Nonetheless, to interrogate the sensitivity of our results with 
respect to structural uncertainty of climate data sources, we replicate all analyses for the period 1958–2016 using 
gridded data from the Princeton Global Meteorological Forcing dataset (version 3) at a 0.25° spatial resolution64. 
Results from these data are presented in Supplemental Methods.

Four climate metrics were chosen given their established links to factors that influence Earth’s biota including 
species occurrence and impacts, and their frequent usage in species distribution models10,29,32,65. These metrics 
included: (1) average maximum temperature of the warmest month for the calendar year (Tx,max), (2) average 
minimum temperature of the coldest month for the calendar year (Tn,min), (3) calendar year cumulative AET, and 
(4) calendar year cumulative D. These four variables provide complementary information pertinent to ecological 
and agricultural systems. For example, Tn,min can be a limiting factor for some species and agriculture and modify 
overwinter morality rates of some organisms66,67, while D and AET provide a reduced set of biologically relevant 
and physically based variables that account for the concurrent availability of both water and energy important for 
both ecological and agricultural impacts29,68.

We calculated σd and its univariate equivalent standardized Euclidean distances for each variable during 
1958–2017. The first 30-years (1958–1987) were used to define a baseline period that determine both the cen-
troid (i.e. the mean) and covariance structure using principal components analysis to calculate σd (Supplemental 
Methods). A given 30-year period comprises a sample of a population of climate statistics that may differ from 
other baseline periods in some regions due to decadal variability69. Likewise, anthropogenic climate forcing is evi-
dent throughout the observational record limiting the ability to procure a true ‘natural’ reference state. However, 
for the basis of this study, the earliest 30-years covers a time period when anthropogenic forcing was substantially 
less than in recent decades.

We used Mahalanobis distances and its standardization based on the Chi distribution to calculate σd. This 
approach accounts for covariance among variables, the dimensionality of the data (number of variables), and 
local inter-annual climate variability thus facilitating comparisons across space and variable combinations. 
Mahalanobis distances were calculated on standardized data (i.e., normal distributions based on means and 
standard deviation calculated during 1958–1987). This approach assumes variables adhere to a multivariate 
Gaussian distribution, which may be reasonable for some variables, but could be problematic for zero-bounded 
data (e.g., D) and for temperature extremes in some portions of the globe. We conducted a sensitivity analysis that 
used clamped non-parametric distributions to assess whether results were substantially altered by these assump-
tions (Supplemental Methods). The choice of data transformations did not substantially alter the general results 
of the study, although the truncated nature of the non-parametric distributions reduced overall magnitudes of 
departures. More advanced multivariate approaches such as copulas may provide additional nuance beyond the 
linear approaches used herein70. Trends for σd and climate departure for individual variables during 1958–2017 
were calculated using Sen-Theil slope estimator and were considered significant using the Mann-Kendall trend 
test at p < 0.05. Similarly, standard trends using the same approach were calculated on the raw climate variables.

A counterfactual simulation of terrestrial climate was developed that excludes the modeled influence of 
anthropogenic climate forcing during 1958–2017. The counterfactual simulation removed first-order modeled 
trends in monthly climate from observed data similar to that of previous studies71–73. We used a pattern scaling 
approach that applies the median response among 23 different climate models to proximate modeled anthro-
pogenic changes (Supplemental Methods)73. We also considered two sensitivity tests that use detrended obser-
vations to decompose changes in climate departures into those associated with trends versus those associated 
with changes in intraannual-to-interannual variability. One approach removed only annual precipitation trends, 
while the other approach removed annual trends in temperature, precipitation, and reference evapotranspiration. 
Detrending was facilitated by calculating a linear least square fit on annual data. This linear fit was subtracted 
from the observed time series leaving data for 1958 unaltered. By only removing annual trends, we allow monthly 
trends to differ in a relative sense from annual counterparts. Data for the counterfactual simulation and sensitivity 
experiments were run through the water balance model to calculate AET and D.

We consider two additional filters in an effort to avoid misinterpreting results in locations of reduced data 
quality or where the baseline observations were heavily positively-skewed. First, we omit calculations in loca-
tions where annual D or AET was 0 for a majority of the years in the baseline period. Second, we used the data 
quality flags in TerraClimate inherited from CRU TS4.0 to select pixels where at least four stations contributed 
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to monthly precipitation, temperature, and vapor pressure fields for at least 75% of the period of record. Fig. S4 
shows the data from Fig. 2 with data poor locations masked out. Summarized timeseries and reported trends for 
global land surfaces exclude pixels not meeting either of these criteria.

Lastly, we use 500-years (model years 400–899) of pre-industrial control climate simulated from the LENS 
experiment which uses NCAR’s Community Earth System Model version 1 (CESM1) with CAM5.2 as its atmos-
pheric model38 to develop a null model for changes in σd that result purely from internal climate variability. 
Monthly output from LENS was subsequently used in the water balance model, albeit at the native spatial res-
olution of LENS output. We subsequently calculated σd using non-overlapping moving 30-year blocks over the 
simulation (e.g., 430–459) and calculated both forward (e.g., 430–489) and backward (e.g., 400–459) linear trends 
in global terrestrial median σd and the fraction of land surfaces with σd > 2σ. The slope of trends calculated from 
backward samples was inverted. As with observations, trends were calculated using Sen-Theil slope estimator.

Data availability
The primary datasets analyzed in the current study are available through the Northwest Knowledge Network data 
repository at https://climate.northwestknowledge.net/TERRACLIMATE-DATA/.
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