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Nonstationary flood coincidence 
risk analysis using time-varying 
copula functions
Ying Feng1,2, Peng Shi1,2, Simin Qu1,2*, Shiyu Mou1,2, Chen Chen1,2 & Fengcheng Dong1,2

The coincidence of flood flows in a mainstream and its tributaries may lead to catastrophic floods. In this 
paper, we investigated the flood coincidence risk under nonstationary conditions arising from climate 
changes. The coincidence probabilities considering flood occurrence dates and flood magnitudes were 
calculated using nonstationary multivariate models and compared with those from stationary models. 
In addition, the “most likely” design based on copula theory was used to provide the most likely flood 
coincidence scenarios. The Huai River and Hong River were selected as case studies. The results show 
that the highest probabilities of flood coincidence occur in mid-July. The marginal distributions for the 
flood magnitudes of the two rivers are nonstationary, and time-varying copulas provide a better fit 
than stationary copulas for the dependence structure of the flood magnitudes. Considering the annual 
coincidence probabilities for given flood magnitudes and the “most likely” design, the stationary model 
may underestimate the risk of flood coincidence in wet years or overestimate this risk in dry years. 
Therefore, it is necessary to use nonstationary models in climate change scenarios.

The term flood coincidence is used to denote the simultaneous occurrence of floods in two (or more) rivers. 
The coincidence of flood flows in a mainstream and its tributaries may lead to catastrophic floods1. Therefore, 
assessing the risk of flood coincidence for the main river and its tributaries is critical for flood control and water 
project operations. As flood events are characterized by flood occurrence dates and flood magnitudes, both of 
these factors should be taken into account when analyzing the flood coincidence risk2. In addition, the analysis 
of flood coincidence involves at least two rivers. For these reasons, a multivariate hydrological analysis is needed 
that considers the dependence among flood variables3–5.

Traditionally, multivariate probability distributions are derived using various assumptions, e.g., the same 
type of marginal distribution or independence of the variables is assumed6. In addition, considering multivariate 
models from this traditional perspective, mathematical formulations are often complicated when more than two 
variables are involved7. For these reasons, a new method of determining the multivariate probability distribution 
based on copula functions was proposed by Sklar8. The copulas describe and model the dependence structure 
among random variables, independently of the margins involved. Due to their flexibility of construction, copula 
functions have been widely used in multivariate hydrological frequency analyses in recent years9–17, especially in 
flood coincidence risk analyses1,18,19.

The risk of flood coincidence has mainly been analyzed under the stationarity assumption. In other words, 
both the marginal distribution and the copula function are modeled with fixed moments and parameters18–20. 
However, climate change and anthropogenic activities have changed the statistical characteristics of hydrologi-
cal series and the dependence structure of the variables21,22. As a result, increasing attention is being paid to the 
development of nonstationary multivariate models with copula functions23–25. In the univariate case, nonstation-
ary models have been widely applied26–28. Liang, et al.29 grouped nonstationary flood frequency methods into 
two types: indirect and direct methods. Direct methods have been widely used because they do not require the 
restoration of hydrological series. In the multivariate case, copulas have been used to describe the dependence 
structure of different series30–32. Chebana, et al.33 discussed the use of copula functions with time-varying param-
eters in the case of a changing dependence structure for the investigated variables. Sarhadi, et al.34 defined the 
copula parameter as a deterministic function of time. Jiang, et al.32 compared time-varying copula models with 
time or a reservoir index as the covariate. However, to the best of our knowledge, few studies in the hydrological 
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field have defined the form of the copula parameter as an autoregressive moving average model (ARMA), which 
can capture variation in dependence35.

The objective of this study is to apply a time-varying copula to analyze the flood coincidence risk of rivers, 
considering the nonstationarity of flood magnitudes and the dependence structure among variables (Fig. 1). For 
this purpose, the mixed von Mises distribution was used as the marginal distribution of flood occurrence dates. 
Then, the Generalized Additive Models for Location, Scale, and Shape (GAMLSS) model36,37 (with rainfall as 
the covariate in this study) was selected to obtain the marginal distribution of flood magnitudes. Finally, a static 
copula and a time-varying copula were chosen as candidates to obtain the joint distribution of flood occurrence 
dates and flood magnitudes. In this study, we (1) assess the nonstationarity of the flood magnitudes and the 
dependence structure among variables; (2) fit the marginal distributions of flood occurrence dates and flood 
magnitudes; (3) develop a joint distribution of flood occurrence dates and flood magnitudes; and (4) discuss the 
risk of flood coincidence by considering annual coincidence probabilities for given flood magnitudes and the 
“most likely” design38.

Study Area and Data
The Huai River Basin (N30°55′–36°36′, E111°55′–121°25′), which is composed of many tributaries, is the sixth 
largest river basin in China. The basin is located in the transitional zone between semiarid and semihumid cli-
mates (Fig. 2). Previous studies have shown that extreme rainfall has increased at most stations in the Huai 
River Basin39–41, resulting in more turbulent flows in the main stream and its tributaries during the flood season. 
Therefore, it is necessary to analyze the risk of flood coincidence in the Huai River Basin.

The study area refers to the upper reaches of the Huai River Basin above the Wangjiaba station, with an area 
of 2.82 × 104 km2 (Fig. 2). The proposed method was applied for flood coincidence analysis for two rivers within 
the region: one is the upper reach of the main stream of the Huai River, with a catchment area of 1.58 × 104 
km2, and the other is the Hong River, which has a catchment area of 1.15 × 104 km2. The length of the channel 
from Huaibin to Wangjiaba is 27 km, which drains an area of 900 km2. There are seven rainfall stations in the 

Figure 1.  The procedure used to develop the flood coincidence model.
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study area: Banqiao (BQ), Guizhuang (GZ), Xiatun (XT), Shakou (SK), Xincai (XC), Changtaiguan (CTG) and 
Huangchuan (HC). The reason for choosing these two rivers is that coincident flooding on the Huai River and 
Hong River may generate flood peaks, which can threaten the flood control at Wangjiaba station. The flood con-
trol of the Wangjiaba section mainly depends on the Mengwa flood detention basin. When a flood occurs, the 
diversion gate of the Wangjiaba sluice is opened to discharge the flood into Mengwa, and the outflow of Mengwa 
is controlled by the Caotaizi sluice (Fig. 2a).

In this study, the annual maximum daily flow (AMDF) of each river (Qh for Huai River and Qb for Hong River) 
and the occurrence dates (Th for Huai River and Tb for Hong River) were obtained using the annual maximum 
method (AM method). Rainfall data were derived from daily data collected at seven rainfall stations in the study 
area from 1959 to 2015 (Table 1). Then, the average rainfall in the catchment areas of the two rivers was obtained 
using Thiessen polygons42,43, and the annual maximum rainfalls Ph and Pb were sampled from the average rainfall 
by the AM method and used as covariates. All data were obtained from hydrological yearbook.

The flood propagation time of each section in the study area was obtained from the Huai River Water 
Resources Commission (Fig. 2a).

Result and Discussion
Before selection of the model for frequency analysis, nonstationarity evaluations (including of the flood magni-
tude series and dependence structure among series) should be performed. The nonstationarity can be assessed by 
change point analysis44–46 and trend analysis. In this study, the change point was detected by the distribution-free 
cumulative summation test (CUSUM)47. The trend analysis was performed based on the nonparametric 
Mann-Kendall (MK) test33.

Figure 2.  Map of the study area and gauging stations.

River
Catchment 
Area(km2)

Hydrometric station Rainfall station

Name
Record of 
length Name

Record of 
length

Hong River 11500 Bantai 1959–2015 BQ,XT,GZ,SK,XC 1959–2015

Huai River 15800 Huaibin 1959–2015 CTG,HC 1959–2015

Table 1.  Information on the two rivers in the Huai River Basin.
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The results of the change point test show that the mean of Qh is constant, and the variance of Qh displays an 
abrupt change in 2009. For Qb, the change point in the mean occur in 2009, and the change point in the variance 
is observed in 1985. In addition, a change point in the dependence structure between Qh and Qb occur in 2010. 
According to the MK test, the series of Qh presents a significant downward trend at the 0.05 significance level. For 
Qh, there is a significant upward trend (Fig. 3).

The above analyses demonstrate that the flood magnitudes in the two rivers and the dependence structure are 
nonstationary. In additions, the flood occurrence dates in the two rivers and the dependence structure between 
them are both stationary.

Estimation of marginal distribution.  Marginal distribution of flood occurrence dates.  In this study, the 
mixed von Mises distribution with constant parameters was selected as the marginal distribution of the flood 
occurrence dates. The parameters of the mixed von Mises distribution were estimated by the maximum likelihood 
method. Table 2 summarizes the values of parameters and the goodness-of-fit results for the mixed von Mises 
distribution of flood occurrence dates for the two rivers: The p-values of the KS test were both larger than 5% 
(Table 2), which supports the validity of the assumed models.

The frequency histograms of flood occurrence dates fitted by the mixed von Mises distribution are presented 
in Fig. 4(a,b). The marginal cumulative distribution function (CDF) curves of the flood occurrence dates are 
shown in Fig. 4(c,d), in which the lines (theoretical distribution) intersect with the observed empirical frequen-
cies. Figure 4(a–d) indicate that the theoretical distribution fits the observed data well. In additions, the highest 
relative frequencies for the two rivers both occur in July, indicating the floods in these two rivers are more likely 
to occur during this period.

Marginal distribution of flood magnitudes.  In this section, both stationary models and nonstationary models 
with a rainfall covariate were applied to build the marginal distributions of flood magnitudes in the two rivers. 
Five probability distributions, including the gamma, Weibull, lognormal, Gumbel, and general extreme value 
(GEV) distributions, were selected as the candidate marginal distributions (Table S1).

Under the stationary assumption, the results of the five distributions in fitting the two series are presented in 
Table S2. According to the Akaike information criterion (AIC) minimization method, the gamma distribution 
with constant parameters is the optimal distribution for Qh, and the Weibull distribution with constant parame-
ters is the best distribution for Qb.

Under the nonstationary assumption, a series of statistical analyses (Table S3) indicate that the Weibull distri-
bution with a rainfall covariate is the best-fitted distribution for Qh and that the gamma distribution with a rainfall 
covariate is the best choice for Qb.

Table 3 summarizes the performance of the four optimal distributions in fitting the two series. According to 
AIC minimization method, nonstationary models provide a better fit than stationary models for both Qh and Qb. 
Consequently, the nonstationary models with a rainfall covariate are selected as the marginal distributions of 
flood magnitudes. The worm plots for the selected models [Fig. 5(a,b)] show that all the points fall in the 95% 
confidence interval (i.e., the upper and lower gray dotted lines). In the quantile-quantile (QQ) plots [Fig. 5(c,d)], 
all the points are basically distributed along a straight line at a 45 degree angle. Figure 5 indicates that the actual 
residuals of the selected models are in good agreement with the theoretical residuals.

Figure 3.  Time series of Qh and Qb data. The vertical solid line indicates the possible mean change point, and 
the solid red lines indicate the trends before and after the change point.

Gauging 
station

Parameters

p-Valueµ1 µ2 µ3 k1 k2 k3 p1 p2 p3

Huaibin 3.01 5.06 / 1.33 3.22 / 0.93 0.07 / 0.75

Bantai 0.34 3.03 4.36 1.13 4.17 2.42 0.28 0.42 0.30 0.81

Table 2.  Parameters and goodness-of-fit results for the mixed von Mises distribution. The p-value is the 
approximate Monte Carlo goodness-of-fit test p-value (based on Kolmogorov–Smirnov statistics).
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Estimating the copula parameter.  Before the selection of copula functions, the dependence structures among the 
flood magnitudes and occurrence dates for the two rivers were explored. The Kendall coefficient and Spearman 
coefficient were used to perform the independence test48, as shown in Table 4. The results indicate that Qh and Qb 
are significantly correlated at the 5% significance level. However, the coefficient between the flood magnitude and 
occurrence date in the same river is close to zero, which suggests that these two variables are independent.

Three candidate copulas with constant parameters were used for modeling the dependence structure of flood 
occurrence dates (Th and Tb), including the Gumbel, Frank, and Clayton copulas. Table 5 summarizes the values 
of parameters and the goodness-of-fit results for these copulas. According to the goodness-of-fit test results 
(based on Cramér–von Mises statistics), the Clayton copula is not adequate for modeling the bivariate features of 
the flood occurrence dates (p-value is less than 0.05). In terms of the minimum AIC, the Gumbel copula with 
θ = .2 077c  is the best choice.

Considering the nonstationarity of the dependence of flood magnitudes, the time-varying copulas were used 
as candidates as Eq. (1). The parameters of time-varying copulas were described and estimated as Eqs. (8–9). 
Table 6 summarizes the values of parameters and the goodness-of-fit results for the optimal copulas under sta-
tionary and nonstationary assumptions for modeling the dependence structure of the flood magnitudes (Qh and 
Qb). As Table 6 shows, the P-KS values of Z1 and Z2 and the P-Kendall values are larger than 0.05, which supports 
the validity of the assumed models from a statistical perspective. The time-varying Frank copula was selected to 
model the dependence structure of flood magnitudes by comparing the AIC values. Figure 6 shows the worm 
plots for the goodness-of-fit test of the Frank copula with time-varying parameters; notably, all points fall within 
the 95% confidence interval, indicating satisfactory fitting performance for the selected copula model.

The risk of flood coincidence.  On the basis of marginal distributions and copula functions, the risk of flood coin-
cidence was analyzed from the three following three perspectives.

Coincidence probabilities for flood occurrence dates.  With the mixed von Mises distribution and copula function, 
the joint distribution of flood occurrence dates was determined in order to calculate the daily probability of flood 
coincidence for flood occurrence dates, as described in Eq. (10). The annual coincidence probability of the flood 

Figure 4.  Fitting plots of the mixed von Misses function (a–d) and the coincidence probabilities for flood 
occurence dates (e).

Series Type Distribution

Distribution parameters

p-Value AICµ θ

Qh
Stationary GA 1856 1.455 0.73 1010

Nonstationary WEI exp(7.894) exp(0.607 − 0.065Ph) 0.89 946

Qb
Stationary WEI 1018 1.486 0.57 884

Nonstationary GA exp(5.440 + 0.308Pb) exp(−0.024 − 0.154Pb) 0.32 845

Table 3.  Performance of the four optimal distributions in fitting the two series. The p-value is the approximate 
Monte Carlo goodness-of-fit test p-value (based on Kolmogorov–Smirnov statistics).
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occurrence dates = .P 0 152T  was obtained by Eq. (11). According to the observed data, nine floods occurred 
simultaneously in the two rivers during the 57-year study period. The statistical coincidence probability of the 
measured data is 0.175, which is close to the model calculation result.

Figure 5.  Fitting plots of residual detection at two stations with the GAMLSS model under the nonstationary 
assumption (a–b) and linear regression normal QQ diagram (c–d).

Coefficients (Th, Tb) (Qh, Qb) (Th, Qh) (Tb, Qb)

Pearson 0.66 0.43 0.0046 0.0490

Kendall 0.48 0.56 −0.0123 0.0437

Spearman 0.62 0.78 −0.0191 0.0605

Table 4.  The pairwise correlation coefficients of flood magnitudes and flood occurrence dates.

Copula Parameters(s.e.) AIC p-Value

Gumbel 2.077(0.267) −37.51 0.382

Clayton 1.421(0.357) −24.47 0.004

Frank 5.498(0.944) −28.09 0.141

Table 5.  Parameters and goodness-of-fit test for candidate copulas in modeling the dependence structure of 
flood occurrence dates. The values in parentheses indicate estimated standard errors; the approximate p-values 
(via a multiplier method) of the Cramér–von Mises goodness-of-fit test for copulas are also shown.

Type Copula
Parameter 
form Parameters AIC

p-KS 
of Z1

p-KS 
of Z2 p-Kendall

Stationary Frank θc 7.039 −42.86 0.73 0.54 0.319

Nonstationary Frank ω β α[ , , ] [1.68, −3.25, 2.90] −43.98 0.89 0.48 0.332

Table 6.  Parameters and goodness-of-fit results for the Frank copulas in modeling the dependence structure. 
The p-KS (Z1) and p-KS (Z2) are p-values of the KS test for the two Rosenblatt’s probabilities integral 
transformations Z1 and Z2, which should be uniformly and independently distributed on [0, 1]. The p-Kendall is 
the p-value of the Kendall rank correction test for Z1 and Z2.
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The daily probability of flood coincidence for flood occurrence dates was plotted as shown in Fig. 4(e). The 
highest probabilities of flood coincidence occur in mid-July, which suggests a high combination risk. Hence, the 
Wangjiaba flood diversion sluice needs to discharge the floods to Mengwa for flood control during this period. 
The coincidence probabilities are close to zero from May to mid-June, which indicates that the flood coincidence 
is extremely low in the two rivers during this period. Therefore, it is possible to open the Caotaizi escape sluices 
to discharge the flow in the Mengwa flood detention basin during this period.

Annual coincidence probabilities for given flood magnitudes.  In this section, the annual coincidence probability 
for given flood magnitudes is calculated. According to the investigation of the pairwise dependence structures, 
the occurrence dates and magnitudes of floods are independent of each other. Hence, we employ Eq. (12) to 
describe the joint distribution of the flood magnitudes. Moreover, the annual flood coincidence probability for 
given flood magnitudes was calculated by Eq. (13).

To compare the difference in flood coincidence under stationary and nonstationary conditions, the coinci-
dence probability PT in Eq. (13) was calculated under the stationary and nonstationary hypotheses. The values of 
qh and qb of the two rivers were the design flows for the t-year univariate return period under the stationary 
assumption. Here, we used =T (10, 20, 50) years as examples, and the annual coincidence probability for a given 
flood magnitude and the corresponding variations are presented in Fig. 7. For ease of visualization, the vertical 
coordinate was set to logarithm of the coincidence probabilities.

Our results indicate that the coincidence probability is constant under the stationary condition. However, 
under the nonstationary condition, the coincidence probabilities for the flood magnitude fluctuate each year 
over a wide range. The coincidence probabilities for the flood magnitude display variational processes that are 
consistent with those of rainfall, reflecting the positive correlation between these factors (Fig. 7). In addition, a 
series of statistical analyses shows that the nonstationary multivariate model performs better than the stationary 
multivariate model. The probabilities under the stationary assumption may underestimate the risk of flood coin-
cidence in wet years and overestimate this risk in dry years.

The coincidence probabilities in the case of =T 50 year are close to zero under both the stationary and non-
stationary assumptions, which indicates that the coincident flooding is less likely to occur for large flood events 
than for other events.

Flood coincidence risk in the “most likely” design.  The “most likely” design in this section provides the most likely 
scenario for a specific coincidence probability. According to Eq. (13), the joint exceedance probability-isolines 
(PILs) for each year can be drawn assuming that the coincidence probability Pt is a definite value. Here, taking 

= .P 0 01t  as an example, the PILs derived from the stationary model and nonstationary model are shown in 
Fig. 8(a). The “most likely” design for Qhmax and Qbmax in each year considering the definite probability can also 
be obtained according to Eqs. (14–15), and the corresponding results are denoted by color points in Fig. 8(a).

Under nonstationary conditions, the isoline is constantly oscillating over time while it is a fixed curve under 
stationary conditions. The “most likely” design of Qhmax ranges from 4050 m3/s to 5035 m3/s and that of Qbmax 
ranges from 738 m3/s to 3625 m3/s. This difference indicates that Qb is more susceptible to environmental change 
than Qh. The combined flows of Qhmax and Qbmax in different years are shown in Fig. 8(b) and rang from 4781 m3/s 
to 8099 m3/s, which may lead to flood peaks downstream. Hence, the combined flows calculated based on the 
“most likely” design have a certain reference significance for flood predictions downstream in Wangjiaba. 
Therefore, it is necessary to consider the flood coincidence between the Hong River and Huai River and take 
necessary measures to alleviate the pressure on downstream flood control projects.

Figure 6.  Worm plots of the goodness-of-fit for the time-varying Frank copula: (a) worm plot of Rosenblatt’s 
probabilities of integral transformation for Z1; (b) worm plot of Rosenblatt’s probabilities of integral 
transformation for Z2.
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Conclusions
Flood coincidence analysis plays an important role in flood risk analysis. This study proposed a nonstationary 
multivariate model to solve the flood coincidence problem in a changing environment. The proposed model was 
developed using the mixed von Mises distribution, the GAMLSS model and a copula function. The main conclu-
sions are presented as follows.

First, the probabilities of flood coincidence on two rivers show that coincident flooding is more likely to occur 
in mid-July than in other periods (Fig. 4e). Hence, it is possible to discharge these floods to Mengwa in this period 
to alleviate the downstream flood control pressure.

Second, both the flood magnitudes and their dependent structure are verified to be nonstationary, and the 
nonstationary multivariate model of flood magnitude performs better than the stationary model. The coincidence 
probability for large floods (i.e., under the situation of =T 50 year) is nearly equal to zero, which indicates that 
coincident flood events are more likely to occur for medium-scale or small-scale floods.

Finally, the combined flow under stationary and nonstationary conditions can be obtained from the corre-
sponding “most likely” design (Qhmax and Qbmax), which provides a basis for downstream flood safety. The range 
of Qbmax is larger than Qhmax, which indicates that the nonstationarity of the Hong River is larger than that of the 
Huai River. Therefore, more attention should be paid to flood control planning in the Hong River Basin.

In conclusion, this study provides a reasonable approach for assessing the risk of flood coincidence in the Huai 
River Basin under nonstationary conditions. The trends and risks of flood coincidence can be further studied to 
improve flood management.

Figure 7.  The coincidence probabilities of the Huai River and Hong River and the corresponding rainfall data.

Figure 8.  A comparison of the most likely scenario for a specific conincidence probability under the stationary 
condition and nonstationary condition: (a) the plot of PILs and “most likely” design; (b) the plot of combined 
flows of Qhmax and Qbmax.
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Methods
Framework of the copula function.  The copula function, which was first proposed by Sklar8, describes 
the correlation between variables. It is actually a class of function that connects joint distributions to their respec-
tive marginal distributions. Nelsen49 and Joe50 provided a theoretical introduction to copulas. Studies on practical 
approaches have also been developed6,51,52. Specifically, basic guidelines for using copulas in hydrological appli-
cations were illustrated by Favre51, Salvadori and De Michele16, and Salvadori et al.53,54 Useful and free software 
routines were provided and illustrated by Hofert et al.55

Environmental changes can influence both the statistical characteristics of hydrological series and the depend-
ence structure of hydrological variables. Considering these changes, a time-varying copula should be considered 
in such analyses. Hence, the joint distribution of the hydrological variable pair of Y Y( , )t t

1 2  at time t can be pro-
duced as follows:

θ θ θ θ= | | | = |H y y C F y F y C u v( , ) [ ( ), ( ) ] ( , ) (1)
t t t t t t

c
t t t

c
t

1 2 1 1 1 2 2 2

where H(·) represents the joint cumulative distribution function (CDF) of Y t
1 and Y t

2, F1 is the cumulative mar-
ginal distribution of Y t

1, F2 is the cumulative marginal distribution of Y t
2, C(·) is the copula function, θ t

1  and θ t
2  are 

the time-varying marginal distribution parameters, θc
t is the time-varying copula parameter, and the marginal 

probabilities ut and vt should obey a uniform distribution in the range of [0,1].
Under the stationary assumption, all the parameters above can set as constants:

θ θ θ θ θ= = = c; ; (2)t t
c1 1 2 2

According to Eq. (1), the implementation of the time-varying copula consists of two steps. The first step is to 
analyze the univariate nonstationarity (including change point and trend tests) and select an appropriate marginal 
distribution. The second step is to analyze the nonstationarity of the dependence structure and select an appro-
priate copula function.

Marginal distribution.  Marginal distribution of flood occurrence dates.  Flood occurrence dates can be 
regarded as a vector with periodic changes. The mixed von Mises distribution56 is a distribution commonly used 
to describe periodic or seasonal variables and has been proven to effectively fit flood dates12. The directional var-
iable of flood occurrence dates xi can be obtained from the following relation:

π π= ≤ ≤x D
L

x2 , 0 2 (3)i i i

where L denotes the length of the flood season and Di is the flood occurrence date. The probability density func-
tion for a mixture of N von Mises distribution can be produced in the following form:

∑ π κ
= κ

=

−f x
p

I
( )

2 ( )
exp

(4)i

N
i

i

x u

1 0

[ cos( )]i i

where ui and κi are location and scale parameters, respectively; pi is the weight of the probability density; =N 2 
in this study; and I0 is the Bessel function. In this study, parameters were estimated by the maximum likelihood 
estimation method, and the approximate Monte Carlo goodness-of-fit test p-values (based on Kolmogorov–
Smirnov statistics) were calculated to assess the validity of the assumption that the flood occurrence dates fol-
lowed the selected distribution.

Marginal distribution of flood magnitudes.  In this study, five widely used distributions, including the gamma 
(GA), Weibull (WEI), lognormal (LOGNO), Gumbel (GU), and generalized extreme value (GEV) distributions, 
were selected to describe the flood magnitudes (Table S1). Then, based on the GAMLSS model proposed by Rigby 
and Stasinopoulos36, the time-varying marginal distribution was determined; such distributions are widely used 
in frequency analyses of nonstationary hydrological series.

Taking a three-parameter model with one explanatory variable as an example, if the response variable yt fol-
lows the distribution function µ σ ν= |F F y( , , )y

t
t t t  at time = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅t t n( 1, 2, ), then each parameter can be 

described as a linear function of the explanatory variable xt via a monotonic link function gk(·) as follows:

µ = +g a b x( ) (5)t
t

1 1 1

σ = +g a b x( ) (6)t
t

2 2 2

ν = +g a b x( ) (7)t
t

3 3 3

where ak and =b k( 1, 2, 3)k  are the parameters of GAMLSS.
In practice, only the location parameter µt and scale parameter σt are considered to be associated with the 

explanatory covariate. In other words, either one of these variables is time varying or both are time varying. The 
shape parameter νt is treated as a constant (i.e., =b 03 ). The stationary distribution can be obtained by assuming 
that the parameters are independent of the explanatory variable (i.e., = = =b b b 01 2 3 ).
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The optimal distribution can be selected from the candidates by comparing the value of the Akaike informa-
tion criterion (AIC). All computational processes were implemented in the R package “gamlss”.

Copula with time-varying parameters.  In multivariate hydrological frequency analysis, the 
Archimedean copula is widely used due to its flexibility in structural form49. Here, three simple single-parameter 
copulas, including the Gumbel copula (GH), Clayton copula (CL), and Frank copula (FR), were used as candi-
dates to model the time-varying dependence structure (Table S4).

The time-varying copula function assumes that the copula parameters obey a time-varying process and 
have time-varying characteristics. In this study, a process similar to ARMA (1, q)35 was used to describe the 
time-varying nature of the parameters:

∑τ Λ ω βτ α= + + −−
=

− −q
u v( 1 ( ))

(8)
c
t

t
j

q

t j t j1
1

where Λ() is a transformation function that considers the correlation with ρt in the definition interval (0, 1) in this 
study, Λ =

+ −
x( )

exp x
1

1 ( )
, and τc

t57 can be converted to θc
t58.

In this paper, the ARMA model with a lag of 10 orders was adopted (q = 10). Two-step pseudo maximum 
likelihood estimation was adopted for parameter estimation. First, the marginal distribution parameters were 
calculated, and the empirical distribution was then used instead of the marginal distribution to determine the 
logarithmic likelihood function of the following equation. A two-step method was used to estimate the maximum 
likelihood.

∑ ∑θ θ θ θ= =   L lnc F x F y L lnc F x F y( ) ( ( ), ( ); ) ( ) ( ( ), ( ); ) (9)c
t

t
T

X Y c
t

c
t

t
T

X Y c
t

where c(·) indicates the density of the copula function and F x( )X  and F y( )Y  represent the empirical marginal dis-
tributions. The parameters can be obtained by combining Eqs. (1) and (9). Because the test method of calculating 
the “distance” between the fitted copula and the empirical copula is not suitable for time-varying copulas59, the 
Rosenblatt probability integral transformation was used to test the goodness-of-fit of the time-varying copulas60. 
The optimum copula was selected according to the minimum AIC.

Analysis of flood coincidence risk.  The term coincidence refers to the simultaneous occurrence of floods 
in two (or more) rivers, which can be measured by the exceedance probabilities of flood events. As flood events 
are characterized by flood occurrence dates and magnitudes, both of these factors should be considered.

First, the flood occurrence dates were defined as the occurrence dates of the AMDF in the Huai River or Hong 
River. Then, the daily coincidence probabilities for the flood occurrence dates were described by the following 
mathematical equation:

τ ∆ τ ∆= ≤ ≤ + − ≤ ≤ + ++P P t T t t t T t t( , ) (10)i i h i i hb b i hb1

∑= =P P (11)T i
n

i1

where i indicates the ith day of the flood season and ∆t indicates the time interval between the response in the two 
rivers. Because the maximum daily flow in the two rivers rarely occurs on the same day, we defined ∆ =t 1 as a 
flood coincidence event in this study, and τhb indicates the difference in propagation time between the two stations 
(the difference in propagation time between the Huaibin and Bantai stations is 16 hours). Additionally, n indicates 
the length of the flood season, and PT is the annual coincidence probability of flood occurrence dates.

Second, the series of AMDFs was selected to fit the joint distribution of flood magnitudes, assuming that the 
random variables of AMDF in Huaibin Qh obey the FH distribution and the random variables of AMDF in Bantai 
Qh obey the FB distribution. Then, the exceedance probability of flood coincidence for a given flood magnitude in 
the t th year can be defined as:

θ θ θ θ θ= ≥ ≥ = − | − | + | | |P P Q q Q q F q F q C F q F q( , ) 1 ( ) ( ) ( ( ), ( ) ) (12)Q
t t

h h b b H h
t

B b
t

H h
t

B b
t

c
t

1 2 1 2

where qh and qb are the designed flows, C(·) represents the copula function with time-varying parameters, PQ
t  is the 

exceedance probabilities for coincident flood magnitudes, and Qh and Qb are the flood magnitudes, namely, the 
AMDFs sampled by the AM method.

Then, based on the hypothesis that the flood occurrence dates and flood magnitudes are independent of each 
other (i.e., the Kendall coefficient is less than 0.05), the annual flood coincidence probabilities Pt for given flood 
magnitudes in the t th year can be stated as AND-joint exceedance probabilities:

∑= = ≥ ≥=P PP P P Q q Q q( , ) (13)t i
n

i Q
t

T
t

h h b b1

This equation describes the probability that Qh is greater than qh and Qb is greater than qb when the occurrence 
dates of these two flows differ by one day.

Finally, the impacts of flood coincidence on the lower reaches of the basin were analyzed using the “most 
likely” design38. When Pt is fixed as a constant in the range of (0,1), there are many possible combinations of (Qh, 
Qb), where PQ

t  is also a constant because of the constant nature of PT. Among these combinations, the “most likely” 
design reflects the combination with the highest probability, as defined in Eqs. (14–15).
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µ ν µ θ ν θ θ= | | |− −argmax f F F( , ) ( ( ), ( ) ) (14)m
t

m
t

c H
t

B
t

c
t1

1
1

2

where −FH
1(·) and −FB

1(·) are the inverse functions of the marginal distributions of Qh and Qb with time-varying 
parameters, respectively; fc is the joint probability density with time-varying parameter θc

t; and µ and ν are inde-
pendent of each other and subject to a uniform distribution in the range of [0, 1]. Then, the “most likely” design 
in the t th year can be calculated by using the inverse of the CDFs of the marginal distributions:

θ θµ= | = |− −Q F and Q F v( ) ( ) (15)hmax
t

H m
t t

bmax
t

B m
t t1

1
1

2
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