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Multi-model Hydroclimate 
Projections for the Alabama-
Coosa-Tallapoosa River Basin in the 
Southeastern United States
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This study uses a high-resolution, process-based modeling framework to assess the impacts of changing 
climate on water resources for the Alabama-Coosa-Tallapoosa River Basin in the southeastern United 
States. A 33-member ensemble of hydrologic projections was generated using 3 distributed hydrologic 
models (Precipitation-Runoff Modeling System, Variable Infiltration Capacity, and Distributed 
Hydrology Soil Vegetation Model) of different complexity. These hydrologic models were driven 
by dynamically downscaled and bias-corrected future climate simulations from 11 Coupled Model 
Intercomparison Project Phase 5 global climate models under Representative Concentration Pathway 
8.5 emission scenario, with 40 years each in baseline (1966–2005) and future (2011–2050) periods. The 
hydroclimate response, in general, projects an increase in mean seasonal precipitation, runoff, and 
streamflow. The high and low flows are projected to increase and decrease, respectively, in general, 
suggesting increased likelihood of extreme rainfall events and intensification of the hydrologic cycle. 
The uncertainty associated with the ensemble hydroclimate response, analyzed through an analysis 
of variance technique, suggests that the choice of climate model is more critical than the choice of 
hydrologic model for the studied region. This study provides in-depth insights of hydroclimate response 
and associated uncertainties to support informed decisions by water resource managers.

A changing climate is projected to intensify regional and global hydrologic cycles1,2. These alterations in hydro-
logic cycles will potentially increase the frequency and magnitudes of hydroclimate extremes such as floods and 
droughts, and potentially impact water resource availability due to changes in the seasonality of streamflow and 
runoff3–5. The future hydrologic projections are, therefore, important to inform mitigation and adaptation strat-
egies aimed at addressing impacts of climate change in addition to increasing water demands. Moreover, relia-
ble estimates of hydroclimate extreme trends can ensure better preparedness of society and infrastructure from 
threats arising from extreme events and their socioeconomic impacts6.

Studies assessing climate change impacts on future hydrology at regional or catchment scales often adapt a 
standard procedure involving the use of a hierarchical hydro-meteorological framework (hereinafter “modeling 
framework”), including selection of the following key elements: (a) greenhouse gas emission scenario, (b) global 
climate model (GCM), (c) downscaling method (statistical or dynamical), (d) bias correction of downscaled data 
(if required), and (e) hydrologic model7–10. These hydrologic projections are inevitably associated with uncertain-
ties introduced at each stage of the modeling framework. In addition to external factors such as natural variability 
and the choice of emission scenarios, many uncertainties are model-related, such as model assumptions, struc-
tures, accuracy, initial conditions, calibration procedures, training datasets, and the spatial and temporal scales 
of implementation7,11,12. An ideal but non-pragmatic way to characterize these uncertainties would encompass 
producing ensemble hydroclimate projections using a complete sample of uncertainty sources. However, given 
the limited resources, most impact assessment studies can focus only on a subset of these choices, thereby result-
ing in underestimation of the uncertainties in hydroclimate projections7,13.
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Given the plethora of choices in the above-mentioned modeling framework and their significance in hydrocli-
matic projections, many studies have investigated the effects of individual sources of uncertainties14–16, as well as 
combined uncertainties due to different methodological choices within the modeling framework7,8,17–23. Several 
studies at global and regional scales indicate that the uncertainties from climate models are a more important 
source of uncertainty than other factors such as greenhouse gas emission scenarios and hydrologic model struc-
tures8,12,19,24. On the other hand, Bosshard et al. (2013) revealed that the prominent sources of uncertainty vary 
by season in the Alpine region, where uncertainties arising from climate models dominate during summer and 
fall, whereas choices of statistical processing methods and hydrologic models are more prevalent during winter 
and spring7. Similarly, Chegwidden et al. (2019) demonstrated that choices of GCM and greenhouse emission 
pathways are the dominant contributors to annual streamflow volume, and the choices of hydrologic model and 
parameters are prominent in capturing low-flow uncertainties over the US Pacific Northwest23. While multiple 
climate models and greenhouse gas emission scenarios have been used to capture the ensemble of climate sce-
narios in the past two decades, such studies are often limited to the choice of a single hydrologic model17,20,22,25–27. 
Despite studies indicating that choice of hydrologic model can produce substantial differences in hydrologic 
projections, at times exceeding the mean signal from climate scenarios11, the use of multiple hydrological models 
has only begun to gain traction21,28,29.

The selection of appropriate hydrologic model(s) in the modeling framework remains a challenge, as decisions 
so subjective in nature require careful consideration of several factors, including model applicability, suitable spa-
tiotemporal scale of implementation, availability of computational resources, quality of meteorological forcings 
and land surface parameters, and the overall technical feasibility30. While certain applications—such as hydrody-
namic modeling applied at watershed scales—warrant fine-scale outputs from hydrologic modeling (<100 m)31, 
the scalability of these implementations at regional scales is an obvious challenge. Studies have demonstrated that 
lumped or coarse-scale semi-distributed hydrologic models may yield similar hydroclimate projections compared 
to fine-scale hydrologic models30. However, a more elaborate comparison among models with very distinct spatial 
scales and structures is still lacking.

The goal of this study is to assess the impacts of changing climate on water resources through multi-model 
ensemble hydroclimate projections for the Alabama-Coosa-Tallapoosa (ACT) River Basin in the southeast United 
States (SEUS). While SEUS is considered “water-rich,” water allocation conflicts within two major river basins 
including ACT have created a political issue between the states of Georgia, Alabama, and Florida. The increasing 
water demand due to population growth and urbanization is further likely to deepen water stress in the future32. 
In addition, the SEUS is relatively underrepresented in the existing climate impact assessments on hydrology33. 
While some studies at the regional scale have been conducted, this study aims to provide a more comprehensive, 
ensemble-based hydroclimate evaluation over the ACT River Basin.

Overall, the main objectives of this study are to (a) develop an ensemble of high-resolution hydroclimate 
projections for the ACT River Basin using multiple climate and hydrologic models, and (b) analyze the relative 
uncertainty contribution between climate and hydrologic models. To accomplish these objectives, a hierarchical 
multi-model framework with process-based hydro-meteorological models over the ACT River Basin was used. 
An ensemble of 33 hydroclimate projections using a combination of 11 GCMs and 3 distinct hydrologic models 
was produced for 1966–2005 baseline and 2011–2050 future periods under the Representative Concentration 
Pathway 8.5 (RCP8.5) scenario. Various hydrologic indices including long-term seasonal mean, high, and low 
streamflow were investigated and the effects of various sources of uncertainties were analyzed. Through the incor-
poration of a high-resolution modeling framework, this assessment is expected to provide fine-scale ensemble 
hydroclimate projections to support local stakeholders, including water resource managers from 15 large reser-
voirs and city planners from several urban areas (including Atlanta), for more informed decisions.

Study Area
The study area consists of the ACT River Basin covering the northeastern and east-central parts of Alabama, 
northwestern Georgia, and small parts of Tennessee (Fig. 1). The ACT River Basin, classified as a US Hydrologic 
Subregion (HUC04 = 0315), has an approximate drainage area of 59,100 km2 and includes 14 US Hydrologic 
Subbasins (HUC08s). The Alabama River is formed by the confluence of the Coosa and Tallapoosa Rivers near 
Montgomery, AL. The Coosa River flows through HUC08s 03150101 to 03150107 while the Tallapoosa River 
flows through HUC08s 03150108 to 03150110. The subregion has a relatively flat topography with a small moun-
tainous region in the north. Elevation ranges from sea level to 1278 m based on the National Elevation Dataset34. 
The soil type consists mainly of sandy loam and silty loam. The ACT River Basin receives an annual average of 
1379 mm of precipitation primarily from rainfall with minimal influence of snow on runoff. Forest is the major 
landcover type in the ACT River Basin, which results in high evapotranspiration ranging from 762–1067 mm 
(56–78% of annual precipitation), generally increasing from north to south. The study area includes 15 large 
reservoirs including 5 federal dams35. The major urban areas in the ACT River Basin include suburban areas of 
Atlanta (Kennesaw, GA and Marietta, GA); Birmingham, AL; Montgomery AL; and Mobile, AL. The selected US 
Geological Survey (USGS) streamflow gauges used in the study (assigned a five-character unique ID for brevity; 
a reference table is provided in supplementary material (SI) Table S2) and HUC08s are marked on Fig. 1 for 
reference.

Data and Methods
General modeling framework.  Various choices available along the hierarchical hydro-meteorological 
modeling chain necessitate an evaluation of all potential options when designing a climate change impact assess-
ment study. The modeling framework employed in this study mainly constituted two elements contributing to 
uncertainty: (1) downscaling of coarse resolution GCM data to the regional scale and (2) using regional scale 
meteorological forcings to drive calibrated hydrologic models. This modeling framework is employed after careful 
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consideration of the goals of the study, availability of computational resources, time constraints, and stakeholder 
needs. A multi-model ensemble of hydrologic projections was created using a combination of 11 climate models 
and 3 distinct hydrologic models. Each combination of 11 climate models and 3 hydrologic models was employed, 
thereby producing 33 sets of hydroclimate projections.

Climate models.  The climate projections used in this study were generated by dynamically downscaling 11 
Coupled Model Intercomparison Project Phase 5 GCMs using Regional Climate Model version 4 (RegCM4) to a 

Figure 1.  The study area showing the Alabama-Coosa-Tallapoosa River Basin along with major stream 
networks and USGS gauges used in analysis. The figure was created using ESRI ArcMap (https://desktop.arcgis.
com/en/arcmap/) Version 10.6.1.9270. The base map used in the figure is obtained from OpenStreetMap and 
attributed in the service layer credits on the figure “© OpenStreetMap contributors”.
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horizontal spatial resolution of 18 km36. These climate projections were further statistically bias-corrected by the 
Parameter-elevation Regressions on Independent Slopes Model (PRISM) meteorological data using the quantile 
mapping technique37,38. The bias correction was conducted at the monthly scale using the 1/24° (~4 km) reso-
lution 1966–2005 monthly PRISM precipitation and temperature data as observation. The monthly correction 
values were then evenly distributed to daily time series of precipitation (using ratio adjustment) and temperature 
(using degree adjustment). The climate projections provide key meteorological forcing data such as daily precip-
itation, maximum and minimum daily temperature, and wind speed for hydrologic models for 40 years in the 
baseline period (1966–2005) and another 40 years in the future period (2011–2050). The future projections are 
obtained under the RCP8.5 business as usual case scenario, which assumes high population and slow income 
growth. Further details about regional downscaling effort is detailed in Ashfaq et al.36. A comparison of bias 
corrected RegCM4 outputs and their performance evaluation over ACT region is presented in the supplementary 
information.

Hydrologic models.  This study used three distinct hydrologic models of varying complexity and spatio-
temporal resolution, including the Precipitation Runoff Modeling System (PRMS, ~7.5 km spatial resolution at 
daily timestep), Variable Infiltration Capacity model (VIC, ~4 km at three-hourly timestep27), and Distributed 
Hydrology Soil Vegetation Model (DHSVM, 90 m at three-hourly timestep39). These models were selected due 
to their wide range of applications in climate change studies26,27,40–42. In addition, these models can simulate 
hydrologic processes at a fine spatial resolution using distributed process-based equations allowing them to bet-
ter capture meteorological and basin heterogeneity. For model calibration and validation, all three hydrologic 
models were implemented for the historic period of 1980–2012 using the same meteorological forcings obtained 
from the Daymet dataset43. Year 1980 was used for model spin-up. The model performance was evaluated for 62 
USGS gauges across the ACT River Basin. A detailed description of these models and their calibration strategies 
is presented in the supplementary information.

Hydrologic indices.  The calibrated PRMS, VIC, and DHSVM models were used to generate hydroclimate 
projection for each of the 11 GCMs, resulting in a 33-member ensemble. The first year of meteorological data was 
repeated during the hydrologic simulation in both the baseline and future periods to initiate hydrologic model 
spin-up and has been discarded in the analysis. The outputs of hydrologic models included runoff at the aggre-
gated HUC08 level; daily streamflow values at the gauge level for 62 selected gauges were used for analysis and 
comparison (Fig. 1, gauges are assigned a five-character unique ID for the sake of brevity. An association table is 
provided in SI Table S2).

Three types of indices were selected to evaluate changes in hydrologic response from baseline (1966–2005) to 
future (2011–2050) periods. They include:

	(a)	 Mean seasonal percent change in precipitation (ΔP), runoff (ΔR), and streamflow (ΔQ)
	(b)	 Mean percentage change in high runoff/streamflow (ΔR95/ΔQ95), where high runoff/streamflow indi-

cates the 95th percentile runoff/streamflow statistics
	(c)	 Mean percentage change in low runoff/streamflow (ΔR05/ΔQ05), where low runoff/streamflow indicates 

the 5th percentile runoff/streamflow statistics.

In all cases, percentage change is calculated with reference to baseline values (i.e., 100 × (future - baseline)/
baseline). The following breakdown of months was used to characterize seasons: Winter (December, January, and 
February), Spring (March, April, and May), Summer (June, July, and August), and Fall (September, October, and 
November).

Uncertainty quantification.  Analysis of variance (ANOVA) was used to quantify the of relative contribu-
tion of uncertainties in hydroclimate projections arising from different sources and their interactions, similar to 
other studies7,9,23,44. Based on this technique, the total variance can be explained by the sum of variances intro-
duced by individual components and their interactions. Since, this study focuses on two main sources of uncer-
tainties arising from (a) 11 climate models and (b) 3 hydrologic models, the following equation was developed:

μ= + + + × +Y CM HM CM HM e( ) , (1)i j i j ij,

where Y is the climate change indicator for the i climate model and the j hydrologic model; μ and e denote overall 
mean and error, respectively. The terms CM, HM, and CM × HM denote the relative contribution of each source 
of uncertainties arising from climate models, hydrologic models, and interaction of climate and hydrologic mod-
els, respectively. The analysis was performed for the hydrologic indices including ΔQ for each season, ΔQ95, and 
ΔQ05.

Results and Discussion
Model performance.  The historic model performance of the hydrologic models was evaluated for two dif-
ferent hydrologic variables including runoff (monthly, aggregated at HUC08 level) and streamflow (both daily 
and monthly for 62 gauges) due to different calibration procedures for the hydrologic models. While VIC was 
calibrated to monthly USGS WaterWatch runoff and DHSVM was calibrated to daily streamflow at USGS gauge 
locations, PRMS was calibrated in a two-step fashion in which the first step involved runoff calibration at the 
HUC08 level to monthly USGS WaterWatch and the second step involved calibration of streamflow against USGS 
gauge data at the daily time scale.

The time series of simulated monthly runoff was compared with the observed runoff from USGS WaterWatch 
for each HUC08. The key statistics including aggregate annual runoff, Nash–Sutcliffe Efficiency (NSE) are 
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presented (Fig. 2, and SI Table S1). The NSE values at the monthly time step ranged between 0.43–0.93 for VIC, 
0.59–0.92 for PRMS, and 0.74–0.91 for DHSVM. For all hydrologic models, 11 out of 14 HUC08s exhibited 
NSE values greater than 0.8, demonstrating skillful hydrologic models. Since the USGS WaterWatch data include 
gauges under influence of regulation, basins with large reservoir storage could show a potential bias.

The next comparison included evaluation of daily streamflow for 62 USGS gauges spread over the entire ACT 
River Basin covering every HUC08 (Fig. 2). Additional information about key statistics such as NSE at both daily 
and monthly time steps for each hydrologic model and for each gauge location is presented in SI Table S2. At the 
monthly scale, all three models demonstrated the ability to recreate historic USGS streamflow. For instance, the 
monthly NSE values were greater than 0.7 for roughly 79% of USGS gauges for VIC, 92% for PRMS, and 89% of 
USGS gauges for DHSVM (Fig. 2d–f, and SI Table S2). However, the VIC model had a lower performance at the 
daily scale compared with DHSVM and PRMS (Fig. 2a–c and SI Table S2). The USGS gauge closest to the outlet of 
the ACT River Basin demonstrated a similar level of performance for all three models with monthly NSE values of 
0.89 for PRMS, 0.90 for VIC, and 0.91 for DHSVM. Note that the current hydrologic model setup for each model 
does not incorporate the effects of reservoirs on the streamflow; therefore, model performance was affected for 
the USGS gauges located immediately downstream of large reservoirs. The effect of regulation from reservoirs on 
hydrograph response tended to dissipate for the gauges further downstream. Overall, the results suggest a satis-
factory performance of hydrologic models in the historic period.

Future hydroclimate projections.  Precipitation.  The ΔP averaged over the ACT River Basin is projected 
to increase across all the seasons (SI Fig. S3). The multi-model mean precipitation exhibited an increased by 2.3%, 
4.4%, 1.9%, and 3.5% during winter, spring, summer, and fall, respectively. During winter and spring seasons, the 
increase was generally observed across the entire basin with minor spatial variability. However, summer and fall 
exerted greater spatial variabilities in ΔP, with a slight decrease projected over the northeastern part of the ACT 
River Basin.

Figure 2.  Historic model performance at daily and monthly scales for each of the three hydrologic models. The 
HUC08s and USGS gauge locations are color-coded based on NSE values. The simulated streamflow values are 
compared with corresponding observed historic USGS streamflow, while the simulated runoff was compared 
with USGS WaterWatch runoff as a benchmark for the period of 1981–2012. The figure was created using ESRI 
ArcMap (https://desktop.arcgis.com/en/arcmap/) Version 10.6.1.9270.
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Runoff.  Figure 3a–d and Table 1 present projected mean seasonal change in ΔR using all 33 ensemble members 
summarized at the HUC08 level for the ACT River Basin. The ΔR aggregated for the ACT River Basin (Table 1) 
suggests that average runoff is likely to increase by 2.3%, 5.5%, 8.0%, and 12.0% in winter, spring, summer and 
fall, respectively. The spatial distribution of ΔR indicates that the lower half of the basin may potentially observe 
a larger increase in runoff along the Alabama River compared with the upstream tributaries of the Coosa River 
(HUC08s such as 03150102 and 03150104). Furthermore, the spatial variability in ΔR is largest in fall and sum-
mer compared with winter and spring. The spatial patterns and seasonal changes in ΔR are generally consist-
ent with ΔP. Changes in low runoff indicate a projected decrease by −1.74%, while high runoff is projected to 
increase by 6.6% averaged across the ACT River Basin. Low runoff is projected to change within a range of −6.6% 
to +1.6% for roughly 72% of the HUC08s (Fig. 3e). Similarly, high runoff is projected to increase for all HUC08s 
within a range of +1.5% to +10.8% (Fig. 3f).

The robustness of hydrologic projections is evaluated for each variable and for each HUC08 in Fig. 3. The 
HUC08s with more than two-thirds of ensemble members indicating a same sign of change are labeled as “A”; 
otherwise, they are labeled “N.” These results suggest that roughly 35%, 42%, 57%, and 79% of HUC08s indicate 
an agreement during spring, summer, fall, and Q95, while no agreement was observed during winter and Q05.

Streamflow.  Next, future changes in streamflow for 62 selected USGS gauges in the ACT River Basin were eval-
uated. Although runoff provides a good sense of overall water distribution in the basin, evaluating streamflow can 
directly indicate water availability in the channels. Therefore, the response of streamflow, particularly high and 
low flows, under climate change is of interest to water managers. Figure 4a–d presents projected changes in ΔQ 
for each of the USGS gauge locations with detailed statistics presented in SI Table S3. The projected change ranges 
in seasonal streamflow for 62 USGS gauges are as follows: winter (−1.2% to +5.2%), spring (+0.9% to +10%), 
summer (−2.3% to +18.1%), and fall (−2.2% to +23.4%). Maximum changes are projected in the months of 
summer and fall with up to a 23% increase in the streamflow in future. The spatial distribution of changes in 
streamflow indicates a larger increase in the lower half of the basin, whereas a moderate change is observed in 

Figure 3.  Projected changes in average monthly seasonal runoff (a–d), low runoff (e), and high runoff (f) 
over the ACT River Basin aggregated at HUC08 levels. The HUC08s with more than two-thirds of ensemble 
members indicating the same sign of change are labeled as “A” or otherwise “N.” The figure was created using 
ESRI ArcMap (https://desktop.arcgis.com/en/arcmap/) Version 10.6.1.9270.
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HUC08

Change in Runoff (%)

Winter Spring Summer Fall Q05 Q95

03150101 −0.34 0.49 5.15 0.47 0.72 1.46

03150102 −0.32 0.40 0.13 −0.82 −3.25 2.24

03150103 0.01 1.84 6.86 2.60 −0.41 2.46

03150104 0.51 1.87 0.02 0.22 −3.12 3.89

03150105 0.64 2.43 7.70 6.36 1.68 3.70

03150106 1.50 3.93 6.10 9.14 −2.67 5.15

03150107 3.22 6.20 8.70 13.02 −2.49 6.71

03150108 3.60 3.38 2.12 7.16 −3.20 4.51

03150109 3.29 6.25 6.19 11.41 −6.56 8.34

03150110 4.13 8.33 10.56 17.73 −3.05 10.78

03150201 4.06 9.16 12.35 19.42 −0.08 9.77

03150202 2.28 6.80 9.28 13.89 −3.70 7.30

03150203 2.55 8.99 15.07 22.39 1.34 9.16

03150204 2.26 7.72 12.10 21.85 1.31 7.61

ACT River Basin 2.28 5.53 7.97 11.99 −1.74 6.60

Table 1.  Summary statistics for mean ensemble percent change in runoff observed under climate change 
summarized by HUC08s in the ACT River Basin.

Figure 4.  Projected changes in average monthly seasonal streamflow (a–d), low flow (e), and high flow (f) over 
the ACT River Basin for each USGS gauge location. The gauge locations with more than two-thirds of ensemble 
members indicating the same sign of change are stippled in black. The figure was created using ESRI ArcMap 
(https://desktop.arcgis.com/en/arcmap/) Version 10.6.1.9270.
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the upper half of the basin. While the spatial pattern of ΔQ is consistent with runoff changes, the magnitudes of 
projected changes in ΔQ are larger than ΔR.

Figure 4e,f show projected percent changes in streamflow extremes ΔQ05 and ΔQ95, respectively, for each 
USGS gauge location. The ΔQ95 is projected to increase between 1.8% and 11.1% across all gauges. In general, 
ΔQ95 will increase by approximately 4.0% averaged across gauges located in the Coosa River (HUC08s 03150101 
through 03150107), and approximately 7.2% averaged across gauges in the Tallapoosa River and Alabama River 
(SI Table S3). A similar evaluation for ΔQ05 (Fig. 4e, SI Table S3) revealed that ΔQ05 is projected to decrease 
across 84% of the gauges along with greater spatial heterogeneity across the ACT River Basin. Most gauges located 
in the upstream HUC08s (03150101, 03150102, and 03150104) exhibited an average projected decrease of 4.7% in 
low flows with a maximum change of approximately −19.7%. The rest of the gauges in the lower half of the ACT 
River Basin exhibited an average projected decrease of roughly −1.6% in the low flows.

A comparison of the hydrologic projections generated by different hydrologic models for gauge A0096 (USGS 
gauge closest to the outlet of the ACT River Basin) revealed that PRMS, VIC, and DHSVM suggest a mean change 
(ensemble range) in projected streamflow by +3.2% (−23.3% to +16.0%), +6.4% (−19.0% to +21.1%), and 
+6.0% (−13.1% to +21.1%), respectively. In general, PRMS resulted in a relatively lower change in mean stream-
flow signal response compared with VIC and DHSVM. However, the ensemble range was much larger and was 
comparable among the hydrologic model, suggesting that despite the differences in the model structures, resolu-
tion, calibration, and validation, these three hydrologic models provide similar insights in hydrologic projections.

Role of climate versus hydrological models and uncertainty evaluation.  As discussed in the 
Introduction, uncertainties are evident in future hydroclimate projections derived through the hierarchical mod-
eling chain introduced by various factors. While ensemble mean values of projections can be beneficial, ranges 
in ensemble values for future projections can also serve as important information for water resource manage-
ment. As indicated in the previous section, the mean hydrologic response from each hydrologic model captures 
similar information in streamflow change; this analysis further provides a breakdown for seasonal, high, low 
flows presented for gauge A0096, for example. The range associated with change in hydroclimate response, in 
addition to mean hydrologic signal, is also presented in Fig. 5 for different streamflow variables (ΔQ at seasonal 
scale, ΔQ05, and ΔQ95) arising from 33 sets of hydroclimate projections. Each subfigure (Fig. 5a–f), provides 
an ensemble range of ΔQ arising from individual hydrologic models (PRMS, VIC, and DHSVM) and compared 
with “Total” (ensemble range from 33 members). In each subfigure, the distribution spreads of relative change 
in flow obtained by individual hydrologic models are very similar to each other. In other words, the distribution 
is not significantly different from one hydrologic model to the next. This indicates that the choice of hydrologic 
model is not as significant as selecting a climate model because the total spread is largely driven by uncertainties 
associated with precipitation arising from different climate models. In general, a similar trend was observed in 
most of the remaining USGS gauge locations. Results for four additional upstream locations within ACT River 
Basin including A0019, A0063, A0078 and A0092, which are representative of tributaries to Alabama River, and 
corresponds to Cahaba River, Coosa River, Tallapoosa River and Oostanaula River respectively are presented in 

Figure 5.  Distribution of percent change in mean, high, and low streamflow for a selected USGS gauge close 
to the outlet of the ACT River Basin. In each panel, “Total” represents distributions obtained from all 33 
projections, while DHSVM and VIC represent distributions obtained from the respective choice of hydrologic 
model. The multi-model mean for total ensemble is shown as a black diamond.
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SI Fig. S5. However, higher uncertainty was observed in the simulation of ΔQ during summer, fall, and ΔQ05 for 
a few gauges located in the northeastern part of the ACT River Basin.

ANOVA also provided the relative contribution of uncertainties arising from climate models and hydrologic 
models to total ensemble uncertainty. The variance decomposition suggested that CM was the dominant source of 
variability, accounting for over 80% of total variance for all six variables (Fig. 6). The second largest source of vari-
ability arose from the interaction of climate and hydrologic models (CM × HM). The contribution of the HM was 
relatively low compared with other factors, while the residual error was almost negligible in all cases. An increase 
in relative contribution from HM was observed for summer flow and low flow conditions, indicating a relatively 
stronger influence of the choice of hydrologic models in conditions where baseflow constitutes a larger portion 
of streamflow. However, since all thee hydrologic models used in this study were robustly calibrated, the lesser 
influence of the HM was expected in SEUS, whereas the opposite may be expected for drier or snow-dominated 
regions.

Discussion and potential implications.  The projected changes in seasonal hydrology demonstrate that 
the ACT River Basin, in general, is expected to experience an increase in total runoff and streamflow in the future, 
which could be attributed to an overall increase in the seasonal precipitation over the region. However, the magni-
tude of the increase in runoff is not linearly proportional to the increase in precipitation. A small increase of 1.9% 
in precipitation potentially causes an increase of 8.0% in runoff during summer. Similar behavior was also exhib-
ited during the fall season. This result could be attributed to the high hydrologic sensitivity of runoff and indi-
cates that even a small increase in precipitation could yield a significant increase in runoff response45. Moreover, 
increases in high-intensity storm events can trigger high runoff response signals despite relatively marginal 
increases in total seasonal precipitation. This finding suggests that the summer and fall seasons in the SEUS could 
observe an increase in precipitation intensity. This explanation corroborates the results of other studies indicating 
ongoing intensification of summer46,47 and fall48 precipitation in the SEUS based on historic observed datasets 
and reanalysis datasets. Such behavior is exhibited by the regionally downscaled precipitation extremes under 
future climate conditions over ACT river basin (SI Fig. S4) The projected changes in high flows further indicate 
that climate change will likely affect the frequency and magnitude of high-flow events consistently throughout the 
ACT River Basin; these effects may be further exacerbated if urbanization and deforestation occur under future 
conditions in the region (not accounted for explicitly in hydrologic models). The changes are more prominent for 
the lower half of the basin, including the gauges located around Martin Dam, Jordan Lake, Robert F. Henry Lock 
and Dam, Millers Ferry, and Claiborne Reservoir. The changes in low flows are more prominent in the northwest-
ern parts of the ACT River Basin. Projected increases in high flows and ubiquitous decreases in low flows across 
the majority of gauges in the ACT River Basin suggest an intensification of extremes in the hydrologic cycle in the 
region under future climatic conditions.

The projected seasonal and high/low streamflow changes provide valuable information to water resource 
managers and other reservoir operators in the region. Despite only moderate increases projected for high flows, 
such information is still beneficial for infrastructure design and safety. Likewise, projected decreases in low flows 
during summer and fall for the upper half of the ACT River Basin could influence reservoir operations, especially 

Figure 6.  Relative contribution of different sources of uncertainty to total variance for each hydrologic indices. 
The CM, HM, CM × HM, and E represent variance caused by climate models, hydrologic models, interaction of 
climate and hydrologic models, and error.
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during periods when reservoir operations balance competing demands such as water supply, hydropower, mini-
mum environmental and recreational flow, and others.

Based on the uncertainty quantification for the ACT River Basin, the choice of GCM is the most important 
factor when designing the hierarchical modeling framework for impact studies. The choice of hydrologic models 
plays an insignificant role in uncertainty of hydrologic regimes in the region relative to the uncertainties aris-
ing from the climate projections. A complex and computationally intensive hydrologic model such as DHSVM 
provides similar insights in hydrologic projections compared to VIC and PRMS in this region, suggesting that 
water managers and other stakeholders can place greater emphasis on the selection of climate models for future 
hydroclimate study designs. It is important to note that while we use the hydrologic models with varying spatial 
resolution in this study, the effect of resolution is inseparable from the other factors (such as model parameteri-
zation) in the current study design.

Internal variability of GCMs is not explicitly calculated, as this commonly requires generating multiple simu-
lations for a given GCM using different initial conditions but similar external forcings49. Since the meteorological 
forcings for this study were only limited by one run per GCM, the internal variability is therefore integral in 
determining GCM uncertainty. Nevertheless, the findings of this study align with other studies that focused on 
quantifying the major sources of uncertainty over various regions8–10,23,44.

Summary and Conclusions
Evaluations of future water resources under a changing climate require reliable hydroclimate projections. These 
projections are often generated by driving calibrated hydrologic models using meteorological outputs from 
GCMs. In this study, a hydro-meteorological framework of process-based models was developed. Using a com-
bination of 11 dynamically downscaled GCMs and 3 calibrated hydrologic models, 33 hydrologic projections 
over the ACT River Basin were produced. The future projections were generated under the RCP8.5 emission 
scenario for a 40-year period of 2011–2050, which were compared with baseline simulations (1966–2005). The 
high-resolution simulated hydrologic outputs variables were analyzed and sources of uncertainties arising from 
climate models and hydrologic models were quantified.

Overall, models are reasonably able to simulate baseline hydroclimates comparable to the observations. The 
future projections demonstrated an increase in multi-model mean seasonal precipitation during all seasons by 
1.9% to 4.4% relative to baseline. The runoff signal exhibited a similar behavior; however, the changes in runoff 
were not linearly proportional to the increase in precipitation. For instance, the summer season observed an 
8% increase in runoff while precipitation increased only by 2%. This finding indicates future intensification of 
summer rainfall consistent with existing trends documented in other studies, as discussed previously. The con-
sistent increase projected in high flow further suggests an increasing trend of high-intensity rainfall across the 
ACT River Basin, whereas the projected low flow exhibits a decreasing trend for most gauge locations, indicating 
potential slight intensification of the hydrological cycle in the region. The increased magnitudes of high-flow 
events could put additional stress on major reservoirs with the primary goal of flood control in the ACT River 
Basin. On the other hand, the decreased low flow magnitudes could make reservoirs more vulnerable when they 
encounter competing water demands.

The analysis of changes in seasonal and extreme flows close to the outlet of the ACT River Basin showed a 
large distribution spread, which was consistent across most gauges. A quantification of sources of uncertainties 
using ANOVA revealed that climate models are the dominant source of uncertainties in the region. These results 
were consistent across all measures of streamflow. The results suggest that different hydrologic models do not 
yield different insights about hydroclimate projection at the watershed scale, thereby suggesting that if resources 
are limited, water managers can use a relatively coarser/simpler hydrologic model to effectively capture the hydro-
logic projections. Although this study considered two sources of uncertainties, other sources may be incorporated 
in the future. A more comprehensive analysis would incorporate additional sources of uncertainties by including 
other emission scenarios, climate models, downscaling approaches, sets of hydrologic parameters, and future land 
use cover. Despite the limitations, this study can set a path forward for applications of the proposed framework to 
many aspects of water resources, including investigation of future flood risks, water supply, reservoir operations, 
and hydropower production in the ACT River Basin.

Data availability
The hydrologic models used in the study are open source and can be obtained from the following links:

• PRMS: https://www.usgs.gov/software/precipitation-runoff-modeling-system-prms
• VIC: https://vic.readthedocs.io/en/master/Development/ReleaseNotes/#vic-412-and-earlier
• DHSVM: https://github.com/pnnl/DHSVM-PNNL
The hydrologic projections generated in the study, model setup details, or any other pertinent information can 

be made available by the corresponding author upon request.
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