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No evidence for after-effects 
of noisy galvanic vestibular 
stimulation on motion perception
Aram Keywan1,3*, Hiba Badarna1,3, Klaus Jahn1,2,3 & Max Wuehr1,3

Noisy galvanic vestibular stimulation (nGVS) delivered at imperceptible intensities can improve 
vestibular function in health and disease. Here we evaluated whether nGVS effects on vestibular 
function are only present during active stimulation or may exhibit relevant post-stimulation after-
effects. Initially, nGVS amplitudes that optimally improve posture were determined in 13 healthy 
subjects. Subsequently, effects of optimal nGVS amplitudes on vestibular roll-tilt direction recognition 
thresholds (DRT) were examined during active and sham nGVS. Ten of 13 subjects exhibited reduced 
DRTs during active nGVS compared to sham stimulation (p < 0.001). These 10 participants were then 
administered to 30 mins of active nGVS treatment while being allowed to move freely. Immediately 
post-treatment , DRTs were increased again (p = 0.044), reverting to baseline threshold levels (i.e. 
were comparable to the sham nGVS thresholds), and remained stable in a follow-up assessment after 
30 min. After three weeks, participants returned for a follow-up experiment to control for learning 
effects, in which DRTs were measured during and immediately after 30 min application of sham nGVS. 
DRTs during both assessments did not differ from baseline level. These findings indicate that nGVS does 
not induce distinct post-stimulation effects on vestibular motion perception and favor the development 
of a wearable technology that continuously delivers nGVS to patients in order to enhance vestibular 
function.

There is growing evidence that information processing in sensory systems can be enhanced by adding an appro-
priate low-intensity level of noise to the system1–4. The rationale behind this phenomenon is a mechanism known 
as stochastic resonance (SR), according to which the response of a non-linear system to weak input signals can 
be optimized by the presence of a particular level of stochastic interference, i.e., noise5,6. SR-like phenomena in 
the vestibular system can be induced by an imperceptible noisy galvanic vestibular stimulation (nGVS), which 
was shown to effectively lower thresholds for vestibular motion perception and vestibulospinal reflexes7–11. The 
therapeutic potential of nGVS was further explored in patients with vestibular hypofunction that suffer from 
pathologically increased thresholds for vestibular information processing12,13. nGVS-treatment in these patients 
resulted in improved static postural and dynamic gait stability14–17.

With respect to future therapeutic applications of nGVS, it is important to determine whether nGVS-induced 
improvements in vestibular information processing are only present during active stimulation or will sustain after 
a prolonged treatment with this stimulation. In line with the latter possibility, several studies on supra-threshold 
GVS could demonstrate profound after-effects on the ocular-motor and postural domains after stimulus termi-
nation18–23. Furthermore, two recent studies suggest that also low-intensity, sub-threshold nGVS can induce sus-
tained post-stimulation improvements in body balance in healthy elderly and in patients with bilateral vestibular 
hypofunction24,25. These findings are, however, at variance with the presumed mechanism of nGVS, where SR 
requires the simultaneous presence and interaction of sub-threshold incoming signals and low-intensity noise. 
Nevertheless, it is still possible that SR-induced peripheral or central vestibular adaption processes might result in 
a sustained improvement of vestibular function after the cessation of the stimulus. Both studies, however, did not 
control for possible placebo and/or task-dependent learning effects, which in turn makes it difficult to ascertain 
the origin of the reported improvements.
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The aim of the present study was therefore to re-examine the possibility of sustained after-effects of nGVS 
on vestibular function, in particular on vestibular motion perception. The latter has been recently demonstrated 
to be enhanced by the same nGVS amplitudes that also improve posture7,11. We thus studied and compared the 
effects of nGVS when actively applied during a vestibular direction-recognition task, to its effects on the same 
modality following a 30-min nGVS treatment while freely moving. The experimental setup was further controlled 
for possible cofounding placebo and task-dependent learning effects.

Methods
Ethics.  The study protocol was approved by the ethics committee of the medical faculty of the Ludwig-
Maximilians University of Munich (reference number: 496-16). The study was conducted in conformity with the 
Declaration of Helsinki. Informed written consent was obtained from all participants prior to the experiments.

nGVS stimulation.  Thirteen healthy subjects (four males; mean age 25.6 ± 2.8 years) participated in the 
study. The sample size was calculated with respect to effect sizes reported in previous studies on nGVS effects on 
vestibular motion perception7,8,11, with a power of 0.80, an alpha level of 0.05, and an effect size of 0.75. nGVS in 
each participant was applied via a pair of 4.0 cm × 6.0 cm Ag-AgCl electrodes attached bilaterally over the left and 
right mastoid process. A constant current stimulator (DS5, Digitimer, Hertfordshire, UK) delivered a zero-mean 
Gaussian white noise within a frequency range of 0–2 Hz (Fig. 1A)7. All participants were familiar with the exper-
imental procedure from a previous study7.
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Figure 1.  nGVS stimulus characteristics, head motion profiles, and nGVS effects on posture. (A) Exemplary 
nGVS stimulus profile (left panel) and corresponding nGVS power spectrum (right panel). (B) Distribution of 
head angular velocity magnitudes (bin width: 0.5 deg/s) of one exemplary participant during the 30 min nGVS 
stimulation between session 2 and 3 (left panel) and corresponding head motion power spectra (right panel). 
(C) Exemplary balance responses to nGVS at varying amplitudes that follow a bell-shaped curve with maximal 
improvement at 200 µA (left panel). Corresponding group effects of nGVS at 0 µA (i.e., baseline) compared to 
nGVS at optimal intensities. *Indicates a significant difference between conditions.
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Identification of optimal nGVS amplitude.  Body sway of each subject was recorded for 30 s by a sta-
bilometer platform (Kistler 9261 A, Kistler Group, Winterthur, Switzerland) while standing on foam with 
eyes closed. This procedure was repeated eight times, each time with different amplitude of nGVS, ranging 
from 0–700 µA in a randomized manner. For each trial, three parameters characterizing body sway were ana-
lyzed offline: The mean velocity (MV) and root mean square (RMS) of the center of pressure (COP) in the 
anterior-posterior (AP) and medio-lateral (ML) planes as well as the envelopment area traced by the COP move-
ment. The ratio of each parameter during the stimulation conditions to that of the baseline condition (i.e., 0 µA) 
was calculated (i.e., normalized ratio). The nGVS amplitude that caused the greatest reduction in the normalized 
ratios of all three stance parameters (i.e., enhanced postural control) was determined as the optimal nGVS ampli-
tude. Between trials, subjects had a 1 min break.

Vestibular threshold determination.  After ascertaining the optimal nGVS amplitude, subjects per-
formed direction-recognition experiments in the roll-plane at 1 Hz (150 trials each, 3-down 1-up paradigm) 
using a 6-degree-of-freedom motion platform (Moog 6DOF2000E, East Aurora, New York). Each trial consisted 
of a single half-cycle that followed a raised-cosine velocity profile to the right or to the left7,26,27 and subjects had to 
indicate the direction of movement by a button press. A cumulative Gaussian psychometric curve was then fitted 
to the response data. The direction recognition threshold (DRT), which corresponds to our performance metric, 
is the magnitude of roll-tilt that can be correctly distinguished at a rate of 79.4%28. Direction-recognition tasks 
were used to minimize the influence of vibration and other non-directional cues on vestibulo-perceptual thresh-
olds29. Noise-cancelling head-phones were used to mask incoming sound cues from the platform. All experiments 
were performed in total darkness with eyes closed.

Procedures.  The experimental procedures consisted of six separate threshold determination sessions con-
ducted on two different days, with a-three week break in between (Fig. 2). On study day 1, each participant 
initially performed two threshold determination sessions, once during non-zero nGVS (optimal amplitude) and 
once during sham stimulation (0 µA) in a randomized order (Fig. 2, session 1 & 2). Subjects in whom nGVS 
induced an enhancing effect on motion perception (n = 10), were enrolled to the subsequent experiments. Those 
who did not (n = 3), were excluded from further assessments. The remaining 10 participants were then exposed 
to nGVS stimulation for 30 min whilst freely moving in the lab (i.e., sitting, standing or walking). Head kinemat-
ics during this free-moving interval were monitored in the first two subjects using a head-fixed inertial sensor 
(EyeSeeCam, Munich, Germany) (Fig. 1B). Following this 30 min stimulation, subjects immediately repeated a 
threshold determination session to examine any post-stimulation effects on vestibular motion perception (session 
3). After a subsequent 30 min interval during which subjects could again freely move in the lab without any stim-
ulation, a follow-up threshold determination session was performed to examine whether any sustained effects of 
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Figure 2.  Flowchart of the experimental procedures. The experimental protocol consisted of six threshold 
determination sessions conducted over two study days with a three week break in between. Between sessions, 
participants were administered to once a 30 min period of nGVS, a 30 min period of sham nGVS stimulation 
and a 30 min period without any stimulation. During these periods, participants were allowed to freely move in 
the lab.
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the stimulation could be observed (session 4). On study day 2, three weeks after the initial assessment, each par-
ticipant returned for a control experiment. To control for possible placebo and/or task-dependent learning-effect, 
subjects performed a sham nGVS threshold determination session (session 5), which was followed by a 30 min 
sham stimulation (starting with a supra-threshold level for 30 s, which gradually decayed to 0 mA over another 
30 s) whilst freely moving in the lab. Subsequently, subjects underwent a final post-sham threshold determination 
session (session 6).

Statistical analysis.  Data are reported as mean ± SD. Statistical analysis was performed on participants 
who showed nGVS-induced vestibular threshold reduction compared to sham stimulation (n = 10). Analyses 
were conducted on the log-transformed DRTs to achieve normal distribution26,30,31, which was confirmed by a 
Shapiro-Wilk-Test. Using a repeated-measures ANOVA and Bonferroni post hoc analysis, effects on body sway 
were analyzed with trial (baseline vs. optimal trial) as factor and effects on DRTs were analyzed with session (four 
sessions on study day 1 and two sessions on study day 2) as factor. Results were considered significant if p < 0.05. 
Statistical analysis was performed using SPSS (version 21.0, IBM Corp., USA).

Results
For all participants, we found optimal nGVS amplitudes (220 ± 155 µA, range 100–600 µA) that effectively 
improved posture compared to baseline performance (Fig. 1C; RMS: F1,9 = 5.4, η2

p = 0.37, p = 0.046; MV: 
F1,9 = 12.6, η2

p = 0.58, p = 0.006; area: F1,9 = 7.6, η2
p = 0.46, p = 0.023). Ten out of 13 subjects showed improved 

DRTs during the application of nGVS at optimal amplitude compared to sham stimulation (session 1 & 2). 
In these 10 participants, nGVS decreased DRTs by an average of 21.0 ± 8.8% (F5,45 = 5.6, η2

p = 0.38, p < 0.001 
Bonferroni adjusted). Subsequently hereafter, participants were administered to a 30 min application of nGVS at 
optimal amplitude during which they were allowed to freely move in the lab. Exemplary head motion tracking in 
two participants during this period revealed that the predominant head velocity frequency fell within the nGVS 
frequency bandwidth (0–2 Hz) and that a considerable amount of vestibular inputs remained below commonly 
reported detection thresholds of vestibular afferents (Fig. 1)32. However, immediately following the application 
of a prolonged nGVS stimulation, DRTs had returned to baseline level, i.e., were comparable to the initial thresh-
old determined during sham stimulation and significantly higher than the thresholds obtained during active 
non-zero nGVS application (session 3; F5,45 = 5.6, η2

p = 0.38, p = 0.044 Bonferroni adjusted). A follow-up ves-
tibular threshold test after a subsequent break of 30 min, demonstrated no further changes in DRTs (session 4; 
Fig. 3A).

On study day 2, after three weeks, participants repeated the vestibular threshold determination twice, with 
a 30 min sham stimulation interval in between, in order to control for potential placebo and task-dependent 
learning effect. DRTs determined during sham stimulation (session 5) and immediately after prolonged sham 
stimulation (session 6) did not differ from the baseline DRTs obtained during study day 1 (Fig. 3B).

Discussion
In this study we examined possible post-stimulation effects of nGVS delivered at imperceptible intensities on 
vestibular motion perception thresholds. We observed that those study participants who positively responded 
to nGVS in terms of enhanced vestibular motion perception during the thresholding task, did not exhibit any 
measurable after-effects on motion perception following a 30 min nGVS treatment while freely moving. We also 
controlled for possible placebo and task-dependent learning effects and found that moderate task-dependent 
learning was present, yet its magnitude was not significant.
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Figure 3.  Active- and post-stimulation effects of nGVS on vestibular motion perception thresholds. (A) 
Baseline direction recognition thresholds (DRTs, session 1) as well as active- (session 2) and post-stimulation 
(session 3 & 4) effects of nGVS on DRTs on study day 1. Session 1 and 2 were conducted in randomized 
order. (B) Effects of active- (session 5) and post-stimulation (session 6) sham nGVS on DRTs on study day 2. 
*Indicates a significant difference between conditions.
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Several previous studies demonstrated that sub-threshold as well as supra-threshold GVS can have imme-
diate facilitatory effects on various perceptual conditions and modalities, such as hemi-spatial neglect33, spatial 
memory34, verticality perception18, subjective visual and tactile vertical35, and face recognition36. In the case of 
a prolonged supra-threshold application of GVS, there is broad evidence for a measurable sustained effect after 
stimulus termination. Immediately after cessation of a prolonged application of supra-threshold GVS, individuals 
will commonly experience self-motion perceptions, postural, and ocular-motor responses of a similar magnitude 
as during stimulation but oppositely directed18–22. These after-effects have been attributed to central adaptation 
processes to the prolonged artificial vestibular stimulus19.

On the other hand, sub-threshold nGVS is thought to exert its effect on vestibular information processing by 
the mechanism of SR. According to this mechanism, weak incoming vestibular signals get amplified by inter-
acting with the low-intensity noise stimulus and thereby become detectable5,6. Hence, this mechanism requires 
the mutual presence of a weak, sub-threshold input signal as well as low-intensity noise. Therefore, theoretically, 
noise-induced alterations in vestibular information processing should immediately disappear after nGVS ter-
mination, which is in line with the present findings. The presumed working principle of nGVS together with 
the current results are, however, at variance with two recent studies by Fujimoto and colleagues, who reported 
sustained after-effects of nGVS on postural stability of healthy elderly and patients with bilateral vestibulopa-
thy24,25. Although it is possible that these after-effects might reflect SR-induced peripheral or central vestibular 
adaption processes, there is no experimental evidence in these studies to support such a mechanism. In particu-
lar, these studies did not control for task-dependent learning effects, which are known to occur in the course of 
repeated posturographic examinations37,38. In fact, Maheu and colleagues recently re-examined the presence of 
after-effects of nGVS on postural performance in a placebo-controlled experimental setup and did not find any 
lasting post-stimulation effects of nGVS on postural stability when compared to sham stimulation39.

Nevertheless, the lack of evidence for nGVS after-effects on vestibular motion perception cannot completely 
exclude potential sustained effects of nGVS on other vestibular functions, such as balance-control via vestibulo-
spinal pathways. However, nGVS is thought to primarily affect thresholds for peripheral vestibular information 
processing and should therefore equally influence vestibulo-perceptual and vestibulo-spinal pathways. Previous 
studies, which showed that nGVS delivered at the same amplitudes that stabilized posture also improved ves-
tibular motion perception7,11 support this notion. Furthermore, the present stimulation protocol differed from 
the previous studies on sustained nGVS-effects on posture in terms of a narrower frequency band of the nGVS 
stimulus (0–2 Hz vs. 0–10 Hz). However, Mulavara and colleagues demonstrated that the effects of narrow and 
wideband nGVS stimuli on posture are comparable40. Finally, the sample size in the current study was only pow-
ered to detect large effects between stimulation conditions, meaning that smaller after-effects of nGVS might have 
gone undetected.

Recently, nGVS has been proposed as a potential future treatment option for rehabilitation in patients with 
vestibular hypofunction16. It is, however, not known in what form (continuous vs. intermittent stimulation) nGVS 
should be applied to optimize treatment effects and ensure patients’ tolerability to treatment. The here observed 
absence of sustained stimulation after-effects on vestibular performance has to be considered for treatment pro-
tocols. It suggests that nGVS might be suitable for an intermittent treatment only when a carry-over of improve-
ments achieved during stimulation is ensured by the training protocol. Effective treatment approaches with nGVS 
might also require a long-term continuous application of vestibular stimulation delivered by a wearable technol-
ogy. Given the non-invasive and sub-threshold nature of nGVS, it is reasonable to be well tolerated by patients41,42.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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