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Dynamical and thermodynamical 
approaches to open quantum 
systems
Vitalii Semin1* & Francesco Petruccione2,3,4

The non-Markovian dynamics of open quantum systems is studied from two different points of view. 
The first one coincides with the traditional tracing out of the environmental degrees of freedom, 
presented in classical textbooks on open quantum systems. The second one is an approximation of 
the exact density operator with the knowledge of only several dynamical variables in the spirit of 
non-equilibrium thermodynamics. The approximation is based on the principle of maximal entropy. 
We discuss the information and the Renyi entropies, which lead to different approximations. The time-
convolutionless master equation governs the dynamics of both traditional and approximated reduced 
density operator with a particular projection operator. Considering the example of two interacting 
qubits in a thermal environment, we compare the traditional and thermodynamical approaches.

The theory of open quantum systems is an extremely multilateral field of research and operates with many 
different methods and ideas behind it. From the formally exact Hu-Paz-Zhang master equation1 for a har-
monic oscillator in a bath of harmonic oscillators to the axiomatic Lindblad-Gorini-Kossakowski-Sudarshan 
master equation2,3, from the Nakajima-Zwanzig generalised integrodifferential master equation4,5 to the 
time-convolutionless (TCL) generalised master equation6, from the phenomenological post-Markovian master 
equation7 to the Stochastic Schrödinger equation8 this is a small part of methods existing in the theory of open 
quantum systems. Many of these methods are applicable in quantum optics9, quantum computations10,11, con-
densed matter physics12,13, and the theory of decoherence14.

The modern experimental setup allows studying the ultra-short dynamics of quantum systems for time scales 
much shorter than the characteristic relaxation times of quantum systems. At such time scales, the quantum 
systems show non-Markovian dynamics essentially6. The traditional theory of open quantum systems6 gives pow-
erful methods to study low-dimensional open quantum systems in non-Markovian regimes. Unfortunately, these 
methods are hardly applicable to describe high-dimensional systems, because they lead to large systems of differ-
ential equations. In this article, we study the possible strategies to overcome this difficulty.

We suggest an approach based on the principle of maximal entropy, which is similar to the non-equilibrium 
thermodynamical methods. Each particular form of entropy, such as the information or Renyi ones, leads to 
some form of the reduced density operator, which can be used to approximate the exact reduced density operator 
with the knowledge of only several degrees of freedom of the system. The universal time-convolutionless master 
equation governs the dynamics of the approximated reduced density operator with a particular type of projection 
operator. We examine the introduced thermodynamical ideas on the example of two interacting qubits in a com-
mon environment and compare the results given by different approximations with the traditional one. We show 
that the traditional reduced density operator of qubits may be successfully approximated with the knowledge of 
only four degrees of freedom.

The article is organised as follows. In Sec. II we derive the general form of universal local in time master equa-
tion for an arbitrary projection operator. Sec. III deals with the main ideas of the theory of open quantum systems 
and ways to describe them. In Sec. IV we show for the particular example of two interacting qubits in a common 
environment the workability of the considered methods. Finally, in Sec. V, we discuss some alternative strategies 
to approximate the reduced density operator of open quantum systems and conclude.
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Time-Convolutionless Master Equation
The main object of this paper is a projection operator. Let P be a projection operator which projects a state of a 
whole studied system onto some relevant subspace and = −Q P1  be the complementary projection operator. 
In this section we are not interested in the exact form of these operators, but we require their main properties:
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Now, we are ready to derive the general form of the time-convolutionless (TCL) master equation.

By acting the projection operators onto both sides of the Liouville equation we obtain
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where L = −A i H A[ , ] is the Liouville superoperator, H is the system Hamiltonian, and ρ is the density operator. 
The formal solution of Eq. (3) reads
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solution of Eq. (4) together with Eq. (2) leads to the famous Nakajima-Zwanzig integro-differential master equa-
tion. This master equation is not convenient for us, since in particular cases, it may be non linear, as well as being 
difficult to solve due to its integro-differential form. To overcome this difficulty we substitute the identity 
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t  into the right hand side of Eq. (4) and, after some 
algebra, we come to
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Substituting Eq. (5) into Eq. (2) then gives the general form of the TCL master equation
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The above TCL master equation is usually studied perturbatively and up to the second order expansion the 
generators are
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Equation (6) together with the generators (7)–(8) is the main master equation, which arises in many applica-
tions, for example, the famous Lindblad-Gorini-Kossakowski-Sudarshan Markovian master equation2,3 is a par-
ticular case of Eq. (6). Usually, the inhomogeneity I t( ) is put equal to zero by a particular choice of the initial 
conditions, but this is not possible in general, and we explicitly keep this term. Notice that the locality in time of 
the left-hand side of the master equation allows implementing an efficient numerical algorithm to study the 
dynamics of the system even in non-Markovian regimes.

The general form of Eq. (6) encodes an infinite number of master equations for an infinite number of different 
projection operators. All the master equations are equivalent in some sense and reproduce the exact dynamics 
with the same precision in general, but a fortuned choice of the relevant subspace may lead to better results. Below 
we describe possible forms of projection operators and ideas lying behind them for describing open quantum 
systems.

Description of Open Quantum Systems
Traditionally, an open quantum system is understood as a system interacting with its environment. An open 
system is characterised by this interaction and properties of the environment: it is clear that an atom in the vac-
uum is not equivalent to the same atom in a crystal. Very often the interaction between an open system and the 
environment is assumed to be weak. This assumption allows one to successfully study an open system using the 
TCL master equation with the generators (7–8).
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The environment usually has many–often infinitely many–degrees of freedom and is characterised by its 
energy spectrum. The spectrum may be both discrete and continuous, with energy gaps or not. Of course, each 
concrete case needs to be considered individually in the context of the specific problem. Nevertheless, we can 
indicate general assumptions, which simplify the consideration of an open system and are used quite often. First 
of all, the system and its environment are assumed to be uncorrelated at the initial moment of time. Secondly, 
the initial environment state is usually fixed and corresponds to some stable equilibrium, thermal or squeezed. 
Thirdly, the environment is modeled as a very inert system, and its state does not change significantly during 
the evolution of the open system, and such changes of state are neglected. The last is usually referred as the Born 
approximation.

The above three assumptions give some general ideas about the environment. Now, we are interested in the 
evolution of an open system itself. Here we can indicate two different ways to deal with an open system, which we 
can call dynamical and thermodynamical.

Dynamical approach.  The dynamical method is a basis of the traditional theory of open quantum systems. 
The main feature of this method is its relative simplicity. Here, one does not assume any specific structure of the 
density operator of an open quantum system, but instead considers it as a matrix, which may have an infinite 
number of dimensions. The aim is to describe the dynamics of some particular matrix elements of the density 
matrix. For example, for some reason, one is interested only diagonal elements of the density operator or some 
particular off-diagonal elements. The extraction of the necessary elements is convenient to perform with the help 
of projection operators.

The projection operator which extracts the necessary degrees of freedom and is consistent with the Born 
approximation has the following general structure
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where ρ is the arbitrary density operator, Eρ  is the density operator of a fixed state of environment, and ijδ  is the 
Kronecker delta symbol. In principle, matrices Eij may form any orthogonal set, but the most reasonable choice 
of Eij is the matrices with only one unit in the intersection of ith row and jth column and 0 elsewhere. A particular 
case of Eq. (9) is the projection operator

Tr ( ) , (10)E Eρ ρ ρ= ⊗P

which is traditionally used in the theory of open quantum systems. In the above equation TrE denotes the partial 
trace over environmental degrees of freedom. Notice that the second order TCL master Eq. (6) with the projec-
tion operator (10) represents one of the most widely used types of a master equation.

Sometimes it is necessary to include into consideration also some changes in the environment, and for this 
reason, one may use the so-called correlated projection operators15–20. The correlated projection operators are also 
a part of the dynamical approach, but we do not consider them in this article.

It is worth noting that the dynamical approach with the projector (10) or correlated projectors is challenging 
to implement for describing high-dimensional open quantum systems, since the TCL master equation represents 
a system of a vast number of equations, which may, for example, appear in condensed matter physics. Below we 
show the way to overcome this difficulty.

Thermodynamical approach.  Another way to investigate an open quantum system comes from 
non-equilibrium thermodynamics. Conventional problems of thermodynamics consist of billions of degrees of 
freedom, and the solution of the exact Liouville equation is not possible. Thermodynamic approaches overcome 
this problem by assuming that the system could be approximated with the knowledge of a few relevant degrees of 
freedom of the system. The larger the number of variables that are taken into account, then the better the approxi-
mation one builds. For instance, the well known Gibbs ensemble approximates the real equilibrium state with the 
help of only several additive integrals of motion, such as energy, momentum and angular momentum. Moving 
further from the equilibrium the Gibbs ensemble gives a purer approximation of the real state of the system.

The first question is how to choose the necessary set of relevant degrees of freedom. According to the modern 
non-equilibrium thermodynamics21 the evolution of the system goes through several consecutive stages. The 
defined set of variables characterises each stage, and the number of these variables is fixed. If we assume the stage 
of evolution, we can choose the set. Generally, the most reasonable choice is a a ,i k

†  for all possible combinations of 
the creation (annihilation) operators of components of the quantum system. This choice is a compromise between 
difficulty of the description and accuracy of approximation. Of course, the set of relevant variables depends on a 
concrete problem and may vary, but in general the above set is enough.

The next question is an approximation of the real density operator of the system, i.e. a solution of the Liouville 
equation, through the chosen set of variables. First of all, we assume that we know a functional form of the density 
operator. Let this form be

ρ = F P t( , ), (11)r m

where Pm are the chosen relevant variables. We assume that this functional form is preserved during the evolution. 
Of course, we want that the real averages of the variables coincide with the averaging for ,rρ  i.e.,
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P PTr( ), (12)m
t

m rρ〈 〉 =

where 〈 〉Pm
t is the real expectation value of the variables, and the superscript indicates the time-dependence. The 

expressions (12) are called the self-consistency conditions. The functional (11), satisfying the self-consistency 
conditions, is referred to as a reduced density operator. The conditions (12) are actually a system of non-linear 
equation that gives connection between the dynamical variables and thermodynamical parameters.

Further, we have to find the evolution of the reduced density operator (11). For this reason we introduce the 
Kawasaki-Gunton projection operator with the property ρ ρ=P ,r  which has the following explicit form22
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The TCL master Eq. (6) with the Kawasaki-Gunton projection operator (13) defines the dynamics of the 
reduced density operator (11).

Now we must clarify the concrete functional form of the reduced density operator. Familiar reduced density 
operators follow from the principle of maximal entropy. There are several different forms of entropies, such as 
information, Renyi, Tsallis and others which can be used to build several types of reduced density operators.

In this paper we focus on two density operators, namely, the Gibbs-like density operator21
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To effectively apply thermodynamical ideas to open quantum systems we assume that the system-environment 
interaction is weak, and that the reduced density operator has the following general form consistences with the 
previous assumptions mentioned about the bath

(17)r i Eρ ρ ρ= ⊗ .

Here, the environment density operator ρE does not depend on time and represent some equilibrium state of 
the bath. The system density operator ρi has one of the forms of either (14) or (15) and depends only on system 
variables.

Notice that if one chooses all possible dynamical variables, i.e. all elements of the density operator as being 
relevant, one equivalently may use the projection operator (10) and derive the identical results without solution 
of the self-consistency condition (12). For this reason the thermodynamical approach is more flexible since one 
may construct any functional form of the reduced density operator. The parameters F t( )m  can be considered as the 
non-equilibrium thermodynamical parameters, as for the operator (14) they coincide with the traditional defini-
tion of temperature, pressure and so on, while for (15) they do not have such a clear physical meaning24.

Below we show an example using the above ideas for the description of an open quantum system.

Example. Two interaction qubits in a thermal environment.  In this section, we compare the different 
approaches discussed above on the example of two interacting qubits in a thermal environment. We choose this 
example as the simplest model for which the traditional form of TCL master equation is already quite difficult to 
study. The model Hamiltonian is
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where i
jσ  are the Pauli matrices of jth qubit, ω0 is the qubit transition frequency, Ω is the constant of dipole-dipole 

interaction, bj
† and bj are creation and annihilation operators of jth photon in the thermostat with frequency ω ,j  gk 

is the constant of atom-environment interaction, 
→
k  is the qubit wave vector and →ri  is the radius-vector of i-th 

qubit.
For convenience we transform the Hamiltonian into the interaction picture with respect to the Hamiltonian 

H b b( )i z
i

j j j j0 0 1
2 1 2 2 1ω σ σ σ σ σ ω= ∑ + Ω + + ∑ .= + − + −

†  The result is

†
∑ ∑ σ= + . .ω

−
−

→→+V g t b e( ( ) h c ),
(19)i k

k
i

k
i k r i ti k

where 

σ σ= − .− −t iH t iH t( ) exp[ ] exp[ ]i i

0 0
We want to compare the three types of reduced density operators introduced above. The dynamical reduced 

density operator (10) has the form

ρ ρ ρ= ⊗Tr ( ) , (20)S E E

where ρ is the solution of Liouville equation. To use the thermodynamical ideas, we choose the set of four relevant 
variables , ,z z

1 2 2 1σ σ σ σ+ − and σ σ+ −,1 2  which is consistent with the non-equilibrium thermodynamical recommenda-
tions21,25 and indicated above. The Gibbs-like density operator (14) is
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and the Renyi density operator with parameter =q 2 is
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where † †b b b bexp[ ]/Tr exp[ ]E j j j j j j j jρ β ω β ω= − ∑ − ∑  is the equilibrium density operator of the bath with the 
inverse temperature β.

We use the parameter =q 2 in Eq. (22) to simplify the consideration. Of course, the results of the approach 
will depend significantly on the specific choice of this parameter and require some additional study. We plan to 
consider the most appropriate value of the parameter in our future works.

Notice that the dimension of the open quantum system Hilbert space is 4, such that the reduced density opera-
tor has dimension 16. We try to approximate the reduced density operator by (21)–(22) with the help of only four 
parameters. It is not difficult to understand that the relevant parameters, in this case, are just parts of the system 
Hamiltonian.

We choose the initial condition for the open system to be

I(0) 1/4 (23)E4 4ρ ρ= ⊗ .×

In this case the inhomogeneity in Eq. (6) cancels for all three reduced density operators (20)–(22), so that the 
second order TCL master equation has the form

∫
ρ

ρ
∂

∂
= −

t
V t V s t ds[ ( ), [ ( ), ( )] , (24)

i
t

i0
P

where ρi is one of (20)–(22) and P is corresponding projection operator (10) or (13). To derive (24) we used the 
fact that for the considered model P P = 0 for the both projection operators (10) and (13). More explicitly, the 
master equation reads

† †

† †
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where L d J e( )(coth( /2) 1)/2 i t t
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( )( )0 1∫ ω ω βω= + ω ω∞ − −  and N d J e( )(coth( /2) 1)/2 ,i t t
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( )( )0 1∫ ω ω βω= − ω ω∞ − − −  
and ωJ( ) is the bath spectral density, K t P R P R( ) ( ( , ) ( , )) (1 2)1

2 1
1

2 1
2α α α α σ= − + + ↔+ − + , σ σ=+ + −P ,i i i  

σ σ=− − +P ,i i i  and R t i t( , ) cos( ) sin( ),α β α β= Ω + Ω  and ej
i k rj jα = .
→→

By choosing the spectral density of the bath to take the form ω λω ω= −J W( ) exp[ / ], where W  is the cut-off 
frequency and λ is actually the constant of interaction between the qubit and the bath, we can numerically solve 
Eq. (25), although each density operator (20), (21) and (22) should considered separately. The form of the spectral 
density is not crucial for our analysis and, in principle, can be replaced by any other form. The chosen form is 
dictated by the ability to analytically take integrals over the frequency domain.

Dynamical approach.  The master Eq. (25) with the projection operator (10) represents the classical result 
of the theory of open quantum systems for a non-Markovian case. Here the master equation represents a system 
of 16 linear differential equations. The analytical solution of this system is not possible to derive due to non-trivial 
time-dependence of the coefficients, which obeys a double integration over both frequency and time. Since, the 
integration can be calculated analytically only over one of these domains, therefore, the numerical integration of 
this equation is highly problematic in the non-Markovian case.

To calculate the average value of some quantity A one must transform the solution of the master Eq. (25) back 
to the Schrödinger picture, namely

ρ〈 〉 = −A iH t iH t ATr(exp( ) exp( ) ), (26)i0 0

where iρ  is one of the introduced reduced density operators.
The results of the dynamical approach for the dynamics of z

1σ〈 〉 and z
2σ〈 〉 are presented in Fig. 1. One can see 

that the both curves came to the same equilibrium states and only differs at initial time. The last is due to differ-
ences in position factor αk.

The dynamics of 1 2σ σ〈 〉+ −  and 11ρ  can be seen in Figs. 2 and 3. All the observables come to some equilibrium 
value. This fact is in agreement with physical intuition. Remarkably, the dynamics describes the initial oscillations 

Figure 1.  The evolution of σ〈 〉z
1  and σ〈 〉z

2 . The green solid is σ〈 〉z
2  and the blue dotted is ,z

1σ〈 〉  following from the 
dynamical approach, the purple dashed is σ〈 〉z

2  and the red dashed is σ〈 〉,z
1  following from the Gibbs-like 

thermodynamical approach, the brown long-dashed is σ〈 〉z
2  and the black dot-dashed is σ〈 〉,z

1  following from the 
Renyi thermodynamical approach. The system parameters are λ λ ω λ βΩ = . = = = .W0 6 , 10 , 2 , 0 3,0

ikexp[ /4]kα π= .

Figure 2.  The evolution of σ σ〈 〉.+ −
1 2  The green solid and red dot-dashed curves are R 1 2σ σ〈 〉+ −  and I σ σ〈 〉+ − ,1 2  

respectively, for density operator (20), and the blue dotted and black dashed curves are σ σ〈 〉+ −
1 2R  and 1 2σ σ〈 〉+ −I  for 

the density operator (29). The system parameters are W ik0 6 , 10 , 2 , 0 3, exp[ /4]k0λ λ ω λ β α πΩ = . = = = . = .
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of the observables. Such oscillations often appear in the non-Markovian description of open quantum systems6,25 
and may be considered as a specific property of non-Markovian systems25.

Gibbs-like density operator.  To handle the different variants of thermodynamical approach one needs to 
specify the action of the Kawasaki-Gunton projection operator (13). Clearly, since =ATr( ) 0,  the 
Kawasaki-Gunton projection operator on the right-hand side of Eq. (25) can be replaced by the simpler Robertson 
projection operator

P t A AP
t

P
( ) {Tr( )}

( )

(27)m
m

m
t

R∑
ρ

=
∂

∂〈 〉
.

By then multiplying both sides of the master Eq. (25) on some relevant variables P ,k  and taking the trace, one 
arrives at the transport equation.

 ∫ ρ ρ

ρ ρ

= −

+ − + . .

† †

† †

P dt P K t t K t K t K t t L

K t t K t K t K t t N

Tr {[ ( ) ( ) ( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( ) ( ) ( )] h c} (28)

k
t t

k i i

i i

0
1 1 1

1 1

Repeating this procedure for all relevant variables allows one to derive the system of transport equations, 
the solution of which completely determines the time evolution of the reduced density operator. Notice that 
the system of the transport equations is completely equivalent to (25). The most difficult part here is the calcu-
lation of the trace on the right-hand side of Eq. (28). To do this, one must express the reduced density operator 
in terms of the relevant variables, or in other words, one must solve the self-consistency conditions (12). These 
conditions usually represent a system of non-linear equations, which may not have analytical solution in general. 
Nevertheless, restricting number of relevant variables allows us to overcome such difficulties.

For the considered example the self-consistency conditions can be solved such that the reduced density oper-
ator has the following form in terms of relevant variables,

ρ
σ σ σ

σ σ σ
=







+ −

+ −







− +

+ −

t

F

F

F

e F

( )

0 0 0

0 1
2

0

0 1
2

0

0 0 0

,

(29)

G

z

z

x

1 1 2

1 2 2

⟨ ⟩ ⟨ ⟩

⟨ ⟩ ⟨ ⟩

where F
e1

z z
x

1 2

= σ σ〈 〉 + 〈 〉
−

 and = .
σ σ σ σ σ σ

σ σ σ σ σ σ

〈 〉〈 〉 − 〈 〉 − 〈 〉 −

〈 〉〈 〉 − 〈 〉 + 〈 〉 +
+ − + −

+ − + −
x log 4 (2 1)(2 1)

4 (2 1)(2 1)
z z

z z

1 2 2 1 1 2

1 2 2 1 1 2

With the known explicit form (29) the calculation of the right side of the transfer Eq. (28) is performed by 
multiplying matrices and presents no difficulties.

It is interesting that the matrix elements have a non-linear dependency on the relevant variables and, thus, the 
transport equations are non-linear. It is worth also noting that the non-linearity of the equations follows from the 
solution of the self-consistency conditions, i.e. from the particular functional form of the reduced density opera-
tor, and is not a feature of the general Eq. (6).

To determine the reduced operator (29) one needs only four equations, which are fewer than the number 
obtained from the dynamical approach discussed above. The results for σ〈 〉z

1,2  and for the dynamics of the real part 
and imaginary of σ σ〈 〉+ −

1 2  are plotted in Figs. 1 and 2. On the figures, we show the dynamics of the same parameters 
following from the dynamical approach. One can see that for short time scales both approaches give very similar 
results while at long times the results differ. Another distinction is that the approximation with the help of (29) 
reaches equilibrium faster than its dynamical counterpart.

Figure 3.  Collective exited state ρR
11 (green solid curve), G

11ρ  (blue dotted curve) and S
11ρ  (red dot-dashed curve). 

The system parameters are λ λ ω λ β α πΩ = . = = = . =W ik0 6 , 10 , 2 , 0 3, exp[ /4]k0 .
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More accurate ideas about the difference between the dynamical and thermodynamical approaches discussed 
here are given in Fig. 4. In this figure we plot the trace distance between two reduced density operators, namely 
T( , ) 1/2Tr ( )S G S G

2ρ ρ ρ ρ= − . It is clear that the trace distance for two density matrices may take any value 
between 0 and 1. So, the lesser this value the better approximation we have. One can see that the difference 
between the two density operators grows with time, but, in principle, does not exceed 12%, and the reduced oper-
ator (29) can be considered as a good alternative to Sρ .

Renyi density operator.  As mentioned above, the transport equations for the considered model has the 
form (28) and are defined by the explicit form of the reduced density operator. The explicit form follows directly 
from the solution of the self-consistency conditions (12). The self-consistency conditions for the reduced operator 
(22) can than be solved, and the result for Rρ  is

ρ
σ σ

σ σ
=






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−

−


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
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+ −
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+
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F
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1 2
4

0 0 0

0 1 2
4

0

0 1 2
4

0

0 0 0
1 2

4

,

(30)

R

1 2

1 2

⟨ ⟩

⟨ ⟩

where σ σ= 〈 〉 ± 〈 〉.±F z z
1 2  One can see that for this specific case the matrix elements of Rρ  depend linearly on the 

relevant variables, hence, the transport equations are linear.
The results of the solution of the master Eq. (25) for σ〈 〉z

1,2  and for the population of the collective exited state 
R
11ρ  are presented in Figs. 1 and 3, respectively. On the same figures, we also plot the results following from 

above-discussed approaches. One can see that the results of all three approaches are similar, especially for the 
short-time dynamics. Nevertheless, note that the equilibrium value is distinguished for all the approaches. We 
plot the trace distance ρ ρT( , )S R  in Fig. 5. Here, one can see that the reduced density operator ρR reproduces the 
density operator Sρ  less accurately than the corresponding Gibbs-like operator ρ .G  Nevertheless, the trace distance 

Figure 4.  Trace distance T( , )S Gρ ρ . The system parameters are λ λ ω λ βΩ = . = = = .W0 6 , 10 , 2 , 0 3,0
α π= ikexp[ /4]k .

Figure 5.  Trace distance ρ ρ .T( , )S R  The system parameters W0 6 , 10 , 2 , 0 3,0λ λ ω λ βΩ = . = = = .
ikexp[ /4]kα π= .
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between the two operators Sρ  and Rρ  is much smaller than 1, so we can conclude that the operator Rρ  also repro-
duces the result of the dynamical approach quite well, at least according to the trace distance criteria.

Discussion and Outlook
In this paper, we considered two approaches for the description of open quantum systems. We indicated that 
along with the traditional approach, which we called the dynamical approach, there are a vast number of ways to 
approximate the density operator of an open quantum system, by a limited number of relevant degrees of freedom 
of the system. The second one we referred to as the thermodynamical approach. The main idea of the thermody-
namical approach rotates around the possible functional form of the approximated density operator dependent 
on the relevant characteristics. Many functional forms of the approximated or reduced density operator follow 
from the principle of maximal entropy, and, of course, for each entropy one can derive a new functional form for 
the reduced density operator. We showed two possibilities for the information and Renyi entropies and, using the 
standard ideas about open quantum systems, applied these reduced density operators to describe open quantum 
systems.

As soon as the form of the reduced density operator is chosen the dynamics of this operator is governed by the 
TCL master equation with the appropriate projection operator. The equation may be non-linear, but this feature 
is a property of the chosen reduced density operator.

We demonstrated the application of both the dynamical and thermodynamical approaches to the system of 
two interacting qubits in a common environment. We showed that the traditional density operator could be suc-
cessfully approximated by fewer parameters in the thermodynamical approach. We explicitly derived the expres-
sions for the reduced density operators in the thermodynamical approach and indicated where the non-linearity 
of the TCL master equation appears. Using the trace distance as a measure of the accuracy of the approximation, 
we also showed that the thermodynamical approach can describe open quantum systems quite accurately.

The results of the Renyi thermodynamics is less accurate than the corresponding Gibbs-like thermodynamics. 
Nevertheless, both thermodynamical methods reproduced the qualitative behavior of the quantum dynamics 
of the considered system quite well. Both approaches reach equilibrium and show the initial oscillations of the 
parameters. Both approaches reproduce correctly the short-time dynamics. Nevertheless, the Renyi thermody-
namics depends on the free parameter q and, probably, a better choice of this parameter will improve the results 
given by the approach.

The thermodynamical ideas arise in problems consisting of billions of degrees of freedom. This fact and the 
results of the present article derived for the simple model allows hoping that the suggested thermodynamical 
methods can be applied to models consisting of dozens of interacting particles. Such models are very interesting 
in the context of quantum informatics. The traditional dynamical approach fails because the dimensions of the 
problem is too large, while the thermodynamical ideas allows to reduce the number of relevant variables to the 
order of number of particle that can already be studied. In this respect the thermodynamical approach provides a 
novel perspective to the investigation of large quantum systems.
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