
1Scientific Reports |         (2020) 10:2009  | https://doi.org/10.1038/s41598-020-58799-6

www.nature.com/scientificreports

Switchable crossed spin 
conductance in a graphene-based 
junction: The role of spin-orbit 
coupling
Razieh Beiranvand1,2* & Hossein Hamzehpour2

We theoretically investigate the crossed spin conductance (CSC) of a graphene-based heterostructure 
consists of ferromagnet, Rashba spin-orbit and superconductor regions. Using Dirac Bogoliubov-de 
Gennes formalism in the ballistic regime, we show that in the presence of Rashba spin-orbit coupling 
there are an anomalous crossed Andreev reection and spin-ipped co-tunneling in the process of 
quantum transport. We demonstrate that the CSC can be reversed with respect to charge conductance 
by tuning the Rashba spin-orbit coupling which experimentally can be adjusted by the applied 
perpendicular electric field on the graphene sheet. This feature in addition to a long spin relaxation time 
of Dirac fermions in graphene proposes designing a device with a non-local spin switch which is crucial 
for spintronics circuits.

Hybrid structures of superconductivity have a suitable potential to use in the future technology1. A wide variety of 
interesting phenomena such as topological superconductivity2 Majorana fermions3–5, topological quantum com-
putation6 require superconductivity. Also, a major part of growing field of spintronics needs superconductivity7. 
More than 15 years, scientist have been tried to find a way for combining superconductivity and spintronics to 
make a long-range spin-polarized super-currents. Long spin relaxation time of Dirac fermions in graphene made 
it an important candidate for using in such a device8,9. Graphene not only has a simple structure, but also can be 
easily prepared in experiments with different properties. Superconductivity (S) and ferromagnetism (F) can be 
induced into graphene by means of proximity effect10–14. Designing hybrid structures involving S and F regions 
make graphene a very good host to explore the fascinating phenomena such as Klein tunneling15,16, supercurrent 
π-junction17 and spin-triplet correlation18. In contrast ot ordinary superconductors, the superconducting junc-
tion of graphene has the capability of reflecting an incident electron as a hole with a specular path. This process 
is known as Andreev reflection and the missing charge of 2e enters the superconductor as a Cooper pair19,20. The 
low-energy excitations of graphene near the K and K′ points of the Brillouin zone are governed by a 2D massless 
Dirac Hamiltonian21,22. The linear conduction and valence bands cross the Fermi level at these points. Because of 
these unique properties, graphene attracts huge attentions of scientists from fundamental to the technical point 
of view23. The Fermi level in graphene in contrast to ordinary conductors or semiconductors, can be also tuned 
by a gate voltage15,24.

Spin-Orbit interaction has intrinsic or extrinsic origin in the graphene25–28. The first one which is known as 
Dresselhaus spin-orbit (DSO) interaction29 comes from the spin dependent second neighbor hopping. The last 
one which is known as Rashba spin-orbit (RSO) interaction30, arises from a perpendicular electric field or inter-
actions with substrate31. The RSO interaction which is induced by proximity to a tungsten disulphide substrate28 
confirmed experimentally to be ~17 meV. The DSO interaction which is responsible to create a small gap in the 
band structure, predicted to be quite small in comparison with the larger effects like RSO interaction32. So, in this 
paper we ignore the DSO interaction and just focus on the RSO interaction.

When two metallic leads are connected to a superconductor, non local Andreev reflection processes can be 
generated. The incident quasi-particle at the interface of one lead can be reflected as a quasi-hole in the other lead, 
giving rise to a negative non local conductance. This so-called crossed Andreev reflection (CAR) competes with 
elastic co-tunneling (CT). The graphene-based junctions contain RSO interaction in their interfaces predicted to 
show odd-frequency triplet correlations33, maximum spin Seebeck effect34, and tunable magneto-resistance35. In 
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our previous work36, we show that the RSO interaction in the interfaces of F-S-F graphene junction generates the 
anomalous CAR and spin-flipped CT. These effects are the direct signature of breaking translational symmetry at 
the interfaces due to the RSO interaction and penetrating equal-spin triplet correlation into ferromagnetic region. 
Using gate voltage and tuning Fermi level, the sign of charge conductance in the ferromagnetic drain lead (F2) can 
be negative (See more details in refs. 33,36.

Methods and Discussions
In this letter, we proposed an experimental accessible device to generate negative crossed spin conductance (CSC) 
and tunable crossed charge conductance (CCC). We extend the Landauer37 and Blonder-Tinkham-Klapwijk38 
formalism to derive two formulas for the CCC and CSC in the drain lead. We also show that the sign of the spin 
conductance can be switch from positive to negative by changing RSO interaction which is experimentally pos-
sible by tuning perpendicular electric field. This property in addition to the long spin relaxation time of Dirac 
fermions makes this set up very suitable for spintronics circuits. It is known that the typically p-wave supercon-
ductors are rare in nature. Normal impurities can easily break the Cooper pairs in p–wave and d–wave supercon-
ductors. But, the s-wave superconductors are robust against impurities and much more common in nature. So we 
consider an s-wave superconductor in the junction.

We consider a sheet of graphene in the x − y plane. We suppose that ferromagnetism, singlet superconductiv-
ity and RSO interaction are applied on the graphene by proximity. As shown in Fig. 1, the left ferromagnetic lead 
acts as a source of charge and spin carriers and the right one acts as a drain to collect quasi-particles. We assume 
the interface of each region is rigid and disorder free which correspond to the ballistic limit5,15,17–19,33,34,36 because 
in a typical experimental situation, ballistic propagations can be spoiled by edge disorders.

The low-energy of quasi-particles of such a device describes by Dirac Bogoliubov-de Gennes DBdG equation

 

µ

µ
ε







+ − ∆

∆ − −






=

φ

φ− − ( ) ( )H H e
e H H

u
v

u
v[ ]

,
(1)

D i
i i

i i
D i

1⁎

The original DBdG Hamiltonian is a 16 × 16 matrix in the presence of an arbitrary direction of magnetization 
and spin-orbit interaction. However, graphene has another degrees of freedom, valley degeneracy which is 
responsible to electron-hole conversion. Due to the valley degeneracy in graphene, the Hamiltonian reduces to a 
8 × 8 matrix. Nonetheless, one can use different basis sets that consequently change the form of Hamiltonian 
without affecting final physical results and conclusions. In our representation, the hole part is time-reversed of the 
electron part which denoted it by   19, and ε is the energy of quasi-particles with respect to the Fermi energy of 
each region, μi. Also, σ σ= ⊗ +H v s k i k( )D F x x y y0  is the two-dimensional Dirac Hamiltonian which governs on 
the carriers of graphene with vF being the Fermi velocity. sx y z, ,  and σx y z, ,  are Pauli matrices, acting on spin and 
pseudo-spin degrees of freedom, respectively. The amplitude and phase of singlet Cooper pairs described by 

σ∆ = ∆ Θ − Θ + − ⊗x L L L x s( ) ( )RSO s RSO0 0 0 and φ, respectively. Here, Δ0 is the superconducting gap in zero 
temperature and Θ x( ) denotes the step function. As far as λ λ λ { , }F
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valid39 in which λF
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RSO and λF
S are the value of Fermi wave lengths in ferromagnetic leads, Rashba spin-orbit 

region and superconductor, respectively. Although the smooth change at the junction which is occurred in real-
istic systems, can alter the results qualitatively but not the conclusions. Also, u v( ) is the electron (hole) part of 
DBdG wave function in the electron-hole space. The corresponding Hamiltonians in each region may written as,
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The magnetic exchange field in source and drain leads (Fl and Fr) represents by hl and hr, respectively. Their 
directions fixed along the z axis without loss of generality. This choice makes the spin-dependent analyses of 

Figure 1.  Schematic of the graphene based F-RSO-S-F heterostructure. The sheet of graphene resides in the 
x − y plane. The length of the RSO and S regions are denoted by LRSO and LS. The exchange field of the 
ferromagnetic source and drain leads (

→
hl r, ) are assumed fixed along the z axis. This graph drawn by LibreOffice 

6.3.4, https://www.libreoffice.org/download/download/?type=deb-x86_64amp;version=6.3.4amp;lang=en-US.
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scattering process clear. λ is the strength of RSO interaction32. U0 is an electrostatic potential which is necessary 
to prepare enough density of states for induced superconductivity. So we assume heavily doped approximation, 

εΔU { , }0 0 , which is experimentally suitable19,39. The length of RSO and S regions are LRSO and LS, respectively. 
The eigenvalues of each region are obtained by diagonalizing Eq. (1) as,
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The associated wave functions are given in Appendix and refs. 33,34,36. The energy and transverse component of 
wave vector, qn, in each region is conserved during the scattering process whereas the longitudinal component, kx

i  
acquires different value according to Eq. (3).

The scattering processes due to the differential voltage bias considered as follow: A spin-up electron with wave 
function ψ ↑

+
e
F
,

,l  hits the RSO interface from the source lead at =x 0. This particle can be reflected as a spin-down 
hole, ψ ↓

−
h
F
,

,l , (spin-up, ψ ↑
−

h
F
,

,l ,) into the source lead due to conventional (anomalous) Andreev process. Also, it can 
be reflected as an electron due to normal (spin conserved) or spin-flipped reflection. So, the total wave function 
in the source lead is:
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Moreover, it can be transfered into the ferromagnetic drain lead as an electron which is called co-tunneling 
(CT) process or as a hole which is called crossed Andreev reflection (CAR). So, in the scattering process into drain 
lead we have four probabilities: spin-preserved CT | |↑te

2, spin-flipped co-tunneling | |↓te
2, conventional CAR | |↓th

2 and 
anomalous CAR | |↑th

2. The total wave function in the drain lead which is our interest reads,
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Furthermore, the total wave function in RSO (Ψ x( )RSO ) and S (Ψ x( )S ) regions can be calculated in a similar 
way33. In the RSO region, the wave function is split into electron and hole sector, and these two are not coupled. 
When an incoming electron is entering the RSO region and reaching the RSO/S interface, it is converted into a 
hole that travels back into the ferromagnetic contact. All of the possibilities and scattering processes are explained 
in previous works in details33. All wave functions should satisfy the boundary conditions as follow, to calculate the 
probability amplitudes.
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We normalize the lengths by superconducting coherence length ξ = Δv /S F 0 and energies by superconduct-
ing gap at zero temperature Δ0. In the absence of RSO interaction anomalous Andreev and spin-flipped reflec-
tions in the source lead and anomalous CAR and spin-flipped CT in the drain lead disappear. This means by 
turning on the RSO interaction non-locally in RSO region, these novel process which are very important in 
transport phenomena such as charge and spin conductance will be present. The probabilities related to drain lead, 
Fr, are shown in Fig. 2. To show the effect of RSO interaction very clear, we set ξ= .L 0 4RSO S and ξ= .L 0 8S S, 
which is smaller than the coherence length of Cooper pair in the superconductor. The other related parameters 
are set as: μ μ μ= = Δ = Δ = = . Δh h, 8 , 0 7F F RSO l r0 0 0l r

 and λ = . Δ1 5 0. As shown in Fig. 2, the anomalous 
CAR which is very important in our setup, isolated in the space of energy-transverse momentum whereas the 
conventional CAR is blocked. This make its detection easier. If one uses Nb electrode as a superconductor, the 
energy gap is ~1 meV and coherence length is ~10 nm40. These values lead to LS = 8 nm, = .L nm0 4RSO , 
λ = . meV1 5 , = = .h h meV0 7l r , μ = meV8RSO  and μ μ= = meV1F Fl r

. So, in a realistic experiment we pre-
dict the anomalous CAR can be detected in ε ≤ Δ0.

We extend the Landauer37 and Blonder-Tinkham-Klapwijk38 formalism to derive two formulas for the CSC 
and CCC in the drain lead. The extended version of BTK formula for the charge transport is,
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where ε μ π= | + ± |↑ ↓G e W h2 /l l,
2  is the ballistic conductance of the ferromagnetic source lead. The summa-

tion over s index indicates that the scattering process of electron with spin-down must be take into account as 
well. Here, W is the width of the junction. Furthermore, anomalous CAR and spin-flipped CT can alter the for-
mula of spin conductance41,42 since they carry spin as well. The anomalous CAR which carry a spin-up electron in 
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our scenario decreases the spin conductance whereas th spin-flipped CT increases it. So, the CSC of the junction 
can be read as

∫ ∑= | | − | | − −
=↑ ↓

↑ ↓ ↑ ↓G dq G t t t t(( ) ( )),
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An important consequence of the presence of RSO interaction is the appearance of negative CSC that is com-
pletely non-local. In Fig. 3, the CCC and CSC are calculated using Eqs. (7, 8) with the input values same as Fig. 2.

The application of RSO interaction can completely suppress the values of junction’s conductance, leading to 
negative CSC and positive CCC simultaneously. When the current approaches the right ferromagnetic lead in 
the junction, it passes through with no reflection. This is a manifestation of the CCC. The passed carriers have 
a down-spin or up-spin direction. Negative CSC means that all carriers have similar spin directions. As the λ 
appears, the anomalous CAR and spin-flipped CT grow to became dominant in transport phenomena. This made 
the CSC to be negative while the CCC keeps its positive values. In such a case, the junction’s conductance changes 
in discrete steps when the gate voltage is varied. It is found that, when the gate voltage reaches to the charge neu-
trality point, both CCC and CSC are minimum. As shown in Fig. 3, there are two points in which the value of CSC 
is zero. This type of discontinuity and its related physics was described in previous works in detail19,33. During the 
Andreev processes in metallic junction, the reflected hole was created in the conduction band in a retro-reflection 
type. In graphene-based junction, the reflected hole can be created either in conduction band or valence band 
according to its energy with respect to Fermi level (The reflected hole in the valence band is a specular type). At 
the point where these two types convert to each other, the mentioned discontinuity would happen.

Interestingly, changing the value of RSO term alters the sign of CSC from positive to negative values and vice 
versa, as shown in Fig. 4. The distance between the On and OFF switch is proportional to the RSO term and other 
tunable parameters in graphene junction. Because the spin relaxation time in graphene is long enough, the quan-
tum states can be tuned with the strength of the RSO interactions. This property also allows the anomalous CAR 
and negative CSC to be probed experimentally in graphene junction.

Figure 2.  (a) Spin-preserved cotunneling probability | |↑te
2, (b) conventional crossed Andreev reflection probability 

| |↓th
2, (c) spin-flipped cotunneling probability | |↓te

2, (d) anomalous Crossed Andreev reflection probability | |↓th
2. The 

probabilities are plotted vs the transverse component of wave vector qn and voltage bias across the junction eV. We set 
μ μ μ λ ξ ξ= = Δ = = . Δ = Δ = . Δ = . = .h h L L, 0 7 , 8 , 1 5 , 0 4 , 0 8l r

RSO
S S

F F
0 0 0 0 RSO S

l r . The plots drawn by 
Python 3.8.1, https://www.python.org/ Python 3.8.1.
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Conclusions
Motivated by recent achievements in the induction of RSO interaction into a graphene sheet, we have theoreti-
cally studied quantum transport properties of a junction consists of ferromagnets, singlet superconductors and 
RSO interaction. As known, it is possible to change the RSO term non-locally in graphene by applying electric 
field. This situation provides a spin-switch device which has a capability to block the current with the specific spin 
direction. Our results demonstrate that in the presence of RSO interaction, there are new types of reflection and 
transmission probabilities. Among them, those who live in drain lead are our interest because of their non-local 
nature. Spin-flipped CT and anomalous CAR have negative roles in CSC. Due to these interesting capabilities 
which can be very crucial in spintronics, graphene junctions may, in principle, be used for spin-current control or 
spin orbit sensing applications in superconducting spintronics.

Figure 3.  Crossed charge conductance (a) and crossed spin conductance (b) associated with the probabilities 
presented in Fig. 2. The conductances are normalized by = +↑ ↓G G G0 . The RSO interaction varies between 0 
to 2.0 meV.

Figure 4.  Crossed charge and spin conductances versus λ. Tuning RSO interaction leads to negative crossed 
spin conductances whereas the charge conductance keep its value positive. The input values are same as Fig. 2 
and gate voltage set to be 0.5 eV.
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Appendix
The wavefunctions associated with the dispersion relation in the F region are:
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where 0n represents a 1 × n matrix with only zero entries and T is a transpose operator.
The wavefunctions associated with the eigenvalues given in the text can be expressed by:
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here the definition of auxiliary parameters are:
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where θη
e h( ) are the electron and hole propagation angles in the region with spin orbit interaction.

The wavefunctions in the superconducting region are given by:
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The parameter β is responsible for the electron-hole conversions at the interface RSO-S and depends on the 
superconducting gap:
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