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Model-based comparisons of the 
Abundance Dynamics of Bacterial 
communities in two Lakes
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Konstantinos t. Konstantinidis2 & eberhard o. Voit  1*

Lake Lanier (Georgia, USA) is home to more than 11,000 microbial Operational Taxonomic Units 
(OTUs), many of which exhibit clear annual abundance patterns. To assess the dynamics of this 
microbial community, we collected time series data of 16S and 18S rRNA gene sequences, recovered 
from 29 planktonic shotgun metagenomic datasets. Based on these data, we constructed a dynamic 
mathematical model of bacterial interactions in the lake and used it to analyze changes in the 
abundances of OTUs. The model accounts for interactions among 14 sub-communities (SCs), which are 
composed of OTUs blooming at the same time of the year, and three environmental factors. It captures 
the seasonal variations in abundances of the SCs quite well. Simulation results suggest that changes in 
water temperature affect the various SCs differentially and that the timing of perturbations is critical. 
We compared the model results with published results from Lake Mendota (Wisconsin, USA). these 
comparative analyses between lakes in two very different geographical locations revealed substantially 
more cooperation and less competition among species in the warmer Lake Lanier than in Lake Mendota.

The health of our lakes is of utmost importance, especially if they serve directly or indirectly as reservoirs for our 
water and food supply. A concern is that many of these lakes are also used for recreational activities and are sur-
rounded by agriculture, which exposes them to pollution from motor boats and run-off. The water quality of lakes 
is heavily dependent on the interactions among thousands of bacterial species, archaea, phyto- and zoo-plankton, 
protists and viruses. The sheer numbers of species in these complex communities render health assessments of 
lakes difficult. For instance, diverse communities, with many interactions among community members, are gen-
erally considered good markers of healthy ecosystems, as long as pathogens or invasive species are absent. Indeed, 
diversity within microbial communities has been associated with the robustness and the resiliency of ecosystems1. 
It is challenging to assess species-species (or OTU-OTU) interactions, because they occur and change dynami-
cally in environments that undergo substantial seasonal fluctuations. They are also “asymmetric” in a sense that 
the effect of OTU A on OTU B is not necessarily the same as the effect of B on A. Confounding this challenge is 
the overwhelming number of participating species, many of which are difficult—if not impossible—to culture in 
the laboratory2.

Here we proffer that the prudent choice of a computational modeling framework and of customized methods 
of analysis permit insights into the dynamics of complex microbial lake communities that are not achievable 
with traditional correlation network models. The choice of a mathematical modeling framework is not trivial, as 
there are very few nature-given guidelines; we simply do not know what types of models are “true”3. Ultimately, 
any model choice is a compromise between biological relevance, the repertoire of system behaviors a model can 
capture, model fits, and analytical tractability. In the past, graph-based network models4–6, multivariate autore-
gressive models7–9 and dynamic systems models10–12 have been prevalent approaches for the assessment of inter-
actions among populations; key features of these approaches are described in the Discussion. Our analysis here 
confirms an earlier study13 indicating that, among the available modeling choices, dynamic Lotka-Volterra (LV) 
models provide a good compromise. In particular, we demonstrate that the LV approach allows minimally biased 
comparisons between the features of different communities and their responses to perturbations. In the long 
term, the scientific community should engage in many such comparisons of (seemingly) similar or (evidently) 
different ecological systems in order to understand the general principles governing the dynamics of communities 
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in these systems, because such an understanding is a prerequisite for targeted, effective interventions and sustain-
able water management.

We illustrate the value of model-assisted comparisons by contrasting our primary results for Lake Lanier 
(State of Georgia, Southeast USA) with corresponding results from the rather different Lake Mendota (State of 
Wisconsin, Midwest USA). Lake Lanier is a large water reservoir that provides drinking water for about 5 Million 
people. It contains in its surficial photic zone over 11,000 microbial Operational Taxonomic Units (OTUs). These 
were defined at the 97% 16S/18S rRNA gene nucleotide identity level (16S or 18S for simplicity hereafter), and 
over 97% of them are bacterial. The OTUs show distinct patterns in abundance throughout the year14. Slightly 
more than 1,400 OTUs (13%) constitute 87.2% ± 2.5% of the total microbial cell count, depending on the time 
of the year, while the remaining OTUs are considered rare15. We measured the OTU abundances recurrently 
between 2010 and 2015, which resulted in a large dataset containing measurements at 29 time points that capture 
the bacterial community dynamics of the abundant species in Lake Lanier. All samples represent a water depth 
of 5 meters and were taken at the exact same site (Browns Bridge)14. Maybe not surprising, the OTU composition 
of the complex community changes dramatically throughout the year, and the dynamics of these changes is an 
important determinant of the functionality of the lake.

Previously, we analyzed the bacterial community of Lake Mendota, Wisconsin13,16,17, for which we employed 
different variations of a slightly modified Lotka-Volterra (LV) model that dramatically simplified the param-
eter estimation to standard linear regression18. The models were used in two variants. The first accounted for 
the interactions among 14 sub-communities (SCs), which we defined pragmatically through time-dependent 
clustering of OTUs, based on their blooming during the same time periods of the year, and three environmental 
factors (ENVs). The second variant addressed the interactions between individual OTUs on the one hand and 
the SCs and ENVs on the other. Adapting modeling strategies similar to those applied to the Lake Mendota data, 
we present here modeling results for Lake Lanier, including the effects of pairwise interactions between bacterial 
sub-communities and the effects of environmental factors on the seasonal abundances of each sub-community. 
Archaea and higher organisms were not explicitly considered but their impact is to some degree implicitly cap-
tured by the LV parameters. The proposed model provides a flexible framework for integrating available data 
into a single computational structure, identifying important environmental factors, characterizing dynamically 
changing, asymmetric, bi-directional species-species interactions of interest, and performing thought experi-
ments regarding the effects of slight perturbations in the conditions affecting the lake. Furthermore, the com-
parison of results between lakes offers novel insights into the relationships between bacterial communities and 
environmental factors, as well as the prevalence of cooperation or competition among bacterial species.

Results
physical and chemical characteristics of two lakes. The physical and chemical measurements of Lake 
Lanier (GA) and Lake Mendota (WI)16,17 were superimposed into one ‘representative’ year for each lake (Fig. S1). 
We compared six physico-chemical markers that were measured in both lakes, namely water temperature, ammo-
nia, nitrite + nitrate, phosphorus, organic carbon, and pH, and found that they differ considerably (Table S1, 
Fig. S1). The water temperature in Lake Mendota is generally 4–5 °C lower than in Lake Lanier, with much greater 
differences in April (6.2 °C versus 17.2 °C). The ammonia (0.50 ± 0.1 versus 0.17 ± 0.12 mg/L) and nitrite + nitrate 
(0.67 ± 0.25 versus 0.38 ± 0.09 mg/L) concentrations are about twice as high at peak level in Lake Mendota. The 
total phosphorus and organic carbon concentrations of Lake Mendota are also higher, as is its pH (8.5 ± 0.2 versus 
7.3 ± 0.4). Further details can be found in the Supplements.

Year-around abundance patterns of 14 sub-communities. The abundances of most OTUs in Lake 
Lanier clearly follow seasonal patterns (Fig. S2). Clustering, as described elsewhere13, reveals that twelve of 
the 14 sub-communities in the lake peak once per year, while SC-13 and SC-14 peak twice (Figs. 1 and S3). 
Superposition of six years into one representative year (Fig. S3) demonstrates that the annual profiles of each 
sub-community are very similar across sampling years. It also reveals that the peaks of the first twelve SCs are 
significant, with abundances that are 2.7 to 11.6 times higher at the peak than for the low-level abundances during 
the rest of the year. Throughout the year, the total abundances of SC-1 to SC-12 collectively constitute between 
90.5 and 98.0% of the entire bacterial community.

The classification of bacterial species into SCs, based on blooming periods, enabled direct pairwise compari-
sons between corresponding SCs in two lakes. In both lakes, for example, SC-1 is comprised of bacteria belonging 
to similar taxonomical groups that are highly abundant in January. Comparisons of the 14 SCs reported in Lake 
Mendota and Lake Lanier reveal that their annual abundance profiles are correlated, although their peak heights 
are quite different (Fig. S4). In particular, a comparison of the abundances of corresponding SCs at their peak 
times shows that nine out of the twelve SCs with one annual peak have higher abundances in Lake Mendota com-
pared to their counterparts in Lake Lanier. Among these, the three SCs with the largest differences (more than 
two-fold) are SC-1, SC-12 and SC-5. Generally, our observations suggest that bacteria in the colder Lake Mendota 
exhibit more distinct annual patterns compared to those in the warmer Lake Lanier, which may not be surprising.

Model results characterizing the dynamics of sc abundances. Trends in sub-communities. We used 
the Lotka-Volterra modeling format (see Methods) to characterize the relationships between the abundances (Xi, 
Xj) of pairs of species, OTUs, or SCs i and j. Parameters for the pairwise interactions between Xi and Xj are termed 
αij, while interactions between Xi and environmental factors Tk are called βik. We included in the model three 
environmental factors, which we had identified as critical (see following section for details).

Overall, the simple LV model matches the data from the complex lake environment surprisingly well, and 
the trends in dynamic changes of OTU abundances are consistently preserved (Fig. 1A). Specifically, 78% of 
the observed data are within the mean ± 2 standard deviations of the predicted values during the time period 
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Figure 1. Observed, modeled, and predicted annual abundances of 14 bacterial sub-communities in Lake 
Lanier. The abscissa shows the days of a multi-year period between July 2010 and October 2015, and the 
ordinate exhibits the relative abundances (percentages) of bacterial sub-communities; note the different scales 
of the ordinates. Measurements, indicating time points and abundances, are shown as red dots. They were used 
to estimate the parameters for the model. The ranges (mean ± 2 standard deviations) predicted by our 84 best-
performing model parameterizations (m = 3) for this time period are shown in grey. Data collected between 
March and October of 2015 (blue) were used as validation. It would have been desirable to have much denser 
and longer time series data for validation, but we chose this short period as a balance between model training 
and validation. Panel A: Ten-year model results and validation with data not used before (blue dots) for SC-1. 
Panel B: Model fits (red dots) and validation with data collected between March and October of 2015 (blue) for 
all sub-communities. Predictions of trends were computed for five more years, but are not shown. Note that 
SC-13 and SC-14, which contain OTUs not fitting into other SCs, are much less defined than the other SCs.
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2010–2014, which we used for parameter estimation. Similarly, 71% of the observed data between March and 
October of year 2015, which were not used in the model construction, are within the mean ± 2 standard devia-
tions of the predicted values.

To test whether future trends in abundances could be predicted, we used the data collected from 2010 to 2014 
and estimated the parameters for the model. We then used the model to predict the abundances of the 14 SCs for 
the next 10 years, starting with the initial values from the first observed dataset of July 2010. The predicted abun-
dances for 2015 were compared to abundances actually observed between March and October of 2015, indicating 
good consistency (Fig. 1A,B). Of course, caution is necessary with all predictions into the far future. For example, 
any extreme black-swan events or extreme perturbations are not reliably covered by the LV model or any other 
model, such as an autoregressive model9.

Effects of environmental conditions. To investigate which combination of environmental factors significantly 
affects the abundances of the 14 identified SCs, we made abundance predictions with a large number of param-
eterizations of the Lotka-Volterra model, by investigating all single factors and all combinations of up to 8 
(m = 2,…, 8) among the 12 physical and chemical factors measured. This number was sufficient, due to strong 
correlations among several of the environmental factors. The estimated parameters were represented in the βik 
terms of the model.

The inclusion of water temperature significantly improved the abundance predictions, and addition of pH and 
the sulfate concentration improved the predictions further, whereas including other environmental factors did 
not significantly improve predictions, when the number of parameters was taken into consideration19. The model 
with these three environmental factors will be referred to as “m = 3” model, whereas the model accounting only 
for temperature is termed the “m = 1” model (for details, see Supplements). As a side note, we focused on tem-
perature, pH and sulfate, but any condition directly correlated with these could be the true drivers of the system.

To assess uncertainties and their effects on parameterizations, we determined ensembles of differently param-
eterized models leading to similar fits. Specifically, we randomly selected 200×p parameterizations, where p is the 
number of parameters being estimated (for details, see Supplements). In each case, we accounted for up to three of 
the measured environmental factors. For each estimation, we slightly varied the upper bound for the key parame-
ters -αii, which represent crowding or competition within the ith SC, as described in the Methods section. Among 
the thousands of results, ensembles of 193 (for m = 1) or 84 (for m = 3) parameter sets, respectively, reflected the 
observed data with a similar, small residual error. All model parameterizations within these ensembles capture 
the observed dynamic trends in SCs abundances remarkably well (see results in Fig. 1 for m = 3; results for m = 1 
not shown).

Comparing the dynamic models that only include water temperature (m = 1) or all three environmental fac-
tors (m = 3) demonstrates that the two models have different parameterizations, but that the positive or negative 
trends in the interaction parameters αij are quite consistent. Moreover, the means and standard deviations of all 
αij values do not exhibit significant differences between the two models in 85.7% of all αij pairs (including αii) 
(Fig. 2). In stark contrast, and presumably not surprising, 50% of all βi1 values, which are the parameters repre-
senting the effect of water temperature on the ith SC, are significantly different between the two models (Fig. 3). 
Nonetheless, most of the positive or negative signs among βik values do not change within each ensemble of 
solutions for m = 1 or 3. Details are presented in the Supplements. Interestingly, autoregressive models also tend 
to characterize signs much better than magnitudes9.

The estimated interaction values αij allowed us to describe the dynamic interactions of 14 SCs in Lake Lanier 
throughout the year (Fig. 4). These results suggest that the temporally changing interaction network is driven by 
highly abundant SCs whose blooming periods are close to each other. The interaction parameters were also used 
to compare the models between the two lakes.

Predictions of the effects of moderate environmental perturbations. The LV model allows pre-
dictions that are based on the full system dynamics, and not merely on correlation coefficients, because the 
underlying time series data are not independent but reflect continuous trends. Ideally, the LV model and its best 
parameterizations are close to the truth in capturing interactions and the effects of environmental factors. Of 
course, we do not know that. However, if we trust the model, we can cautiously make predictions of the future 
trends in the bacterial lake community under moderately changed environmental conditions, which is not pos-
sible with simple static models. Such predictions assume that perturbations pertain to factors represented in the 
model and are moderate, and that no unexplainable black-swan events occur.

To explore future trends, quasi through thought experiments, we randomly chose 10 parameter sets from the 
ensemble of 84 well-fitting model parameterizations, which each account for 14 SCs and three environmental 
conditions (m = 3). We used these 10 parameterizations to predict the abundances of all SCs when environmental 
conditions were changed from the average patterns, as described in the Methods section. In order to alter the 
environmental conditions in a realistic manner, we first analyzed their natural variability. Specifically, we com-
puted the largest observed difference from the average pattern. For simulations of perturbations, we increased 
or decreased the value of any one specific environmental condition by this observed difference for a period of 
30 days. In other words, each environmental condition was changed to the observed high or low for 30 days. An 
example, shown in Fig. 5A, suggests that the lake system tolerates such changes very well. The resulting abun-
dance values for each SC demonstrate that changes in water temperature have stronger and longer lasting effects 
than changes in pH and sulfate (Supplement Table S2). Specifically, changing the water temperature, pH, or sul-
fate as described resulted in average maximal changes in SC abundance values of 13.7% ± 6.5%, 6.0% ± 5.0% and 
1.7% ± 2.5% for water temperature, pH and sulfate, respectively.

Further analysis demonstrated that the effect of a one-month rise or decrease in water temperature on the 
abundance of the SCs is differently strong throughout the year. Specifically, the simulation results suggest that 
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a change in water temperature causes a larger change in the predicted abundances of SCs if it happens at some 
time between January and May rather than between June and December (Fig. 5B). It is obviously not possible to 
validate this prediction directly, as it pertains to an actual lake, where the temperature must not be altered arti-
ficially (see Supplements for an indirect validation). In addition, the simulation results suggest that a change in 
water temperature during the cooler months of the year has a stronger effect on the SCs’ blooming periods than 

Figure 2. Estimated values of interaction parameters (αij) between pairs of the 14 sub-communities in Lake 
Lanier, when one or three environmental factors are taken into account. The plot shows αij values of SC-1 to SC-
14. In each subplot, the median (red), the first and third quantiles (heights of boxes) and the range of 99.3% of 
the values (lengths of the whiskers) are shown. For each αij, the pairs of boxplots correspond to one (left; grey) or 
three (right; blue) environmental factors. Between 46% and 60% of all αij’s are negative, indicating competition.
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a change in warmer months (except for SC-10) (Fig. 5C). To test the significance of this result, we categorized the 
SCs by their blooming time into two groups, consisting of SCs 1, 2, 9, 11 and 12 in the first group (fall and win-
ter) and the other SCs in the second group (spring and summer). Analysis of variance revealed that the average 
change in observed abundances of SCs per unit of change in water temperature is significantly different between 
the two groups of SCs (p = 0.0046). This result may not be surprising, but it is comforting that the model, quasi 
automatically (i.e., without being trained to do so), reflects the biological expectation, rather than making unrea-
sonable predictions. As is well known, no model is ever completely true, but our model “survives” this particular 
validation test.

With regard to the pH level, the simulation results suggest that the effect of a disturbance is stronger if it hap-
pens in January or February, or between August and October. These time periods coincide with particularly low 
or high levels of pH. While the model predictions were quite clear, we were unable to prove significance (p = 0.2) 
with the strategy we used for temperature. Similarly, the simulation results suggest that the effect of disturbances 
in sulfate is stronger in January and February. The reasons for lacking significance are unclear, but it is notable that 
the patterns in the pH and sulfate concentration data are not as crisp as the temperature data.

Pairwise interactions among the 14 sub-communities in lakes lanier and mendota. Lakes 
Lanier and Mendota differ considerably in their geographical locations, their annual temperature profiles, and 
presumably many other physicochemical characteristics (see Supplements). It is therefore interesting to compare 
key findings from this analysis with our earlier results from Lake Mendota13.

Analyzing all successful parameterizations of the SC model for Lake Lanier, with account for either one 
(m = 1) or three (m = 3) environmental factors, yields ensembles of 193 (or 84) satisfactory solutions, respec-
tively. Using these parameterizations, we computed pertinent statistics regarding their parameter values (Fig. 2). 
Interestingly, the estimated αij and βik values, representing OTU interactions and the effects of environmental 
factors, respectively, are in most cases quite consistent. Between 46% and 60% of all αij’s are negative (m = 1, 
3), indicating competition, while others are positive, suggesting cooperation between SCs. The results for Lake 
Mendota indicate a noticeable higher level of competition (62.0–67.0%).

The αij matrix is asymmetrical, because interaction effects are typically not reciprocal, i.e., the effect of OTU 
A on OTU B may differ from that of B on A. Among the pairs (αij, αji) from Lake Lanier, roughly 40%, 10%, and 
50% are −/−, +/− or +/+, respectively. In stark contrast, the corresponding percentages for Lake Mendota 
are about 75%, 5% and 20%, respectively, which again points to much higher competition in the colder lake. It 
may be tempting—but is difficult—to interpret the direct particular biological relevance of the αij values as we 
do not yet have genome sequence information for validation and >95% of the OTUs in total represent novel, 
not-yet described species, which lack information on encoded metabolic pathways and requirements for growth. 
Nonetheless, we describe an example of our results below as an indication of what these interaction terms may 
mean (see Supplements for further details).

The analysis of pairs of Xi and Xj identified a cluster containing three OTUs in two taxonomical groups, 
including the order Sporichthyaceae (EU800077/AbmC1553 and AY752123/Bctrm577) and the family 
Acidimicrobiaceae (FJ827858/M21eMend). Sporichthyaceae have been described as facultative anaerobes20, while 
Acidimicrobiaceae are obligate acidophiles that can oxidize ferrous (Fe+2) or reduce ferric ion21. Our dynamic 
models allowed us to predict the abundance of FJ827858 from the abundance of AY752123. In contrast, the abun-
dances of the other two OTUs cannot be predicted by their cluster partners. This result suggests that AY752123 
is likely to affect the abundance of FJ827858 while the opposite is not true. Because FJ827858 belongs to the 
obligate acidophiles that use iron metabolism, one should explore whether AY752123 does so once its genome 
sequence becomes available. Similar (potential) interactions were observed between families that are primary 
producers (Cyanobacteria) and organic heterotrophs (various Proteobacteria) (data not shown but are available 
on our websites).

Figure 3. Estimated parameter values associated with temperature (βi1) and the 14 sub-communities. The 
plot shows βi1 values for SC-1 to SC-14. The pairs of boxplots correspond to m = 1 (grey) or m = 3 (blue) 
environmental factors of 193 (m = 1) or 84 (m = 3) models. Specifically, the median (red), the first and third 
quantiles (heights of boxes), and the ranges of 99.3% of the values (lengths of the whiskers) are shown. Most 
of the 14 βi1 values have similar medians in the two models, whereas βi1 for SC-1 and SC-12 are somewhat 
different. However, the latter two βi1 values are relatively small.
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We also identified phyla that are overrepresented in each sub-community of Lake Lanier, using Fisher’s exact 
test on 2 × 2 contingency tables of target phylum versus other phyla, and target SC versus other SCs (Fig. 6). 
This analysis is based on OTU counts, not relative abundance. Therefore, it relates to genetic diversity and not 
numeric dominance. Sub-communities peaking in months with the highest temperatures (and sunlight), between 
May and November (SCs 5–11), included OTUs composed 5–12% of photoautotrophic members of the phy-
lum Cyanobacteria, with significant overrepresentation detected in SC-10 (peaking in October). In contrast, 
sub-communities peaking in low-temperature months (January to April; SCs 1–4) displayed a significant overrep-
resentation of heterotrophic bacteria typically associated with soil or freshwater sediments, including members of 
the phyla Verrucomicrobia, Bacteroidetes, and Acidobacteria, possibly reflecting less structured communities dur-
ing the winter resulting in blooms of populations adapted to surrounding environments. OTUs from the phylum 

Figure 4. Networks of strongest interactions among the 14 sub-communities by month. The interaction 
network for each month was computed from the best sub-community model and weighted by the monthly 
average abundance of the sub-communities. The means and standard deviations of all values were computed, 
and only those interactions were retained that are at least two standard deviations away from the mean. This 
cut-off corresponds to 5% of all interactions. Each vertex size is proportional to the size of the sub-community.
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Figure 5. Predicted changes in abundances in response to altered temperature. For each environmental factor, 
the maximum observed variation was used to modify the measured environmental factor over a 30-day period. 
The change was initiated at the beginning of each calendar month. Panel A: Examples of predicted abundance 
changes (red/green lines) over time for each SC were simulated with either the original water temperature (red) 
or a water temperature (green) that was modified during a 30-day period (grey bar). Observed values are shown 
as blue dots. The abscissa shows the days of a two-year period starting from 7/1/2010. The ordinate shows the 
relative abundances (percentages) of SC-1, SC-2 and SC-3. The maximum and minimum (grey) of the predicted 
values are shown. Panel B: Results were grouped by the month during which water temperature was modified. 
The water temperature was either increased (blue bars) or decreased (yellow bars) for 30 days corresponding 
to calendar months, and a modified LSQ was computed using the mean abundance of 10 simulations using 
10 randomly chosen sets from among 84 estimated models. The results suggest that a 30-day change in water 
temperature between January and May has a stronger effect on SC abundances. This result was validated with 
observed data (p = 0.03). Panel C: Results were grouped by SCs. For each of the 14 SCs (abscissa), the modified 
LSQ was computed when the water temperature was either increased (blue bars) or decreased (yellow bars) for 
30 days. The change in water temperature has a greater effect on some SCs (1, 2, 9, 11, 12) than on others. This 
observation was confirmed with observed data (p = 0.0046).
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Verrucomicrobia in SCs 1 and 2 (peaking in January and February, respectively), mainly belonged to the class 
Spartobacteria(SC-1) and the genus Opitus (class Opitutae; SC-2) or an unclassified member of Opitutae (SC 2). 
A similar pattern was observed among OTUs of Bacteroidetes between contiguous SCs 3–4, where members of the 
family Chitinophagaceae (class Sphingobacteriia) in SC-3 were succeeded by Fluviicola and Flavobacterium (fam-
ily Cryomorphaceae, class Flavobacteria) in SC-4. Similar trends were observed at the class level (data not shown).

It might be interesting to note that the number of positive αij pairs in Lake Lanier is comparable to those in 
studies of microbial communities growing in human or mouse gut or on spoiling pork12,22,23 where organic carbon 
is presumably abundant. This similarity might suggest that the concentration of carbon sources in Lake Lanier 
is not the limiting factor for bacterial growth. Of course, the differences between Lakes Mendota and Lanier are 
multifold, and a single aspect like the organic carbon is not likely to dominate the dynamics in these lakes.

The αii values correspond to ratios of birth rates to carrying capacities13. These αii values are not significantly 
different among the SCs in Lake Lanier (Fig. S9). By contrast, SCs of Lake Mendota that are blooming during the 
summer have substantially smaller ratios than SCs in the winter.

The terms βik · Tk, which characterize the effects of the environmental factors on SC-i in Lake Lanier, are in 
magnitude less than a third of the corresponding αij ·Xj terms in Lake Mendota, with median values of 1.59 and 
0.47 for |αij|·Xj and βik ·Tk if m = 1, and 1.61 and 0.44 if m = 3. The interpretation is that other SCs affect a particu-
lar SC much more strongly than do the environmental factors per unit of abundance. This finding is qualitatively 
different from the results regarding Lake Mendota, where the environmental influence was determined to be 
roughly three times stronger than average SC-SC interactions13.

Discussion
Recent metagenomic sequencing technologies have advanced our understanding of the multiplicity and complex-
ity of OTUs in shared environments. Yet, while we can measure abundances from month to month, interpreting 
the overall abundance dynamics and its consequences within a complex microbial population is very difficult and 
suggests the use of computational analysis. We performed such an analysis here with Lotka-Volterra models that 
are fully dynamic and automatically account for the fact that the relationships between pairs of OTUs are often 
asymmetric. The models were shown to capture the abundance dynamics of sub-communities within the popu-
lation of Lake Lanier well. Moreover, the models generate novel hypotheses regarding the effects of OTUs on the 
growth of other OTUs and regarding the influence of specific environmental factors that follow annual cycles and 
collectively reflect seasonal changes in environmental conditions24–27 and the OTU-OTU interactions.

Judging collectively by parameter values, the SC-SC interactions are stronger in Lake Lanier than in Lake 
Mendota, whereas the SC-ENV interactions are weaker. This outcome is presumably due to geography, with 
Lake Lanier experiencing much milder environmental fluctuations than Lake Mendota. In particular, the water 
temperatures in Lake Lanier are on average 5 °C higher and fluctuations of other resources such as nitrogen and 
phosphorus are much smaller (Fig. S4 and Table S1).

Figure 6. Identification of overrepresented phyla in different sub-communities of Lake Lanier. Results of 
Fisher’s exact test analysis on 2 × 2 contingency tables of target phylum versus other phyla, and target SC versus 
other SCs, indicating overrepresentation of some phyla in Lake Lanier. The analysis is based on OTU counts, 
rather than relative abundance, and therefore relates to genetic diversity.
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The models can be used for predictions of consequences of moderate changes in the OTU abundance distri-
bution or in environmental factors. As one will expect, such predictions have to be made with caution. Clearly, 
black-swan events or drastic changes are not likely to be captured accurately, and changes in factors not explicitly 
modeled will not be represented reliably, if at all. These limitations are true for any models (see, e.g.9). Nonetheless, 
the model facilitates thought experiments. For instance, if one of the included environmental factors is moder-
ately perturbed, the model permits predictions that at suggest the direction and magnitude of responses by the 
lake system. It is at present impossible to validate these predictions experimentally, since the two lake systems 
are natural. However, among the three environmental factors involved in the model, we were able to validate our 
predictions of abundance changes indirectly when the water temperature in the model was altered for a period of 
30 days (see Supplements).

Predictions regarding OTUs are especially difficult to validate. Only very few of the OTUs represent organ-
isms that can be cultivated. In fact, over 99% of the OTUs analyzed here represent species that have not been 
described previously. Even if some OTUs could be cultivated, the results would be questionable, because growing 
by themselves or with only a few other species would be quite different from growing against a background of 
thousands of other OTUs. As a consequence, the functional and metabolic properties of most OTUs cannot be 
reliably inferred from the available 16S rRNA data, which otherwise might support specific OTU-OTU interac-
tions identified by our models. Genome sequences for these taxa are currently being obtained by genome binning 
techniques. They might provide more appropriate data for interpreting the computationally inferred interactions 
in the near future. The characteristics of our models with respect to interactions and the effects of environmental 
factors on the interactions, as well as the population abundance dynamics, are available at http://www.bst.bme.
gatech.edu/research12.php.

The dynamic nature of changes in abundance patterns is closely related to important questions regarding the 
health of the ecosystem. Although a myriad of factors could affect the lake microbiota, our analysis here suggests 
that incorporating water temperature is necessary, and that the inclusion of pH and sulfate improves the overall 
quality of the model further, but that other measured factors have minor effects on the SC levels, at least under 
normal seasonal fluctuations. Of course, this interpretation needs to be considered with caution, as any environ-
mental factors that are closely correlated throughout the year with temperature, pH or sulfate, could be the real 
drivers of the population dynamics. It is also important to point out that other factors than the three mentioned 
above might affect some of the OTUs, because our results apply to the majority of the OTUs but not necessarily 
to all individual OTUs.

One aspect of our analysis addressed the question whether results from one lake system can be translated to 
another lake system. It turns out that the generic model structure is applicable, but that, unsurprisingly, caution is 
necessary with numerical extrapolations. An analysis of lakes downstream of Lake Lanier and connected through 
the Chattahoochee River indicated considerable similarity (Dam et al., unpublished). By contrast, Lake Lanier 
and Lake Mendota exhibit numerous differences, which is understandable, as the two lakes are located in rather 
different geographical zones and climates. In particular, six chemical and physical characteristics that were meas-
ured in both lakes exhibited substantially different levels. While the differences in nitrogen concentrations were 
reflected in different OTUs capable of using nitrogen sources, we did not observe a similar effect in the case of 
carbon sources. All things considered, our results suggest that a common model structure can be used, but that 
the particularities and parameter values must be recalibrated for analyses of different environments.

On the methodological side, we demonstrated here and elsewhere13 that Lotka-Volterra models, extended to 
accommodate environmental factors and combined with appropriate time series data, permit novel insights into 
complex microbial population systems that at first might appear to be impossible to obtain. Two alternatives to 
our LV approach could have been a typical graph-based network analysis and a multivariate autoregressive mod-
eling (MAR) approach. We decided against these alternatives for the following reasons. Network models (e.g.28–32) 
are constructed from correlations that are based on the presence, absence, or abundance of the species across 
multiple locations or time points. The vertices represent species, while the edges represent either pairwise or com-
plex relationships. Pairwise interactions are typically characterized with a similarity index or a modified Pearson 
Correlation Coefficient, while complex relationships are derived from regression or rule-based networks33,34. 
While static correlation networks have the capability of addressing potentially very large and complex communi-
ties of thousands of species across multiple environments28,33, they are limited in that they do not capture poten-
tially important dynamic trends, such as seasonality, and also ignore the “asymmetry” of relationships between 
species in a sense that the effect of sub-community A on sub-community B is different from the effect of B on A. 
Because these aspects are crucially important here, we did not pursue this typical network approach.

MAR models7–9 provide great flexibility with respect to the inclusion of environmental conditions as well as 
noise. They also have the advantage over generic nonlinear dynamic models of permitting parameter estimation 
with methods of linear regression. However, as discussed comprehensively in9, the MAR approach constitutes a 
linear approximation of a system operating close to a stable steady state, which is quite different from the situa-
tion we are facing here; other limitations of MAR models are presented in the Supplements. At the same time, the 
parameter estimation strategy proposed for our LV models minimizes the advantage of linear parameter optimi-
zation in MAR, because it is linear as well13,35. We therefore did not use this approach, but it could be interesting 
nevertheless to reanalyze our data within this framework, quasi as an independent validation (or refutation) of 
our results.

The comparison of the two lake populations sheds light on the roles of biological and physico-geochemical 
factors affecting the dynamics of bacterial populations. Further studies of this nature, with lakes in similar and in 
different environments, will permit additional comparisons of the dynamic interaction networks that drive the 
health of lakes. These types of comparisons will eventually guide us toward hypotheses regarding general prin-
ciples governing the microbial dynamics in lakes which, if validated, may become the foundation for targeted, 
rational interventions and rescue measures.
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Materials and Methods
Data. The dataset for this study consists of two subsets. One contains abundance measurements of OTUs, 
covering 29 time points, collected between July 2010 and October 2015 from Lake Lanier at a depth of 5 m, which 
corresponds to the well-oxygenated layer of the water-column. These samples were sequenced with a shotgun 
metagenomic approach (Illumina short paired-end reads; SRA Project PRJNA214105). The description of the 
complete metagenomes will be reported elsewhere; here we focus on OTUs that were constructed based on 16S 
rRNA and 18S rRNA gene fragments encoded by individual metagenomic reads. 16S/18S fragments were recov-
ered using Metaxa2 v2.136 after quality trimming using SolexaQA++ v3.1.337 and adaptor-clipping using Scythe 
v0.991 (https://github.com/vsbuffalo/scythe). Using the Silva database38, about 11,000 OTUs were identified with 
the closed-reference OTU-picking strategy implemented in Qiime39 (see Supplements and Fig. S1 for details). The 
Lanier metagenomic data can be found in the NCBI SRA database as part of BioProject PRJNA497294.

Complementing these data are measurements of 29 physical and chemical factors in Lake Lanier, collected by 
the Georgia EPA40 and our team during the same time frame; see Supplements for details.

Model. We use the Lotka-Volterra modeling format, where Xi represents the abundance of one of n species, 
OTUs, or sub-communities (SCs). The interactions between a given Xi and Xj, or between Xi and one of m envi-
ronmental conditions Tk, are mathematically represented through two-factor terms. The model thus takes the 
form

∑ ∑α β= + = … .
= =

X X X X T i n, 1, ,i
j

n

ij i j
k

m

ik i k
1 1

Xi is the rate of change in variable i, and the parameters αij and βik indicate the type (sign) and strength (value) 
of each interaction between pairs of variables. Specifically, the n × n matrix of αij represents the interactions 
between any two SCs or OTUs, while the n × m matrix of βik is related to the effects of an environmental factor on 
a SC. A positive α suggests cooperative interactions whereas a negative α suggests competition.

Details of the model, the parameter estimation procedure, and various analyses are presented in the 
Supplements.

Data availability
The data are available at http://www.bst.bme.gatech.edu/research12.php and at http://enve-omics.ce.gatech.edu/
data/. The metagenomic data associated with Lake Lanier can be found in the NCBI SRA database as part of 
BioProject PRJNA497294.
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