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CHF5633 is a novel synthetic clinical pulmonary surfactant preparation composed by two phospholipid
species, dipalmitoyl phosphatidylcholine (DPPC) and palmitoyloleoyl phosphatidylglycerol (POPG),
and synthetic analogues of the hydrophobic surfactant proteins SP-B and SP-C. In this study, the
interfacial properties of CHF5633 in the absence and in the presence of inhibitory serum proteins have
been assessed in comparison with a native surfactant purified from porcine lungs and with poractant
alpha, a widely used clinical surfactant preparation. The study of the spreading properties of CHF5633
in a Wilhelmy balance, its ability to adsorb and accumulate at air-liquid interfaces as revealed by a
multiwell fluorescence assay, and its dynamic behavior under breathing-like compression-expansion
cycling in a Captive Bubble Surfactometer (CBS), all revealed that CHF5633 exhibits a good behavior to
reduce and sustain surface tensions to values below 5 mN/m. CHF5633 shows somehow slower initial
interfacial adsorption than native surfactant or poractant alpha, but a better resistance to inhibition
by serum proteins than the animal-derived clinical surfactant, comparable to that of the full native
surfactant complex. Interfacial CHF5633 films formed in a Langmuir-Blodgett balance coupled with
epifluorescence microscopy revealed similar propensity to segregate condensed lipid domains under
compression than films made by native porcine surfactant or poractant alpha. This ability of CHF5633
to segregate condensed lipid phases can be related with a marked thermotropic transition from ordered
to disordered membrane phases as exhibited by differential scanning calorimetry (DSC) of CHF5633
suspensions, occurring at similar temperatures but with higher associated enthalpy than that shown
by poractant alpha. The good interfacial behavior of CHF5633 tested under physiologically meaningful
conditions in vitro and its higher resistance to inactivation by serum proteins, together with its
standardized and well-defined composition, makes it a particularly useful therapeutic preparation to be
applied in situations associated with lung inflammation and edema, alone or in combined strategies to
exploit surfactant-facilitated drug delivery.

The presence of a surface-active lipid/protein complex at the respiratory air-liquid interface is essential to facili-
tate effortless breathing mechanics'2. Lack or dysfunction of this pulmonary surfactant is associated with severe,
often lethal, respiratory pathologies®. Babies born before their lungs have matured to produce surfactant are at
risk of developing respiratory distress syndrome (RDS), with a high mortality unless these neonates are treated
early with an exogenous surfactant material. In this sense, administration of a bolus of exogenous surfactant, typ-
ically obtained from extracts of animal-derived materials, has saved thousands of preterm baby lives*®. In other
pathologies associated with lung injury and inflammation in children and adults, blood proteins and inflam-
matory mediators liberated into the airways as a consequence of edema and injury may inactivate surfactant
function leading to lung atelectasis and respiratory failure®’. Restoring surfactant activity upon administration
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of exogenous materials to these patients, has been so far prevented. In this line, enough amounts of clinical sur-
factants with well-defined composition and resistance to inactivation are required to treat adult injured lungs.

CHF5633 (CHF) is a synthetic surfactant, which has completed a phase I clinical trial® and is currently under
phase I It is a simple mixture which contains 98.3% lipids by mass in a 1:1 ratio of dipalmitoyl phosphatidylcho-
line (DPPC):palmitoyloleoyl phosphatidylglycerol (POPG), and 1.7% by mass of analogues for both hydrophobic
pulmonary surfactant proteins, 0.2% of an analogue of SP-B and 1.5% of an analogue of SP-C*'°. Most effective
surfactants used nowadays to treat neonatal Respiratory Distress Syndrome (nRDS), also partially effective in
some cases of Neonatal and Adult Acute Respiratory Distress Syndrome (ARDS), are from natural origin, typi-
cally organic extracts of either calf or porcine bronchoalveolar lavages or from minced lungs®. However, materials
obtained from animal sources could present some potential inconveniences, such as a) the impossibility to have
a constant and repetitive formula, b) the possibility of an immunogenic response if many repeated doses are
required, and c) the amount of animals needed to obtain the product with a high cost of production. Although
the effective appropriate dosage to treat adults under pathological situations is not well defined, higher amounts
of surfactant are needed for each dose, and more than one dose is usually necessary for the treatments. On the
other hand, nowadays, surfactant is starting to be considered as a possible carrier for inhaled drugs to treat either
respiratory pathologies or other diseases, with more focused targets and less side effects. To do so, a simple sur-
factant with good spreading properties could be enough to allow medicines reaching the deepest alveoli, but it is
anticipated that its use as drug carrier will open the need for much larger amounts of clinical surfactants with well
established composition and performance.

Previous efforts have been done to obtain a synthetic surfactant as simple as possible but with a proper bio-
physical performance to treat patients (revised in’). First attempts included only lipids but once it was established
that hydrophobic proteins are crucial for the biophysical function of surfactant, synthetic mixtures incorporated
peptides mimicking proteins SP-B and/or SP-C!!. Later studies showed that a better performance, both in vitro
and in vivo, was obtained when analogues of both proteins were included into the lipid/peptide formulation'?.

In the present study, we have performed a detailed in vitro biophysical characterization of CHFE. The SP-B ana-
logue into CHF is a 34-amino acid peptide derived from the two halves (residues 8-25 and 63-78) of the human
SP-B, with two intramolecular disulphide bridges mimicking disulphides in the native protein. The SP-C analogue
in CHF is a 33-amino acid peptide resembling native SP-C, where valines have been substituted by leucines giving
rise to a more stable protein. The properties of CHF have been compared with a worldwide effective clinical sur-
factant from natural origin, namely poractant alfa (POR«) (Curosurf ® Chiesi Farmaceutici S.p.A., Parma, Italy),
and with native porcine native surfactant (NS) obtained from bronchoalveolar lavage. Particular attention has
been paid to the biophysical behaviour of the surfactants in the presence of serum or albumin, well-established
inhibitors of surfactant performance'.

Results

Interfacial behaviour.  Figure 1a-c shows the kinetics of spreading over the interface for the three tested sur-
factants at 25 °C, when applying 50 pg, 100 pg or 150 pg of NS, POR« or CHF respectively. While NS and POR«
are able to rapidly spread over and adsorb into the interface even when small amounts of material are applied,
CHF needs higher amounts of surfactant at the interface to reach a surface pressure close to that of equilibrium.
Moreover, the equilibrium is reached by CHF at a somehow slower rate, with a jump in surface pressure typically
occurring after 10 min of sample deposition.

Formation and performance of surface films under more physiological conditions were assessed in the Captive
Bubble Surfactometer (CBS). Figure 2 summarizes the surface behaviour of the different surfactants tested in
this device. Samples are applied onto the surface of a small (5 mm) air bubble enclosed in a thermostated (37 °C)
chamber and subjected to compression-expansion cycling mimicking breathing dynamics. The initial adsorption
kinetics of NS, PORa and CHF is shown in the first panels of Fig. 2, in the absence (first, third and 5% rows) or
presence (2", fourth and sixth rows) of a layer of serum. In the absence of serum, NS and POR« reach equilib-
rium values (~23 mN/m) after only 1 second from the injection of material. Conversely, CHF presents a relatively
slower initial adsorption at the concentration tested (10 mg/ml.) This material needs around 3 min to reduce sur-
face tension to values around 26 mN/m. Interestingly, upon increasing the number of replicates, the adsorption
isotherms of CHF showed a high experimental variability with the surfactant adsorbing in some experiments as
fast as NS or PORq, indicating a non-homogenous initial adsorption (data not shown).

As the bubble is expanded and a new interface is opened, surfactant accumulated close to the interface was
rapidly adsorbed achieving in a few seconds the equilibrium surface tension values in all the materials tested
(Fig. 2, PE adsorption in the absence of serum). CHF, which exhibited slower initial adsorption than NS or PORa,
had comparable fast post-expansion adsorption, indicating that once properly connected with the interface, CHF
was able to efficiently promote transfer of surface active species into a newly open interface.

The analysis of ~-relative area isotherms during slow quasi-static (QS) or rapid dynamic (Dyn)
compression-expansion cycling revealed that NS and POR« films behave similarly, under both cycling condi-
tions. Under QS cycling, films from both surfactants exhibit a reorganization of material at the interface during
the 1% cycle. They need a larger extent of compression to reach the lowest surface tensions, and present a larger
hysteresis, than that observed in subsequent cycles. At the end of the 2" compression cycle, both materials reach
a surface tension of <2 mN/m with less than 20% of area reduction. Maximal surface tension at the end of the
expansion steps under QS conditions is slightly lower than 30 mN/m. Under dynamic cycling, at compression-
expansion rates comparable to breathing, both NS and POR« films exhibit practically no hysteresis and extreme
stability, producing the lowest surface tensions (<3 mN/m) along all the cycles with less than 20% area reduction.
Maximal tension under dynamic conditions is slightly higher than in the QS regime, but still no much higher
than 30 mN/m.
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Figure 1. Adsorption isotherms of surfactants in a Wilhelmy balance. Spreading isotherms of 50 (light grey),
100 (dark grey) and 150 pg (black) of (a) NS, (b) PORa and (¢) CHFE Surfactant was applied in a single drop
at the air-liquid interface. Surface pressure was measured along 40 minutes. The mean of three replicates is
depicted. Black vertical lines represent standard deviations. Abbreviations: NS = porcine Native Surfactant,
PORa = Poractant alfa (Curosurf®).

CHEF films also work very well under both QS and dynamic cycling, although it shows a behaviour that is
somehow different than the typical exhibited by NS and PORca. Under QS conditions, it already achieves minimal
surface tensions from the 2" compression cycle, although this minimal value is slightly higher (~4 mN/m) com-
pared with NS and PORa (~2 mN/m). However, in QS as well as in Dyn cycles, CHF needs slightly more than
20% area reduction to achieve the lowest surface tension values. Remarkably, CHF isotherms at the CBS exhibit a
conspicuous plateau at 15-20 mN/m, both in the compression and the expansion moieties of the isotherms. This
denotes that CHF films undergo some sort of structural transition before reaching the less compressible stages
that are competent to reach the lowest surface tensions.

As shown also in Fig. 2, CHF films are less stable under mechanical perturbations than POR« or NS films.
Normally, after the first hit of a pendulum hammer over the CBS chamber, surface tension in CHF-stabilized
interfaces raises in a jump of 3 or 4 mN/m while this increase is slower in interfaces stabilized by the other mate-
rials. It is worth noting anyway, that there is also more variation between the behaviour of different CHF samples
than that exhibited by PORa and NS samples.

Serum inactivation. Surfactant inactivation by serum proteins was assayed in the CBS as it was previously
optimized', by directly applying serum onto the air bubble before surfactant injection (Fig. 2a-c). This way,
serum proteins have the opportunity to adsorb to the interface before surfactant is applied. Synthetic CHF is more
resistant to serum inactivation than PORa, as can be clearly observed in its dynamic behaviour, more similar to
that of N'S. Though it needs to be compressed to a somehow greater extent, CHF films are able to reach the lowest
surface tension even at the 2" QS cycle, with no hysteresis during the Dyn cycles. These results are in accordance
to what it was previously observed in an in vivo model of RDS, where bronchoalveolar lavages (BAL) from pre-
term lambs treated either with PORa or CHF were analysed in the CBS".

To confirm this apparent resistance of CHF to inactivation, a multiwell fluorescence assay (Surfactant
Adsorption and Accumulation Test, SAAT) was used to measure the accumulation of NS, POR«a and CHF at the
interface in the absence or presence of different amounts of total serum proteins as described in Cerrada et al.'®
(Fig. 3, panel a). Though CHF control presents a slower slope, it is surprisingly less altered by serum proteins than
the other surfactants tested. In panel b of Fig. 3, surfactant accumulation at the surface after 60 min is shown.
In the case of CHEF, the presence of serum proteins in the subphase have almost no effect in the accumulation
of material at the interface while POR« is quite affected even at the lowest amount of serum protein tested. As
it could be expected, NS has a better performance in the absence of inactivating material, however, its relative
activity is more affected than that of CHF when serum is present, as it is observed in the percentage of activity
(panel c). Remarkably, NS and CHF increase their activity (accumulation at the surface) overtime, whereas PORo
is more inactivated. In summary, it can be concluded that in the presence of serum, CHF is apparently as good
as NS.
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Figure 2. Interfacial behaviour of surfactants as assessed in a Captive Bubble Surfactometer. Initial and
post-expansion adsorption and slow quasi-static and fast dynamic compression-expansion isotherms as
obtained in CBS experiments are compared for (a) NS, (b) PORa and (¢) CHF5633. Around 300 nL of
surfactant at 10 mg/mL were injected onto the bubble in each experiment, in the presence or absence of 3 uL
of porcine serum. Initial adsorption, Post-expansion (PE) adsorption and stability: the mean of three replicates
is depicted. Black circles and grey bars represent surface tension. Black vertical lines represent standard
deviations. Quasi static cycles: a representative experiment is shown. Changes in surface tension during the 1*
(black circles), 2™ (white circles), 3 (black triangles) and 4™ (white triangles) compression-expansion cycles
are depicted. Dynamic cycles: a representative experiment is shown. Changes in surface tension during the

1 (black circles), 10" (white circles) and 20" (black triangles) compression-expansion cycles are depicted.
Abbreviations: NS = porcine Native Surfactant, PORa = Poractant alfa (Curosurf®).

Structural organization of surfactant films. Interfacial films formed by a pure 1:1 DPPC/POPG lipid
mixture do not show phase segregation at 25 °C, at any surface pressure (not shown). The lack of domain segrega-
tion could be a consequence of the high proportion of unsaturated and charged phospholipid species.

In contrast, films formed by CHF suspensions show a very conspicuous phase segregation, once compressed
to surface pressures above 25 mN/m, observed by the appearance of numerous small round dark domains, sim-
ilar in size and shape to those observed in NS or POR« (Fig. 4). Also, it can be observed that CHF films present
fluorescent bright spots where an accumulation of the label has been produced, at low surface pressures analysed
before the surfactant saturates the interface.
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Figure 3. Interfacial adsorption and accumulation of surfactants. (a) Overtime adsorption kinetics and (b)
surfactant performance after 60 min for NS, POR«a and CHF in the presence of increasing amounts of total
protein (mainly albumin) in the subphase. (c) Overtime surfactant activity when the highest amount of total
protein is dispensed at the air-liquid interface. Circles and bars represent the mean of three replicates. Black
vertical lines represent standard deviations. Abbreviations: NS = porcine Native Surfactant, PORa = Poractant
alfa (Curosurf®), RFU = Relative Fluorescence Units.
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Figure 4. Compression-driven lateral structure of surfactant films. Left, a representative compression
isotherm of films formed by each of the three surfactants tested is shown. 20 uL of NS and POR« at 2.5 pg/
pL were applied at the air-liquid interface before starting compression. 3 uL of CHF5633 at 50 pug/pL were
applied at the air-liquid interface, with the barrier completely closed before opening it to start compression.
Right, lateral micro-structure of surfactant films (doped with 1% of NBD-PC) compressed to different surface
pressures and observed under a epifluorescence microscope. Abbreviations: NS = porcine Native Surfactant,
PORa = Poractant alfa (Curosurf®).
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Figure 5. Thermotropic behaviour of surfactants by Differential Scanning Calorimetry. Left, a representative replicate
of the DSC thermogram of the three surfactants tested is shown. 500p.L of degassed material at 3 mg/mL were used.
Right, main parameters from DSC thermograms. Abbreviations: NS = porcine Native Surfactant, PORa=Poractant
alfa (Curosurf®).

Thermotropic phase transitions.  As previously published, NS membranes exhibit a melting temperature
ataround 32 °C, and a main calorimetric peak ending abruptly close to 37 °C with a typically broaden differential
scanning calorimetry (DSC) thermogram!”. Total enthalpy associated with the melting of ordered phases in NS is
around 3 kcal/mol. PORa and CHF melt at significantly lower temperatures than NS, 28 °C and 27 °C respectively.
POR« shows a relatively lower associated enthalpy, in the order of 2 Kcal/mol while thermotropic transitions
occurring in CHF complexes liberate more enthalpy (~4 Kcal/mol) than native surfactant or PORa (Fig. 5).

Discussion

In this study, we have investigated on both the functional and structural features of a new synthetic clinical pul-
monary surfactant, CHE. We have characterized its performance in comparison with native surfactant and PORg,
one of the clinical surfactants from natural origin most used in replacement therapy of RDS**. The lipid-protein
content and the structure of lung surfactant determine its three crucial biophysical properties: (1) a rapid adsorp-
tion towards the air-liquid interface, (2) an appropriate compressible behaviour while inhaling and exhaling
to produce a minimal surface tension <5 mN/m at the end of exhalation, and (3) a good re-adsorption and
re-spreading of material eliminated from the interface during the compression of the film upon inhalation's. In
this line, the high percentage of DPPC and POPG in CHE, along with the only presence of the two hydrophobic
peptides define its particular biophysical behaviour. However, for optimal interfacial adsorption of surfactant,
not only the two hydrophobic proteins, SP-B and SP-C, but also the collectin SP-A play a key role. The latter
seems very important to maintain a packed reservoir interconnected to the interface, thus contributing to the
re-adsorption and expansion of new material during each compression cycle'. The presence of SP-A explains
the best rates of both adsorption and accumulation at the interface of NS, compared with the SP-A-free clinical
materials. In fact, PORq, derived from the organic extract of lung surfactant, from which SP-A is depleted, shows
slower adsorption and accumulation rates (SAAT experiment). This adsorption difference between NS and POR«
is not patent in the CBS isotherms, where surfactant is not applied in so limiting amounts. However, the lower
adsorption rate of POR« is higher than that exhibited by CHE, in which not only SP-A is absent, but also the
efficiency of synthetic peptides to transfer lipids into the interface may be reduced in comparison with the native
proteins.

Moreover, as it happens for the adsorption, during spreading experiments, the application of low amounts
of CHF at the interface was related with a worse initial performance of this material in the Wilhelmy balance.
As argued above, we propose that this result is probably due to: (1) the higher content of DPPC —50% by mass
compared to NS and PORa (in which DPPC accounts for around 40%°)- which makes the system less dynamic
due to its saturated acyl chains, particularly when tested at 25 °C; (2) the nature (synthetic fragment vs native)
and content (0.2% vs 1% in NS) of the SP-B analogue. However, the worse performance of CHF only emerges
under limiting conditions and is absent when higher concentration and doses* of material are applied.
Similarly, to reach the equilibrium surface pressure during the Langmuir-Blodgett experiments, we needed
to apply higher amounts of CHF, around two times more, at a higher concentration and in a smaller surface
area, than that necessary for NS and PORa. In this line, elevated concentration of CHF in the CBS allows for a
proper re-spreading as it is deduced from both the equilibrium tension values reached during post-expansion
and the “low” maximal tension achieved upon cycling. CHF films exhibit in fact a very good dynamic perfor-
mance: they reach low surface tension when compressed and not so high maximal values when the air bubble
is expanded. We speculate that this good performance upon dynamic cycling may be associated with an almost
complete exclusion of POPG from the interface during compression because of the unsaturated nature of such
phospholipid species. Compression-driven POPG exclusion could be responsible for both the reproducible
and reversible conspicuous plateau in the CHF isotherms, and the bright spots at the structure of the film
observed under the epifluorescence microscope. Cooperative exclusion of POPG would leave a film mainly
composed of DPPC at the air-liquid interface, thus contributing to a quick fall in surface tension to extremely
low values. Excluded POPG would remain connected to the interface, presumably through the participation
of surfactant peptides, allowing for its fully reversible reinsertion when the interface is re-opened during
expansion. Typically, plateaus in the compression isotherms of surfactant films are associated with lateral or
three-dimensional structural transitions preceding the acquisition of the non-compressible states required to
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reach the minimal surface tension (maximal lateral pressures). Often, such plateaus exhibit a variable degree
of hysteresis, which is indicative of the work expended upon film transformation during compression?!.
The plateau in the CHF isotherm is clearly non-hysteretic, which means that the structural transition produc-
ing the plateau is perfectly reversible and therefore could not be necessarily associated with a significant loss
of energy. Moreover, it underlies that POPG is not merely lost during compression, but remains associated
through the two peptides and thus providing a higher activity during the following re-extension.

Interestingly, not only the function but also the lateral structure of CHF films is similar to those of surfactants
from natural origin®, something that is clearly linked to the presence of surfactant peptides. We may speculate
that the presence of the proteins counteracts, at least in part, the negative charge of phospholipids facilitating
lipid clustering and nucleation therefore triggering domain condensation?. Presence of protein analogues could
therefore be particularly important in this system to facilitate the lateral sorting and domain segregation that
favours a simultaneous flexibility and stability of the films. It remains to be established whether the two protein
analogues have similar or distinct contribution to film structure. As mentioned above, CHF films reveal the
presence of numerous fluorescent bright spots somehow associated to the condensed domains. We propose that
these bright spots revealed as a consequence of light scattering under the epifluorescence microscopy are likely
three dimensional surfactant aggregates attached to the surface film?, probably enriched in the less compressible
species, presumably POPG. These spots could both act as a source of material to re-adsorb into the interface
during expansion and to cooperate in a more efficacious exclusion of uncompressible lipids during compression.

The synthetic preparation shows melting at relatively low temperatures, but with higher associated enthalpy
than PORa. This raised enthalpy could be related with the higher proportion of DPPC in CHF formulation com-
pared with the other surfactant preparations, something that could be in principle associated with higher melting
temperatures. However, the low Tm of CHE, around 27 °C, could be explained because of the remarkable high
amount of POPG, which has a Tm of —2°C. The thermogram of CHF complexes, as that of PORq, is more coop-
erative (less broaden) than that of native surfactant. The broaden transition exhibited by NS is likely related to
the presence of cholesterol in NS membranes and its effect in segregating lipid populations with different packing
and melting properties!”.

An open question is whether surface-associated aggregates in CHF are required for the good performance of
this surfactant in the presence of inhibitory substances such as serum proteins. To get deeper into this topic, we
studied the in vitro inhibition of the three surfactants in the presence of serum. In fact, during lung inflammation
and altered epithelial permeability, as it occurs in cases of ARDS, serum is leaked into the alveolar spaces and,
among its several components that may perturb surfactant membranes, serum proteins may directly inactivate
surfactant function, as a consequence of a direct competition for the air-liquid interface”?*. The low compressi-
bility of serum proteins does not allow for the extreme reduction in surface tensions that are required to prevent
alveolar collapse. Other inflammation-associated proteins like CRP*? or secretory phospholipase A2?*?’ also
contribute, altogether, to inhibit surfactant performance. In our in vitro model, CBS results confirm a similar
performance of CHF in the absence or presence of serum, including the possible exclusion of POPG that would
be associated with the characteristic plateau of the isotherm during dynamic cycles.

As it could be expected, full native surfactant containing the originally assembled structures exhibits the high-
est resistance to inactivation, being able to displace serum proteins away from the interface when it is not at very
limiting concentrations. On the contrary, POR« seems to exhibit the worst performance amongst the materials
tested, being CHF more resistant, in agreement with what it has been already observed in vivo'>. We also demon-
strated that CHF is more resistant to inhibition than POR« by assessing the total accumulation of material at
the interface in the presence of increasing amounts of total serum proteins. This is also noticeable in the CBS
where, in the presence of serum, adsorption of POR« is worse and upon quasi-static compressions, surfactant is
not able to displace serum proteins, in contrast to CHE Surfacen, another natural clinical surfactant preparation
derived from BAL of porcine lungs, shows the same kind of dynamic isotherms as PORa, with a poor behaviour
in the presence of serum?®. Conversely, CHF films, though needing a larger compression extent, have still no
hysteretic isotherms when subjected to dynamic cycles in the presence of serum. We could speculate that there
is a preferential exclusion of inactivating proteins that are swept along from the interphase together with POPG
during the compression-expansion cycles. In fact, it is known that proteins such as fibrinogen, are excluded to the
liquid-expanded phase while lateral compression®.

In summary, CHF5633 is a synthetic surfactant with great potential to be used in clinical therapies. Even if
it does not adsorb at first instance as efficiently as other clinical surfactants from natural origin, it is capable of
quickly spreading along the interface at clinical doses. Its synthetic and reproducible composition makes it a
good candidate in the treatment of adults when high and multiple doses are needed, avoiding safety issues with
the potential presence of pathogenic entities from animal origin, or possible allergenic reactions®. However, its
maximal advantage is the stability of its dynamic properties even in the presence of serum, making it a potentially
useful preparation in situations associated with inflammation and edema as well as for drug delivery therapies to
patients with inflamed and injured lungs.

Methods

Materials. Native surfactant (NS) was purified from bronchoalveolar lavage (BAL) of porcine lungs obtained
from the slaughterhouse as previously described'®. BAL in ice cold Tris 5mM pH 7 in 0.9% NaCl was centrifuged
for 150 g during 10 minutes to remove cells, and the supernatant was centrifuged for 1 hour at 4°C 100,000 g to
pellet whole surfactant complexes. Pellets were resuspended in NaBr 16% NaCl 0.9% and pooled before being
loaded onto a sodium bromide gradient centrifugation performed as previously described to remove potential
blood contaminants. Phospholipid concentration was determined by phosphorus mineralization®'. Clinical sur-
factants, PORa and CHF5633, were provided by Chiesi Farmaceutici S.p.A. (Parma, Italy).
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Interfacial surfactant performance. Wilhelmy balance. The spreading capability of surfactant was
assayed by using a Wilhelmy balance whose design was modified by adding a small arm to the trough (total
area arm = 6.45 cm2, total area trough = 21.45 cm?2) to increase the distance between the injection point and the
pressure sensor. NS, PORa and CHF were tested at 25 °C by spreading, directly at the air-liquid interface, 10 pL
of the different materials containing 50, 100 or 150 pg of phospholipids. The sample was distributed only in one
drop at the end of the smaller arm of the trough on the opposite side to the pressure sensor. Each experiment was
performed in triplicate and the changes in surface pressure were recorded for 40 minutes.

Captive bubble surfactometry (CBS). CBS permits to test surfactant activity in terms of the ability of surfactant
samples to reach and maintain very low surface tension (v) at the air-liquid interface of a small (5mm) air bubble
at a controlled temperature (37 °C), while mimicking the cyclic changes in alveolar volume that occur during
breathing®. This device allows for the detailed analysis of several surfactant biophysical properties, including
its ability to adsorb at the interface, to re-spread once new interface is open, to maintain low enough surface
tension along quasi-static (slow) or rapid (breathing-like) dynamic compression-expansion interfacial cycling,
or the mechanical stability of the films formed by the tested materials. Briefly, around 300 nL of each given
surfactant suspension (at a concentration of 10 mg/mL) was injected close to the air-liquid interface generated
between the air inside the microbubble and the buffer (5 mM Tris and 150 mM NaCl, pH 7, containing 10%
sucrose to increase density and thus permitting surfactant floating). The changes in surface tension for 5 minutes
after surfactant injection were quantified (Initial Adsorption) by continuously recording the variations in the
bubble size and shape. Then, the chamber was sealed and the bubble was quickly expanded by decreasing the
hydrostatic pressure generated by a piston. The capability of surfactant to re-extend and reduce again the equilib-
rium surface tension was monitored during further 5 min after bubble expansion (Post-Expansion Adsorption).
The bubble was then sequentially subjected to both slow quasi-static (4 cycles) and quick dynamic (20 cycles/
min) compression-expansion cycles. The changes in bubble size during cycles were video recorded, permitting
the analysis of volume, area, and ~ at any time. Finally, the stability of the multi-lamellar structure created by the
interfacial surfactant films during dynamic cycling of the interface was tested by introducing shocking mechani-
cal perturbations into the bubble chamber, hitting 12 times the chamber with a pendulum hammer, as previously
described®. Experiments were performed in triplicate and results were analysed as ~/t and ~/hits graphs and ~/
area isotherms.

Serum inhibition and surfactant resistance to this inhibition were tested as previously published'*. In detail, 3 L
of whole porcine serum (at 67.9 mg/mL) was first injected at the air-liquid interface of the bubble in the CBS.
After 5 minutes, surfactant was introduced and distributed over the bubble surface without touching the bubble,
to initiate the experiment as described above from the Initial Adsorption but in the presence of serum.

Surfactant adsorption and accumulation test (SAAT). 'The adsorption and accumulation of surfactant at the
air-liquid interface were tested by SAAT as previously described®**. In detail, 3 pg of surfactant were labelled
with BODYPY-PC (Molecular Probes, Life Technologies, Carlsbad, California) for 1 hour at 37°C to obtain a final
molar ratio of 1% (dye/surfactant). This mixture (in a volume of 20 uL) was injected at the bottom of wells in a
microplate whose wells were previously filled with 80 pL of a quenching solution (1% Brilliant Black, Sigma). To
follow surface adsorption and accumulation, the fluorescence emission of the sample measured from the top was
recorded overtime during shacking cycles of the microplate in a FLUOstar OPTIMA Microplate Reader (BMG
Labtech, Offenburg, Germany). Fluorescence intensity reaching the surface was followed at 37 °C for 60 minutes
(ie, for 30 readings). Experiments were performed in triplicate, and results are reported as relative fluorescence
units (RFU). All data were corrected by subtracting the measured background.

Surfactant inhibition by total proteins was tested by adding to the Brilliant Black a volume of human serum
containing different amounts of total protein (0.25, 0.5, 0.75 and 1 pg). Then, surfactant was injected and the
experiment was assayed as described above.

Surfactant structural properties.  Epifluorescence microscopy. The lateral structure of interfacial sur-
factant films regarding the compression-driven segregation of liquid-condensed domains was observed by epi-
fluorescence microscopy?!. Briefly, 2.5 ug/uL of NS or PORa or 50 pg/pL of CHF were labelled with NBD-PC
(Molecular Probes, Life Technologies, Carlsbad, California) for 1 hour at 37 °C to obtain a final molar ratio of 1%
(dye/surfactant). In the case of NS and PORa, 15 uL of dye/surfactant suspension were spread at the air-liquid
interface of a Langmuir-Blodgett trough (total area = 184 cm?, Nima Technology, Coventry UK). As for CHE, 3uL
of dye/surfactant suspension were applied with the barrier totally closed before opening it at a constant speed
of 5cm?/min. After 10 minutes equilibration, each surfactant film was subjected to compression at a constant
speed of 25 cm?/min, while transferring the interface to a glass coverslip that had been previously immersed
into the subphase. The resulting supported film, captured at different surface pressures as previously described?,
was observed under an epifluorescence microscope (Leica microsystems, Wetzlar, Germany) equipped with a
Hamamatsu digital camera.

Differential scanning calorimetry (DSC). The thermotropic transitions between different phases in surfactant
membranes and complexes were analysed by DSC as described!’. Each surfactant was diluted to reach a con-
centration of 3 pg/pL in 5mM Tris buffer pH 7, containing 150 mM NaCl. Then, after sample degassing, 500 pL
of each suspension was loaded into the sample pan of a VP-DSC Microcal microcalorimeter, using the dilution
buffer as reference. The differential heat (Cp) required to raise the temperature of the sample vs. reference was
measured within a temperature range from 10 to 55°C along 15 consecutive scans. Experiments were performed
in triplicate, and results are reported as Cp/T functions.
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