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Biomarker discovery for chronic 
liver diseases by multi-omics – a 
preclinical case study
Daniel Veyel1, Kathrin Wenger1, Andre Broermann2, Tom Bretschneider1, 
Andreas H. Luippold1, Bartlomiej Krawczyk1, Wolfgang Rist   1* & Eric Simon3*

Nonalcoholic steatohepatitis (NASH) is a major cause of liver fibrosis with increasing prevalence 
worldwide. Currently there are no approved drugs available. The development of new therapies is 
difficult as diagnosis and staging requires biopsies. Consequently, predictive plasma biomarkers would 
be useful for drug development. Here we present a multi-omics approach to characterize the molecular 
pathophysiology and to identify new plasma biomarkers in a choline-deficient L-amino acid-defined 
diet rat NASH model. We analyzed liver samples by RNA-Seq and proteomics, revealing disease 
relevant signatures and a high correlation between mRNA and protein changes. Comparison to human 
data showed an overlap of inflammatory, metabolic, and developmental pathways. Using proteomics 
analysis of plasma we identified mainly secreted proteins that correlate with liver RNA and protein 
levels. We developed a multi-dimensional attribute ranking approach integrating multi-omics data 
with liver histology and prior knowledge uncovering known human markers, but also novel candidates. 
Using regression analysis, we show that the top-ranked markers were highly predictive for fibrosis in our 
model and hence can serve as preclinical plasma biomarkers. Our approach presented here illustrates 
the power of multi-omics analyses combined with plasma proteomics and is readily applicable to human 
biomarker discovery.

Nonalcoholic fatty liver disease (NAFLD) is the major liver disease in western countries and is often associated 
with obesity, metabolic syndrome, or type 2 diabetes. Around 10% of NAFLD patients successively develop nonal-
coholic steatohepatitis (NASH)1, which is characterized by hepatic inflammation and fibrosis2. NASH is projected 
to be the major reason for liver transplantation globally by 20203, because it can further progress to liver cirrhosis 
and/or liver cancer. Although there is some progress towards a better disease understanding, there is no approved 
drug available to treat NASH patients4. One major hurdle to develop novel drugs is the lack of non-invasive clin-
ical biomarkers. Currently, liver biopsies are the gold standard for diagnosis and disease staging2,5. The apparent 
problem of liver biopsies is their invasiveness and variability resulting from the limited sample size in combina-
tion with the heterogeneity of the disease pathology over the whole organ. Therefore, non-invasive biomarkers 
supporting diagnosis, monitoring therapeutic efficacy and disease progression are highly desired.

NASH and liver fibrosis are accompanied by massive cellular transformations, e.g. hepatocyte ballooning 
and apoptosis, and extracellular matrix (ECM) deposition by hepatic stellate cells. Thus, specific molecules from 
hepatocyte leakage and/or the ECM might be detectable in plasma like the generic liver damage markers alanine 
aminotransferase and aspartate aminotransferase. Existing soluble biomarkers for NASH and fibrosis cover spe-
cific disease aspects like inflammation, fibrosis, apoptosis, and oxidative stress, but are not used routinely5. For 
example, the ELF score represents a panel of three biomarkers related to ECM deposition (PIIINP, TIMP1, and 
Hyaluronic acid), recommended for screening NAFLD patients for advanced fibrosis6. Although showing mod-
erate to excellent predictive accuracy, the ELF test lacks sensitivity for early fibrotic stages5.

Since NASH is a heterogeneous disease, biomarkers for e.g. monitoring treatment response will likely depend 
on the specific mode of action of a drug5,7. To address this, several studies used metabolomics approaches to 
discover soluble biomarker candidates for NASH8–11. Other studies used plasma protein profiling to identify 
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proteins associated with NAFLD and Cirrhosis12,13 or to generate a steatosis classifier together with genetic and 
clinical parameters14. However, there is a lack of studies that systematically asses the translation of the molecular 
changes in the diseased liver at the RNA level to changes at the liver and plasma protein level for the discovery of 
non-invasive biomarkers.

Similar as for the human disease, preclinical in vivo models rely on the terminal histopathological and molecu-
lar assessment of liver material. Consequently, it is difficult to monitor longitudinal disease progression and there-
fore estimate the right time-point to evaluate the efficacy of a test compound in a subchronic experiment. There 
are several preclinical animal models for NASH established or under development15–17. They differ in the way of 
triggering a NASH-like phenotype (obesogenic dietary, nutrient-deficient dietary, genetic, chemically induced, 
surgery-based) and in their ability to reflect the human etiology and histopathology15. The choline-deficient 
L-amino acid-defined (CDAA) diet based NASH model is known to induce hepatomegaly, hepatic steatosis 
and triacylglycerol accumulation because of the impaired liver lipid secretory capacity during the CDAA diet18. 
Recently, the CDAA diet supplemented with different cholesterol concentrations has been evaluated in Wistar 
rats19. Liver inflammation markedly increased in CDAA animals throughout all time points indicated by mRNA 
markers and immune cell infiltration. Notably, the cholesterol supplementation increased the lipotrope properties 
of the CDAA diet and further promoted a fibrotic phenotype. Among the cholesterol supplementations tested, 1% 
cholesterol showed the most suitable phenotype for pharmacological testing19.

For the present study, we used mRNA sequencing of liver samples in combination with LC-MS based pro-
teomics of liver and plasma samples from the CDAA + 1% cholesterol model for preclinical biomarker discov-
ery. We compared our transcriptomic data to public human NASH data to show the relevance of the induced 
changes for the human disease. We observed good correlation between transcript and protein expression for the 
majority of regulated genes. Furthermore, we could detect some of these changes also in the plasma. Ranking by 
multi-dimensional attributes derived from our data and prior biomarker evidence revealed known biomarker 
candidate proteins. In addition, we identified several candidates without prior NASH biomarker evidence. In 
summary, the present study provides a comprehensive multi-omics framework for preclinical NASH biomarker 
discovery. Moreover, it shows the utility of different omics technologies for this approach, which is adequately 
applicable in clinical settings.

Results
RNA-Seq reveals strong gene expression changes relevant for the NASH phenotype.  Recently, 
we investigated the CDAA diet with different supplementary combinations using Wistar rats for their suitabil-
ity as a preclinical NASH model19. From this experiment we selected the CDAA diet supplemented with 1% 
cholesterol (in the following abbreviated as CDAA) for molecular profiling because it shows the most relevant 
phenotype. To gain insight into molecular mechanisms of disease progression we analyzed liver tissue from dis-
eased CDAA and choline-supplemented L-amino acid-defined (CSAA) control animals at 4, 8, and 12 weeks by 
RNA-Seq (Fig. 1a).

RNA integrity of all samples was very good (RIN > 8). Samples were sequenced at a sequencing depth of 20 
to 30 million single end reads per sample with a high rate of >70% exonic reads that mapped uniquely to the rat 
genome. Sample-to-sample correlation based on log2 normalized read counts was very high within each group (r 
Pearson > 0.95).

Unsupervised principal component analysis (PCA) revealed a clustering of sample groups, except for three 
outlier animals (Fig. 1b). The first principal component (PC1) separated samples from CDAA and CSAA diet. 
PC1 values of CDAA samples were generally negative with further decreasing values with the duration of the 
CDAA diet (whereby samples from CDAA diet after week 8 and 12 are relatively close to each other). In PC2, 
samples from both conditions clustered with respect to the duration of the experiment, confirming the necessity 
of having time matched controls. However, this effect seems to be small compared to the diet effect as indicated 
by the explained variance (<7% in PC2 compared to >56% in PC1).

The clear difference between CDAA and CSAA diet was also reflected in the differential gene expression 
analysis (adj. p value < 1%, log2 FC > |1|, Fig. 1c, bars). The majority of genes at each time point were upregulated, 
increasing from 2000 to more than 3000 from week 4 to week 12. Despite differential gene expression increased 
over time, a subset of 2084 genes was consistently regulated at all three time points (Fig. 1c, Venn diagram). The 
total number of time point specific differentially expressed genes increased from 7% at week 4 to 22% in week 8 
and week 12. In addition, the specific overlap was highest between 8 and 12 weeks at approximately 20%.

To gain insight into regulated pathways and associated molecular functions among all differentially expressed 
genes (n = 5645) we used hierarchical clustering to group co-regulated genes across the time course into seven 
different clusters. We tested for overrepresentation of GO terms using Fisher’s exact test focusing on the top two 
significant hits for each term (Fig. 1d, Supplementary Table S1). Of note, genes with a consistent linear increase 
(Cluster 3) showed a highly significant overrepresentation of ECM and collagen genes corroborating the estab-
lishment of pro-fibrotic processes in the liver over time. Cellular components of chromosomes and biological 
process of cell migration were significantly overrepresented in Cluster 1 that showed a transient pattern of gene 
expression with an increase from 4 to 8 weeks and a decreasing expression from 8 to 12 weeks. Cluster 6 and 
Cluster 7, which show a decreasing expression pattern over time, revealed a significant overrepresentation of 
cellular components of functional hepatocytes like lipoproteins and metabolic enzymes. This is in line with the 
decrease of hepatocyte function and lipid secretory capacity between 4 and 8 weeks described for CDAA diet fed 
rats18. Interestingly, lipid metabolism related processes (lipid biosynthetic process, fatty acid metabolic process) 
were also enriched in Cluster 5, where the decrease in expression started between 8 and 12 weeks. Lipid accumu-
lation in the liver of CDAA fed rats was shown to start much earlier than 8 weeks19, and lipid export continued to 
decrease from 4 to 8 weeks (Cluster 6). This may indicate a buffering capacity in the liver that only after 12 weeks 
leads to coordinated downregulation of lipid metabolism genes.
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We performed an additional functional assessment of the observed gene signatures using hepatotoxicity anno-
tations within Ingenuity Pathway Analysis (IPA) (Fig. 1e). Accordingly, the time course from four to 12 weeks 
revealed significant overrepresentation of functions of liver fibrosis, inflammation, and apoptosis. Strikingly, we 
observed a clear increase in z-scores of hepatic steatosis and inflammation from week four though week 12. Taken 
together, we provide an in depth characterization of gene expression in CDAA fed Wistar rats. The data reflected 
molecular mechanisms of diet induced lipid accumulation and metabolism in the liver including inflammatory 
and fibrotic pathways.

Proteomics of liver tissue and plasma corroborate findings from gene expression.  Protein 
expression is regulated on different levels and hence readout of protein encoding RNA abundance can be mislead-
ing e.g. in non-steady state conditions. We therefore studied proteomic changes in samples with established fibro-
sis at week 12 of liver tissue and plasma. We used tandem-mass-tags (TMT) with nano-LC-MS/MS to relatively 
quantify 3273 and 433 proteins in liver and plasma with a protein false discovery rate (FDR) of <1%, respectively. 
Overall 2348 and 163 proteins changed significantly in liver and plasma, respectively (Student’s T-test, permu-
tation based FDR < 1%). The majority of regulated proteins were upregulated in both analyzed matrices, with 
an almost identical ratio of the number of up- versus downregulated proteins (3.2 for liver, 3.3 for plasma). This 
indicates that perturbations in the liver primarily drove changes observed in plasma.

Changes in protein expression between healthy and diseased liver tissue ranged widely from −5 to 5 
(log2) (Fig. 2a). Among the highest upregulated proteins, we found ECM proteins like EFEMP1 and LTBP1. 
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Figure 1.  Transcriptomic characterization of the rat CDAA model. (a) Overview of experimental layout for 
multi-omics model characterization. (b) Principal component analysis scores plot of RNA-Seq data from liver 
of weeks 4, 8, and 12 of CSAA and CDAA diet. (c) Number of deregulated genes (FC > |1|, Benjamini-Hochberg 
adj. p value < 0.01) at different time points as bar diagram and Venn diagram. (d) Hierarchical clustering of z-
scored gene expression ratio time profiles. Overrepresentation analysis of Gene Ontology (GO) terms Biological 
Process (BP), Cellular Component (CC), and Molecular Function (MF) in clusters was done using Fisher’s exact 
test (Benjamini-Hochberg adj. p value). Shown here are the two most significant categories (category size <2000 
genes, enrichment factor >1, intersection size >7 genes). Supplementary Table 1 contains the full result table. 
(e) Hepatotoxicity functional overrepresentation analysis from IPA for comparison of different time points 
(Benjamini-Hochberg adj. p value < 0.01, z-score > |0.75|).
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Interestingly, the strongest downregulated proteins included several drug metabolizing enzymes (CYP2C9, 
CYCP2C8, AOX3) and proteins involved in cellular amino acid catabolism such as GLS and HAL. In line, 
oxidoreductase activity related genes representing cytochrome P450 enzymes were significantly overrepresented 
in transcriptomics clusters that showed decreasing tendency (Fig. 1d, Clusters 5 and 6). Hence, drug-metabolizing 
capacity of CDAA livers seemed to be strongly compromised. Drug metabolizing enzyme expression was pre-
viously studied in human NASH showing strong regulation of cytochrome P450 enzymes20, and transporters21. 
This is a highly relevant finding for drug discovery and development because profound differential expression of 
drug metabolizing enzymes and transporters may affect the pharmacokinetics of drug candidates and therefore 
complicate drug discovery programs.

As expected, we observed less pronounced protein changes in plasma compared to the liver. However, 38% of 
the detected plasma proteins changed significantly after 12 weeks CDAA diet (Fig. 2a). Strikingly, among the top 10 
downregulated plasma proteins we found 4 apolipoproteins (APOC2, APON, APOA2, APOC4) in line with molec-
ular mechanisms of the CDAA diet leading to liver malfunctioning via the impaired lipid export from the liver18.

A comparison of protein log2-fold changes between liver and plasma showed no correlation between the 
two (n = 213, r Pearson = 0.05, Fig. 2b). However, there was a higher number of proteins with a co-regulation 
in liver and plasma than with an opposite regulation pattern. Moreover, the top co-regulated proteins corre-
spond to secreted matrix proteins which represent a set of attractive biomarker candidates including COL6A2, 
ADAMTSL2, and LGALS3BP (see section Potential NASH biomarkers).

To compare our transcriptomics and proteomics readouts in liver tissue at 12 weeks we analyzed log2-ratios 
of liver transcripts and proteins together. We observed a strong co-regulation of transcripts and proteins with 
3060 overlapping pairs (r Pearson = 0.76, Fig. 2c). This indicates that transcriptional regulation is the major 
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Figure 2.  Proteomics analysis of the CDAA model at 12 weeks and comparison to transcriptomic data. (a) 
Volcano plots of protein changes observed in liver (left) and plasma (right). Significant changes are colored 
(T-test, permutation based FDR < 1%). (b) Venn diagram showing the overlap of liver and plasma proteomics 
data. Lower plot: corresponding log2 fold changes of liver and plasma proteins. Significantly changing proteins 
in both matrices are colored. (c) Correlation of individual transcript to protein log2 fold changes at week 12. 
Significant changes on both levels are colored. (d) Top two overrepresented sets of anti-regulated features on 
transcript and protein level (n = 49, Benjamini-Hochberg adj. p value < 0.05). Statistical overrepresentation of 
Gene Ontology (GO) terms (GO Database released 2019-01-01) for Molecular Function (GO MF), Cellular 
Component (GO CC), and Biological Process (GO BP) was tested against all overlapping features as reference 
list with the Panther online tool68 (http://pantherdb.org/).
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driver of the observed molecular changes in the CDAA vs. CSAA diet, which also translates to protein regulation. 
However, we discovered also 49 anti-regulated transcript-protein pairs with significantly decreased RNA levels, 
but increased protein levels. To learn more about the anti-regulated proteins we performed an overrepresenta-
tion analysis of Gene Ontology terms for Molecular Function, Cellular Component, and Biological Process as 
described in the figure legend (Fig. 2d). We found a significant overrepresentation of extracellular proteins, as well 
as a strong signal for peptidase inhibitors (Fig. 2d).

Key disease processes in CDAA rats are relevant for NASH in human.  To put the CDAA model 
into context with human disease we compared our transcriptomics data to publicly available gene expression 
studies from NASH patients using IPA (Array express E-MEXP-329121, Gene Expression Omnibus GSE4845222 
and GSE3381423). Overall, we found 65 pathways significantly regulated in at least one human and one rat CDAA 
sample (Benjamini-Hochberg adj. p value < 0.05, Fig. 3; see Supplementary Table S2 for details). The majority 
of overrepresented pathways correspond to signaling pathways. Based on z-score, most of them are activated 
in the disease (e.g. hepatic stellate cell activation and leucocyte extravasation) whereas LXR/RXR activation is 
suppressed. The most enriched metabolic pathways were Cholesterol biosynthesis, Glutathione-mediated detox-
ification and Tryptophan degradation. All three are also consistently suppressed in human and in CDAA rats.

Although there is a general agreement of activated and deactivated pathways across the investigated data sets, 
we observed considerable variability in between the human datasets and lower evidence levels of the human data 
vs. the rat NASH model. For example, there was no single significantly overrepresented pathway common to 
all three investigated human datasets. In summary, significances of canonical pathways did not overlay widely. 
Nevertheless, the tendency of regulation, as measured by the z-score, was overlapping in almost all cases high-
lighting similar mechanistic changes in the rat model and human disease.

Potential NASH biomarkers derived from CDAA model.  As described above, pathological changes 
in the liver of diseased animals go along with massive changes of transcript and protein expression. Many of the 
strongest regulated transcripts and proteins showed a high positive or negative correlation with liver fibrosis. 
Consequently, these molecular signatures provide alternative disease and efficacy biomarkers as already shown by 
TaqMan analysis for the pro-fibrotic markers Col1a1, Acta2 and Ctgf19. However, our aim was to identify poten-
tial in vivo plasma biomarkers suitable for longitudinal preclinical studies and predictive for the degree of liver 
fibrosis. Consequently, we assumed these plasma biomarkers should correlate to the liver phenotype as assessed 
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by histology and molecular features, i.e. liver RNA and protein expression. Therefore, we integrated the different 
readouts using a weighted sum model and ranked those plasma biomarkers high that showed a strong correlation 
to the disease state of the liver.

In a first step, we selected only rat proteins that have a corresponding human homolog and were detected 
in liver and plasma (see Methods, and Supplementary Table S3). We then generated a scoring table with four 
dimensions. For the first two dimensions, we connected the three omics data sets via linear correlation between 
expression signal and liver fibrosis (fibrosis score retrieved from19). Thus, we obtained subscores for liver RNA, 
liver protein and plasma protein specificity. Second, we prioritized secreted proteins as major class of poten-
tial biomarker proteins because they were highly enriched in our initial subset of detected plasma proteins (see 
Supplementary Table S3). We complemented this data by prior biomarker evidence for each gene and protein 
compiled from published data as an additional dimension (Table 1). These multi-dimensional attributes were 
combined by using a staggered weighted sum approach (Fig. 4a): First, we mapped all considered subscores to the 
four major dimensions (plasma specificity, liver specificity, prior biomarker evidence, secreted protein). Secondly, 
we calculated each dimensional score as the sum of its subscores. Finally, we calculated the total biomarker score 
as the weighted sum of the dimensional scores (see Fig. 4a). Figure 4b shows the a priori defined weights for the 
final ranking with a strong bias on our experimental data (“default”, plasma 0.3, liver 0.3, prior evidence 0.2, and 
secreted protein class 0.2). The top 10 predicted biomarkers are listed in Table 2. The plasma levels of these candi-
dates correlated well with the first component of PCA derived from the liver omics data indicating that they are 
suitable classifier for CDAA vs. CSAA liver samples (Fig. 4c). The linear regression models had a Pearson correla-
tion coefficient of r2 > 0.49 and p < 0.01 for all proteins among the top 10 while the best performing candidate Clu 
had r2 > 0.92 and p < 10−7. Further, to validate the predicted biomarkers, we have compiled information on pro-
tein function and assessed tissue specificity by RNA expression profiling. The RNA tissue distribution strengthens 
the link between plasma protein detection and biomarker tissue specificity (see Table 2).

We tested the sensitivity of the biomarker ranking to the a priori set weights by applying five additional weight 
settings (Table 3). Figure 4d shows the total scores for each protein obtained from the different weight settings 
as a heatmap. Strikingly, all rankings including experimental data revealed a consistent block of highly ranked 
proteins. In contrast, prior knowledge based ranking that did not consider experimental data from the present 
study, prioritized different top biomarker candidates. This suggests that the selection of the best soluble plasma 
biomarker candidates for the investigated disease setting requires suitable experimental data.

In summary, we found a number of markers in plasma that highly correlate to the liver phenotypes of the rat 
CDAA NASH model. Some candidates (e.g. ADAMTSL2, CPQ, see discussion) are unprecedented in this context 
and therefore represent promising new candidates which will be investigated in the future. Others have been pre-
viously proposed as biomarkers for human liver diseases including NASH, validating our approach. Additionally 
this underlines the translatable nature of the rat CDAA model.

Discussion
NASH is a chronic liver disease affecting a large part of the global population with an alarming increase in prev-
alence24. The therapeutic need is high since there is currently no approved drug available4. Non-invasive plasma 
biomarkers, both for preclinical research and for clinical development, could accelerate the development of new 
drugs. To our knowledge, we present for the first time a deep molecular characterization of disease progression in 
a rat animal NASH model based on transcriptomics complemented by MS-based proteomics of liver and plasma. 
We show that expression of certain genes and proteins correlated to liver histology and translated into robust 
detectable plasma protein changes. These proteins represent biomarker candidates, some of which have been 
described before in the context of NASH and fibrosis biomarker research, but some are novel.

Our in depth molecular characterization of the rat CDAA model by deep sequencing revealed specific molec-
ular signatures that could be functionally linked to previously described disease phenotypes i.e. steatosis, immune 
cell infiltration and fibrosis19. We found decreased levels of apolipoproteins in plasma and decreased expression of 
genes involved in lipoprotein particles in line with known physiological effects of choline deficiency causing lipid 

Dimension Subscore (equally weighted)

Plasma specificity Plasma Protein Differential Expression (dge score)

Plasma Protein - Histo Correlation (r2)

Liver Specificity Liver Protein Differential Expression (dge score)

Liver RNA Differential Expression (dge score)

Liver Protein - Histo Correlation (r2)

Liver RNA - Histo Correlation (r2)

Prior Evidence Association to Fibrosis (OpenTargets overall score)

Literature NASH biomarker (GeneRifs observed vs expected score)

Literature NASH biomarker (Pubmed observed vs expected score)

Patent NASH biomarker Somalogic (present = 1, 0 otherwise)

NASH biomarker Integrity/MetaCore (present = 1, 0 otherwise)

Protein Class Secreted (secreted = 1, 0 otherwise)

Table 1.  Multi-dimensional ranking dimensions and their subscores. All proteins were scored according to four 
different dimensions using the sum of equally weighted subscores.
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Figure 4.  Multi-dimensional attribute ranking for biomarker discovery. (a) Biomarker scoring scheme using 
the weighted sum of multiple normalized subscores (see Methods for description, Supplementary Table S3). 
(b) Ranking by total biomarker score using the default weight setting with the contribution of each subscore. 
The top 10 biomarkers are labeled by coding gene name. (c) Linear regression analysis of the top 10 ranked 
biomarkers (see b) using protein plasma intensity as predictor (x) for the first three components of the 
corresponding sample in the liver RNA and protein PCAs. PC1, which separates CDAA vs. CSAA samples, 
showed the best correlation to protein plasma intensity. Left heatmap: r2 values of regression analysis, right 
heatmap: p values of correlation. p values > 0.01 were shaded in grey. Clustering by r2 (d) Clustering of total 
scores obtained from the sensitivity analysis using six different weight settings. The corresponding weight 
settings are displayed at the top (grey-scale heatmap). The best rank for each protein in any of the weight 
settings is shown on the left (log2 of rank).
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accumulation in the liver. Moreover, ECM related genes showed a continuous expression increase. Analysis of 
hepatotoxicity functions in IPA revealed significant overrepresentation of genes involved in liver fibrosis, steato-
sis, apoptosis, as well as stellate cell proliferation. Together, using RNA-Seq combined with hierarchical clustering 
and IPA overrepresentation analysis, we revealed time dependent changes manifesting the phenotypic changes 
observed in this model.

Our proteomics data correlated very well to the transcriptomics data from the same liver samples based on 
differential expression statistics (Fig. 2c). This indicates a strong transcriptional regulation of gene expression 
potentially due to the harsh conditions upon choline deficiency inducing massive changes in the liver. Of note, 
a similar observation has recently been made for a methionine and choline-deficient diet induced mouse model 
comparing transcriptomics and proteomics read-outs25.

We show that molecular changes found in the investigated NASH model recapitulate major features of human 
NASH (Figs. 1 and 3). The time point dependent gene expression changes as reflected in the enriched canonical 
pathways of CDAA rats mainly coincided with those observed in human (Fig. 3). The analyzed human data 
showed generally a high variability indicating a need for additional human data with increased statistical power 
(i.e. larger sample size and stratification with respect to fibrosis stage) and the application of state-of-the-art tran-
scriptomic analysis by next generation sequencing. However, there was a reasonable agreement between our rat 
data and the human data. Among metabolic pathways, the strong downregulation of cholesterol related pathways 
is also observed in NASH mouse models using high levels of dietary cholesterol17,26. The dietary cholesterol con-
centrations in those models is used to mimic the human metabolism17,27,28. High cholesterol diets in the context 
of a NASH mouse model was suggested to affect fatty acid beta-oxidation, liver VLDL secretion and neutral bile 
acid synthesis28.

To discover biomarker candidates from detectable plasma proteins we developed a multi-attribute ranking 
approach. The majority of high-ranked candidates was significantly upregulated by CDAA diet and positively 
correlated to liver fibrosis, hence they are probably related to pro-fibrotic processes. Therefore, the source of these 
proteins is presumably the ECM (e.g. ADMATSL2, LGALS3BP, Clusterin, COL6A1, and COL6A2). Strikingly, 
five out of the top 10 biomarker candidates show a high liver tissue or stellate cell type specificity (liver: APCS, 
CLU; hepatic stellate cells: COL6A1, COL6A2, LGALS3BP).

Among the well-known top candidates, there is Galectin-3-binding protein (LGALS3BP), a secreted protein 
with high biomarker evidence. LGALS3BP is a glycosylated, excreted protein that binds other ECM proteins 
(collagens, fibronectin) and promotes cellular adhesion29. It has been proposed as biomarker for severe NASH 
before30–32 and recently for NAFLD and liver cirrhosis12. In addition, it was postulated as disease severity and 
treatment efficacy biomarker for liver fibrosis in Hepatitis B and C33–35. Polymeric immunoglobulin receptor 
(PIGR) is an IgA and IgM transporter linking adaptive and innate immunity36. PIGR induces epithelial mes-
enchymal transition through the activation of SMAD signaling37. It was identified as potential biomarker for 
liver metastasis from colorectal cancer38. PIGR levels were also found elevated in human plasma of NAFLD and 
cirrhotic patients12, again corroborating our findings from the CDAA rat model. Clusterin (Apolipoprotein J, 
encoded by CLU gene) is a secreted, glycosylated protein with chaperone activity that helps stabilizing non-native 
extracellular proteins in an ATP independent manner39. Thus, Clusterin is probably involved in extracellular 

Gene Name Protein Function (UniProt/Swissprot)
Regulation LR, 
LP, PP Top2 enriched tissues (median fold change)

ADAMTSL2 #N/A Up, Up, Up Adrenal Gland (5.6), Kidney (4.4)

C7 Constituent of the membrane attack complex (MAC) that plays a key role in the innate and 
adaptive immune response by forming pores in the plasma membrane of target cells. Up, Up, Up Adrenal Gland (7.6), Ovary (3.2)

LGALS3BP Promotes integrin-mediated cell adhesion. Up, Up, Up HSC - TGFb 2.5 ng (4.7), Stomach (2.9)

COL6A1 Collagen VI acts as a cell-binding protein. Up, Up, Up HSC - TGFb 2.5 ng (11.1), HSC - Control (8.8)

APCS Can interact with DNA and histones and may scavenge nuclear material released from 
damaged circulating cells. Down, Down, Down Liver (25.7), Gall Bladder (1.3)

CLU Isoform 1 functions as extracellular chaperone that prevents aggregation of nonnative 
proteins. NR,Up, Up Cerebral Cortex (4.7), Liver (3.6)

COL6A2 Collagen VI acts as a cell-binding protein. Up, Up, Up HSC - TGFb 2.5 ng (8.9), HSC - Control (7.3)

CPQ Carboxypeptidase that may play an important role in the hydrolysis of circulating peptides. Down, NR, Down Thyroid Gland (6.8), Gall Bladder (2.0)

PIGR This receptor binds polymeric IgA and IgM at the basolateral surface of epithelial cells. Down, NR, Up Duodenum (8.7), Colon (5.7)

PLTP

Facilitates the transfer of a spectrum of different lipid molecules […]. Essential for the 
transfer of excess surface lipids from triglyceride-rich lipoproteins to HDL, thereby 
facilitating the formation of smaller lipoprotein remnants, contributing to the formation 
of LDL, and assisting in the maturation of HDL particles. PLTP also plays a key role in the 
uptake of cholesterol from peripheral cells and tissues that is subsequently transported 
to the liver for degradation and excretion. Two distinct forms of PLTP exist in plasma: an 
active form that can transfer PC from phospholipid vesicles to high-density lipoproteins 
(HDL), and an inactive form that lacks this capability.

Up, Up, Up Placenta (7.2), Gall Bladder (2.5)

Table 2.  Top 10 biomarker candidates with annotated protein function, sign of regulation in liver on RNA level 
(LR), in liver on protein level (LP), and in plasma on protein level (PP) after 12 weeks of CDAA vs. CSAA diet. 
The column on the left shows the tissue specificity for each gene in a panel of RNA-Seq data from 27 normal 
tissues (ArrayExpress E-MTAB-1733) complemented by RNA-Seq data from stellate cells, i.e. the control group 
and a sample group treated with TGFb (Gene Expression Omnibus GSE78853). Enrichment factors correspond 
to the fold change of the median expression in enriched tissue vs. median of median across all normal tissues.
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protein aggregation and clearance thereof. In addition, its expression is increased by cellular stress40. The protein 
has been discussed as a potential serum biomarker for hepatitis B (HBV) and C virus (HCV) induced liver fibro-
sis. In contrast to our study showing an upregulation in disease conditions in liver and plasma, it was negatively 
correlated with liver fibrosis severity in human HBV and HCV12,41,42. Interestingly, plasma Clusterin increased 
also in an LDLR−/− mouse steatosis model under high fat diet, and obese human subjects43. Apart from fibrosis, 
Clusterin serves as a safety biomarker for kidney function (see https://www.fda.gov). Amyloid P component, 
serum (APCS, also known as PTX2 or SAP) has immune regulatory functions, whose tissue expression is highly 
specific for the liver. Intriguingly, it was shown to inhibit monocyte to fibrocyte differentiation44. APCS is even 
proposed as a therapeutic for fibrosing diseases45. Consistent with our results, APCS levels decreased in plasma of 
a miniature swine NASH model46 and human NASH patients13. Conversely, it was strongly increased in a mouse 
model of high fat diet induced NAFLD12, indicating potential specificity for disease stage or cause of fibrosis.

Among our top candidates, we also found proteins that lack prior biomarker evidence for liver related dis-
eases. Carboxypeptidase Q (CPQ) is involved in thyroid hormone activation47 and its expression increased in 
regenerating liver48. However, its involvement in liver fibrosis or NASH remains unknown. Another candidate 
is ADAMTS-like 2 (ADAMTSL2), an atypical member of the ADAMTS family of proteins, which lacks metal-
loprotease and disintegrin-like domains49. The molecular function of ADAMTSTL2 is mostly unknown to date. 
Mutations in the ADAMTSL2 gene cause geleophysic dysplasia 1 (GPHYSD1) [MIM:231050], with symptoms of 
hepatomegaly50. ADAMTSL2 interacts with ECM modulator proteins including LTBP1, FBN, and members of 
the LOX family50–52. Of note, individuals with geleophysic dysplasia have higher total and active levels of TGFb50. 
ADAMTSL2 represents an unprecedented biomarker candidate for NASH or fibrosis although existing evidence 
suggests its involvement in ECM biology.

Our approach presented here also has limitations, specifically with regard to human translatability and NASH 
sub-type classification. Human NASH is a complex disease with different pathological processes involved (i.e. 
steatosis, hepatocyte dysfunction, inflammation and fibrosis). Consequently, it will be difficult to predict a par-
ticular stage or sub-type of NASH just from a single plasma biomarker. Therefore, a combination of markers or 
marker signatures will be finally more predictive and informative for clinical applications. However, this will also 
require larger data sets with a higher variability across affected individuals. Nevertheless, the molecular functions 
of the top 10 biomarker candidates (Table 2) are linked to immune response (PIGR, C7, APCS), lipid metabolism 
(PLTP), and ECM (ADAMTSL2, COL6A1, COL6A2, LGALS3BP, CLU) and all relevant to NASH pathology.

We have used a proteomics approach to assess the protein levels after depletion of abundant plasma proteins. 
However, due to the huge dynamic range of plasma proteins we still only detected a subset of proteins. Hence, we 
possibly have missed interesting biomarkers that remain in the lower abundant fraction53. It is possible to increase 
depth in plasma protein analysis with MS-based proteomics using higher effort (i.e. more extensive depletion 
and fractionation) or other methods, like the use of modified aptamers54. However, for the present study we 
have decided for an approach that is untargeted and sensitive enough to analyze a reasonable number of plasma 
proteins.

So far, we did not validate our findings in a second study nor did we evaluate the observed plasma protein 
patterns in another NASH model. Furthermore, the clinical relevance of the biomarker candidates is limited since 
preclinical disease models only partially reflect the human situation. However, preclinical biomarkers considera-
bly support NASH drug development by allowing a better study design (rationale for duration of the experiment, 
increased statistical power due to group randomization before drug treatment). However, the further qualifica-
tion and development of biomarker candidates require additional validation that could directly be done with 
human samples.

In summary, we show here a methodical setup by using multi-omics data with classical liver histopathology. 
We show its feasibility and power in preclinical settings, which suggests that it is also straightforwardly applicable 
to human samples. Although technically challenging, it is possible to get enough liver tissue from biopsies for 
histopathology, mRNA and protein preparation, while collection of plasma samples should not be a technical lim-
itation. We identified several markers of related human liver diseases underpinning the suitability of our approach 
in preclinical models and translatability of the CDAA rat model. Thus, our analyses have the potential to advance 
the development of biomarkers for preclinical and clinical trials and furthermore support the understanding of 
the pathophysiology of NASH.

#
Dimension (columns) 
Ranking (rows)

Plasma 
Specificity

Liver 
Specificity

Prior 
Evidence

Secreted 
Protein Class

1 Default 0.3 0.3 0.2 0.2

2 Prior Knowledge 0.0 0.0 1.0 0.0

3 Balanced 0.2 0.2 0.4 0.2

4 Liver/Plasma specific 0.5 0.5 0.0 0.0

5 Liver specific 0.0 1.0 0.0 0.0

6 Plasma specific 1.0 0.0 0.0 0.0

Table 3.  Weight sets of six different tested rankings. The individual rankings were done on the total scores 
obtained by the weighted sum of individual dimension scores. For each ranking, all weights listed in Table 3 
sum up to 1.

https://doi.org/10.1038/s41598-020-58030-6
https://www.fda.gov


1 0Scientific Reports |         (2020) 10:1314  | https://doi.org/10.1038/s41598-020-58030-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Methods
Animal study.  The detailed description of the performed animal study is given in19. Briefly, male Wistar rats 
(RjHan:WI, 6 weeks of age, 200–250 g, Janvier Labs, Le Genest-Saint-Isle, France) were acclimatized in 12 h/12 h 
light/dark cycle in pairwise housing. To induce a NASH phenotype groups of eight animals were fed a choline-de-
ficient l-amino acid-defined diet (kcal %; protein 11%, fat 31%, carbohydrates 58%) supplemented with 1% cho-
lesterol (E15666-94) or a choline-supplemented l-amino acid-defined control diet (E15668-04; kcal %; protein 
12%, fat 16%, carbohydrates 72%) for 4, 8, or 12 weeks. All diets were obtained from ssnif Spezialdiäten GmbH 
(Soest, Germany).

Ethical statement.  The animal experiment was conducted in accordance with the German Law on the 
Protection of Animals and performed in accordance with EU guidelines for the accommodation and care of 
animals used for experimental and other scientific purposes. The experiment was approved under the license 
number 13-011-G by the official regional council Tuebingen, Germany and is in detail described in19.

Transcriptomics.  RNA isolation.  RNA was isolated and prepared as described in detail in19. In brief, 
pieces of 50 mg of liver tissue were homogenized in RNAeasy lysis buffer (Qiagen, Hilden, Germany) with 1% 
2-mercaptoethanol. Total RNA was then isolated according to the manufacturer’s protocol (RNeasy, Qiagen, 
Hilden, Germany).

RNA concentrations and purity have been determined using a NanoDrop ND-1000 UV–Vis 
Spectrophotometer (Thermo Scientific, Karlsruhe, Germany) at 260 nm and 260/280 nm ratio, respectively. All 
samples were stored at −80 °C before further analysis by RNA-Seq.

Illumina library preparation and sequencing.  For library preparation, RNA quality and concentration was meas-
ured using the Fragment Analyzer from AATI (now Agilent) with the total RNA Standard Sensitivity protocol. 
The Sequencing library was prepared from 200 ng total RNA with the TruSeq® Stranded mRNA LT-Set B (RS-
122-2102, Illumina Inc., San Diego, CA) producing a 275 bp fragment including adapters in average size. In the 
final step before sequencing, seven individual libraries were normalized and pooled together using the adapter 
indices supplied by the manufacturer. Pooled libraries have been clustered on the cBot Instrument from Illumina 
using the HiSeq® 3000 GD-410-1001 3000/4000 SR Cluster Kit (Illumina Inc., San Diego, CA). Sequencing was 
performed as 85 bp single-end reads and 7 bases index read on an Illumina HiSeq. 3000 instrument at a sequenc-
ing depth of approximately 60 million reads per sample using FC-410-1001, HiSeq® 3000/4000 SBS Kit (50 cycles, 
Illumina Inc., San Diego, CA).

Proteomics.  Sample preparation for TMT based proteomics.  30–50 mg of liver samples were homogenized 
in Pierce™ IP lysis buffer (1:10 w/w) and 1x Halt™ Protease Inhibitor Cocktail (both Thermo Fisher Scientific) 
using a Precellys® Evolution homogenizer (Bertin). Protein concentration was determined from the homogenate 
supernatants using the Bradford assay (Sigma-Aldrich). For plasma samples, the six most abundant proteins were 
depleted using the Seppro® rat Spin Column (Sigma-Aldrich) before determining protein concentration with 
the Bradford assay. 100 µg of protein (on average 12 µL lysate) were denatured with 1% SDS and reduced with 
2 µL 0.5 M tris(2-carboxyethyl)phosphin for 1 hour at 55 °C. Cysteine alkylation was performed by adding 5 µL 
of 375 mM iodoacetamide and incubated for 30 min at room temperature in the dark. To precipitate proteins, 
600 µL of cold acetone were added and incubated for 1 hour at −20 °C. The samples were centrifuged for 10 min 
at 16.000 rpm and the pellet was washed with additional 65 µL of chilled acetone. On-pellet digest was done in 
100 µL 100 mM triethylammonium bicarbonate and trypsin/LysC mix (Promega) at a 1:25 enzyme to protein 
ratio over night at 37 °C.

TMT labelling was performed following the manufacturer’s instructions (Thermo Fisher Scientific). We mul-
tiplexed the 16 samples into two TMT-8-plexes for the liver and one TMT-6-plex and one TMT-10-plex for the 
plasma distributing healthy and diseased animals equally between TMT-plexes. We fractionated peptides prior 
to LC-MS analysis into eight fractions using the Pierce™ High pH Reversed-Phase Peptide Fractionation Kit 
(Thermo Fisher Scientific) according to the manufacturer’s instructions.

Nano-LC-MSMS of TMT labelled peptides.  Samples were analyzed with an UltiMate 3000 RSLCnano LC system 
coupled to an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scientific). Per fraction, 2 µg 
of labelled peptides (corresponding to volumes of 16 µL for liver samples and 6 µL for plasma samples) were first 
trapped on a PepMap100 C18, 5 × 0.3 mm, 5 µm pre-column (3% acetonitrile, 0.1% formic acid). Peptides were 
then separated on an EASY-Spray C18, 75 cm × 75 µm, 2 µm column (Thermo Fisher Scientific) heated to 50 °C 
at 300 nL/min using a gradient of 3–28% eluent B (80% acetonitrile, 0.1% formic acid) in 210 min and 28–40% 
eluent B in 30 min followed by a 10 min 95% eluent B wash step and 1 hour re-equilibration.

The mass spectrometer was operated with the multi-notch synchronous precursor selection (SPS) mode. 
Precursor spectra were acquired from 375–1500 m/z at 120,000 resolution with an AGC target of 4*10e5 and 
maximum injection time of 50 msec. The top five precursor ions were isolated with a 0.7 m/z window and frag-
mented by 35% CID. MS2 scans were acquired in the ion trap in turbo ion mode, 1*10e4 AGC target and 50 msec 
maximum injection time. Dynamic exclusion was set to 60 sec. For the MS3 spectra, the top five MS2 fragments 
were fragmented by HCD at 65% and acquired in the Orbitrap at 60.000 resolution, 1*10e5 AGC target and 150 
msec maximum injection time. Ions were not accumulated for all parallelizable time.

Data analysis.  mRNA-Seq analysis.  mRNA-Seq data analysis was performed as previously described55. 
We aligned sequenced reads to the rat genome (Ensembl version 84, Rnor_6.0 GCA_000001895.4) using the 
STAR Aligner v2.356. Read counts were quantified using the feature counts software package57. Differential gene 
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expression was calculated with the Bioconductor LIMMA analysis R package on voom normalized read counts58. 
Significantly differentially expressed genes in CDAA vs. CSAA conditions were filtered using an adjusted p value 
cutoff of 0.01 (after Benjamini–Hochberg multiple testing correction59) and a log2 fold change of > = |1|. For 
principal component analysis of FPKM normalized mRNA-Seq data, we only kept genes with at least one read 
count (n = 20,868), leaving a small proportion of missing values (0.25%). PCA was performed using R software60 
with the probabilistic PCA (ppca) function implemented in the pcaMethods package61 on the log2 transformed 
and mean centered data. Standardized (z-score) log ratios of transcript time course data were clustered using 
Euclidean distance and average linking. Overrepresentation analysis of GO categories for Molecular Function, 
Cellular Component, and Biological Process in individual clusters was done in the Perseus software62 using all 
expressed genes as background (Fisher exact test with Benjamini Hochberg multiple testing correction). We 
defined genes as expressed which had ≥1CPM (one count per million mapped reads) in the majority of samples 
in at least one experimental group.

Tissue specificity and enrichment has been determined using RNA-Seq data from two published data sets: 1) A 
reference panel of 27 human normal tissues including whole liver as described in63 (ArrayExpress E-MTAB-1733) 
and 2) an assay of hepatic stellate cells which have been activated in vitro using TGFb as described in64 (Gene 
Expression Omnibus GSE78853). RNA-Seq raw data has been processed as described above. For each normal 
tissue and the untreated and treated hepatic stellate cell, the geometric mean FPKM expression was determined. 
The median expression across all tissues was determined from the geometric mean of median values. The enrich-
ment factor for each tissue and the two hepatic stellate cell conditions was then determined by the fold change of 
median expression per tissue vs. geometric mean across all tissues.

Proteomics data analysis.  Data were analyzed with Proteome Discoverer 2.1 (Thermo Fisher Scientific). All 
data were searched against a composite Ensembl target/decoy database for Rattus norvegicus (Ensembl version 
84, Rnor_6.0 GCA_000001895.4) using the SEQUEST algorithm65. MS2 spectra were searched using 10 ppm 
precursor tolerance and 0.6 Da tolerance for fragments, allowing 2 missed cleavages. Oxidation of methionine, 
acetylation of protein N-terminus and phosphorylation of serine, tyrosine and threonine were set as dynamic 
modifications. The peptide spectrum matches were filtered at a Percolator FDR of 1%66.

TMT reporter ion signal-to-noise values were quantified from MS3 scans using a 10 ppm integration tolerance 
with the most confident centroid setting, a co-isolation threshold of 50 and an average reporter S/N threshold of 
1. Quantitative data was normalized on total peptide amount and scaled to channel average of 100.

Further proteomics data processing and downstream analysis.  First, data from the two individual runs were fil-
tered to exclude contaminants and proteins with low FDR confidence (>0.01). To combine the two runs the data 
were filtered for having at least six out of eight replicates of one experimental group, leaving n = 3,273 in the liver 
data and n = 433 in the plasma dataset for further analysis.

Data analysis was done in Perseus software62. Data were log2 transformed and missing values replaced (liver 
1.5%, plasma 0.5%) by sampling from log normal distribution with a downshift of 2.5 and width of 0.2 for the liver 
dataset and 1.8 downshift and 0.3 width or the plasma dataset relative to the log normal distribution. Parameters 
were optimized using PCA towards maximizing variance in PC1 (separating NASH vs healthy samples). Finally, 
to remove batch effects the data of each experimental run were mean centered. Sample 906_CSAA was removed 
from further analysis as it represented a clear outlier as judged by hierarchical clustering and principal component 
analysis. To assess statistical significance we performed a two sided T-test using the permutation based FDR, with 
a cutoff at 0.01. For comparison to RNA data, we mapped all rat proteins to corresponding rat genes using the 
Ensembl database.

Sample level correlation with liver fibrosis.  We linked gene and protein expression at the sample level to the 
observed degree of fibrosis by linear correlation analysis. For gene expression, we used normalized gene expres-
sion level per gene per (FPKM) and for protein expression, we used relative intensities per identified protein per 
sample. For degree of fibrosis, we used the fibrosis scores per animal as described in19.

Ingenuity pathway analysis.  Core analyses of transcriptomics and proteomics datasets were performed with 
Ingenuity Pathway Analysis (IPA) platform (QIAGEN N.V., Venlo, NL) using the standard settings. Canonical 
pathways and hepatotoxicity functions were filtered to z-scores and p-values as indicated in the figures.

Ranking approach for biomarker candidate selection.  Potential soluble biomarker candidates were ranked using 
a multi-linear weighted sum equation according to

∑= ∗=score w sub score_ (1)total j j
m

j i j, 1 ,

whereby 0 < = wj < = 1 corresponds to the weight j for the sub_score j of the gene i. We mapped all rat proteins 
to corresponding rat genes and all rat genes to next human orthologues using the Ensembl database (Version 84). 
Furthermore, we then mapped all human genes to known human proteins as referenced by the UniProt/Swissprot 
database from 2018–04–24. For each gene and corresponding protein, we compiled subscores from experimental 
data and public databases and mapped them to four different ranking dimensions (see Table 1):

	 1.	 Plasma specificity (differential protein expression observed in plasma, sample level correlation with liver 
fibrosis)

	 2.	 Liver specificity for both RNA and protein data (differential expression as well as sample level correlation 
with liver fibrosis)
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	 3.	 Prior evidence (association to fibrosis as given by OpenTargets overall score (https://opentargets.org 
downloaded on 2018-07-24), NASH literature acceding to GeneRifs from EntrezGene and co-occurrence 
in Pubmed abstract, patent US2014/0303018A1 (Tables 2–7 claiming 39 plasma biomarkers for NASH) 
and genes coding for biomarkers for NASH according to MetaCoreClarivate Analytics database (MetaCore 
Version from 2017-02-14, see https://clarivate.com)

	 4.	 Secreted gene protein product according to the UniProt/Swissprot database.

For each dimension, subscores were derived using again Eq. (1). We calculated differential expression sub-
scores for RNA and protein from p-value and log2 fold change in CDAA vs. CSAA contrasts according to

= − ∗ | |dge contrast padj contrast contrast_ ( ) log10( ( ) log2( ) (2)score i k i k i k, , ,

whereby k corresponds to the contrast k (i.e. plasma protein, liver protein or liver RNA). Feature subscores for 
histology correlation have been determined using the square of the Pearson correlation coefficient between RNA 
expression FPKM and protein intensity values, respectively. Subscores for literature evidence were derived from 
mean of rank normalized scores for publication counts and publication counts divided by expected counts (based 
on all publications referencing the gene or protein name). A complete list of dimension subscores and features is 
shown in Table 1.

Dimension weights were set a priori. The sensitivity of total scores was assessed by applying a number of dif-
ferent weight settings referred to as “default”, “prior evidence”, “balanced”, “liver/plasma specific”, “liver specific” 
and “plasma specific” ranking. Corresponding weight settings are listed in Table 3.

Data availability
The RNA-Seq dataset generated during the current study are available in the Gene Expression Omnibus, https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134715. The mass spectrometry proteomics data have been 
deposited to the ProteomeXchange Consortium via the PRIDE67 partner repository with the dataset identifier 
PXD014751.
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