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Forecasting high-dimensional 
dynamics exploiting suboptimal 
embeddings
Shunya Okuno   1,2*, Kazuyuki Aihara   1,3,5 & Yoshito Hirata   3,4,5

Delay embedding—a method for reconstructing dynamical systems by delay coordinates—is widely 
used to forecast nonlinear time series as a model-free approach. When multivariate time series are 
observed, several existing frameworks can be applied to yield a single forecast combining multiple 
forecasts derived from various embeddings. However, the performance of these frameworks is 
not always satisfactory because they randomly select embeddings or use brute force and do not 
consider the diversity of the embeddings to combine. Herein, we develop a forecasting framework 
that overcomes these existing problems. The framework exploits various “suboptimal embeddings” 
obtained by minimizing the in-sample error via combinatorial optimization. The framework achieves 
the best results among existing frameworks for sample toy datasets and a real-world flood dataset. 
We show that the framework is applicable to a wide range of data lengths and dimensions. Therefore, 
the framework can be applied to various fields such as neuroscience, ecology, finance, fluid dynamics, 
weather, and disaster prevention.

Forecasting a future system state is an important task in various fields such as neuroscience, ecology, finance, 
fluid dynamics, weather, and disaster prevention. If accurate system equations are unknown but a time series is 
observed, we can use model-free forecasting approaches. Although there are various model-free methods, if the 
time series is assumed to be nonlinear and deterministic, one of the most common approaches is delay embed-
ding. According to embedding theorems1,2, we can reconstruct the underlying dynamics by delay embedding 
(see Methods for details). These theorems ensure that the map from the original attractor to the reconstructed 
attractor has a one-to-one correspondence. These embedding theorems have also been extended to multivariate 
data and nonuniform embeddings3. In addition, multivariate embeddings have been empirically used4–7 before 
the extended theorem was proposed.

When multivariate time series are observed, various embeddings can be obtained on the basis of the extended 
embedding theorem3. Ye and Sugihara8 exploited this property; they developed multiview embedding (MVE), 
which combines multiple forecasts based on the top-performing multiple embeddings scored by the in-sample 
error. MVE can yield a more accurate forecast than the single best embedding, especially for short time series8. 
Although MVE works well with low-dimensional data, it cannot be simply applied to high-dimensional data. This 
is because MVE requires forecasts derived from all possible embeddings, whose total number combinatorially 
increases with the number of variables. Although we can approximate MVE by randomly chosen embeddings if 
the total number of possible embeddings is beyond the computable one9, it is difficult to find high-performance 
embeddings for high-dimensional data. Recently, Ma et al.10 presented an outstanding framework, randomly dis-
tributed embedding (RDE), to tackle these high-dimensional data. Their key idea is to combine forecasts yielded 
by randomly generated “nondelay embeddings” of target variables. These “nondelay embeddings” can also recon-
struct the original state space for some cases and drastically reduce the possible number of embeddings. Ma 
et al.10 also showed that small embedding dimensions worked fine, even for high-dimensional dynamics, and 
successfully forecasted short-term high-dimensional data using the RDE framework. Although RDE showed 
outstanding results, there is room for improvement for some specific tasks. For example, “nondelay embedding” 
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may overlook important pieces of information if delayed observations carry such pieces of information, e.g., the 
upstream river height for flood forecasting. A random distribution may also be a problem for the case where 
only partial variables are valid system variables; in this case, most of the random embeddings are invalid and not 
suitable to forecast. In addition, several important hyperparameters–the embedding dimension and the number 
of embeddings to combine–must be manually or empirically selected. Although ensembles tend to yield better 
results with significant diversity among its members11,12, RDE only aggregates forecasts for a fixed embedding 
dimension with a fixed number of embeddings to combine, regardless of their forecast performance.

In this study, we propose another forecasting framework that overcomes the disadvantages of MVE and RDE. 
Our key idea is to prepare diverse “suboptimal embeddings” via combinatorial optimization. We combine the 
optimal number of these embeddings to maximize the performance of the combined forecast. In contrast to the 
existing frameworks, the suitable embedding dimensions and the number of embeddings to combine are auto-
matically determined through this procedure. Our proposed framework achieves better forecast performance 
than the existing frameworks for high-dimensional toy models and a real-world flood dataset.

Results
In this section, we introduce a forecasting framework that overcomes some drawbacks of existing frameworks 
in the first subsection. Then, we numerically validate the performance of the proposed framework by using toy 
models as well as a real dataset in the second subsection.

Proposed forecasting framework.  Our proposed framework yields a single forecast to combine multiple 
ones, which are obtained by multiple embeddings. Although the principal concept is the same as those of MVE 
and RDE, the procedure to yield the multiple embeddings differs from the existing ones. These embeddings are 
obtained through two steps. First, we obtain suboptimal embeddings, which are suboptimal solutions to mini-
mize the forecast error. The aim of this procedure is to yield diverse embeddings to improve the performance of 
the combined forecast because such diversity is important for the performance of the ensemble11,12. Second, we 
make the in-sample forecasts based on all suboptimal embeddings following MVE and RDE but pick the optimal 
number of embeddings to minimize the error of the combined forecasts. A schematic of the procedure is illus-
trated in Fig. 1. We describe each step in detail in the following sub-subsections.

First step: Preparing suboptimal embeddings.  In our framework, we first obtain diverse suboptimal embeddings 
to minimize the in-sample forecast error. With the observed time series ∈y t( ) n, a set of possible embeddings 
E, and a corresponding delay vector ∈v t( )e

E with ∈ Ee , we can obtain the p-steps-ahead forecast at time t by a 
map ψe as follows:

ψ+ | =ŷ t p t v t( ) ( ( )), (1)f
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Figure 1.  Schematic of the proposed forecasting procedure. We prepare a pool of suboptimal embeddings in 
the first step. We solve K combinatorial optimization problems to obtain various embeddings in this step. Next, 
we pick k̂p embeddings to minimize the error of the combined forecast in the second step. We combine the 
forecasts obtained by the k̂p embeddings to test the time series.
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where yf is the target variable to be forecasted. We can obtain such maps by suitable fitting algorithms, e.g., the 
conventional method of analogues13, as in MVE, and Gaussian process regression14, as in RDE. Throughout this 
paper, we apply the same algorithm, a variation of the method of analogues (see Supplementary Information), to 
all forecasting frameworks including the proposed one. This is because we need to compare the performance of 
the frameworks on a fair basis that is not affected by the performance of each fitting algorithm.

To obtain high-performance embeddings in an efficient manner, we solve combinatorial optimization prob-
lems instead of random selection or using brute force. We define the time indices used for training as t < 0, and 
suppose the forecasting of unobserved samples for t ≥ 0. We split the set of training time indices = | <t t{ 0}trainT  
into K datasets. Then, we solve the following optimization problem for each ′ ∈ …K K{1,2, , } to minimize the 
error:
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Ttrain
K  is the ′K  th set of training time indices and ⋅  is an appropriate norm. We use the L2 norm 

throughout this paper. Note that ŷf
e is computed in an in-sample manner, similar to MVE; we use all of trainT , 

except for the current time, as its library (leave-one-out cross-validation). When we consider embeddings up to l 
lags to embed the latest observation of the target variable, the number of possible embeddings is −2nl 1. If nl is 
sufficiently large, it is almost impossible to compute all possible embeddings because of combinatorial explosion. 
Here, we take a straightforward approach to minimize the forecast error: an evolution strategy that interprets an 
embedding as a one-dimensional binary series15,16. See Methods for details. Throughout this paper, we applied the 
(μ + λ) evolution strategy17.

In the process of each optimization, we store not only the best embedding but also the “Hall of Fame,” which 
preserves the best individuals in each generation. From the Hall of Fame, we select the best M solutions that sat-
isfy the condition that the Hamming distance ⋅ ⋅d( , ) is larger than or equal to a certain threshold value θ as 
follows:

θ≥ ∀ ≠d e e i j i j( , ) , , ; , (3)i j

where ei is the i th embedding of the sorted Hall of Fame. Namely, we sort the Hall of Fame by the fitness (the 
objective function of Eq. 2) and pick the best embeddings in order from the sorted Hall of Fame to satisfy Eq. (3). 
Note that the Hamming distance is defined according to the binary expressions of the embeddings. This condition 
prunes similar embeddings and keeps diverse embeddings for the next step. We can explicitly control the diversity 
of the embeddings by changing the threshold value θ, while the existing approaches do not include such a mech-
anism. The diversity of embeddings can affect the performance of the combined forecast. To apply this procedure, 
we obtain ⋅K M suboptimal embeddings in total. See also the first part of Algorithm 1 in Methods.

The procedure of the K times optimizations yields diverse but high-performance embeddings. If a dataset 
contains a large number of variables, it is extremely difficult to obtain the exact solution by evolution strategies 
or any other metaheuristic algorithms. These algorithms find suboptimal solutions for most cases, and these 
solutions can be easily changed by slight changes in the optimization conditions. The procedure rather exploits 
this property; the K times optimization can find K sets of diverse suboptimal solutions. Instead of minimizing 
the whole in-sample error with K different conditions, we minimize each K split dataset and utilize the history of 
solutions to significantly reduce the computational time. We numerically show the effect of K times optimization 
in Supplementary Information.

To create diverse embeddings and improve the performance of the combined forecast, we can optionally con-
sider L finite impulse response (FIR) filters for each suboptimal embedding; namely, ⋅ ⋅K L M embeddings are 
obtained in total. A study has shown that the combination of various forecasts via linear filters improves the 
forecast result in some cases18. These filtered embeddings are justified by the filtered delay embedding prevalence 
theorem2, which ensures the embedding with finite filtered delay coordinates. Although we can compute subop-
timal embeddings for each filter, we simply consider L filters based on the obtained ⋅K M  embeddings. 
Empirically, the optimization of the embeddings for each filter does not realize a significant improvement in 
performance to justify the additional computational cost. See Methods for the details of forecasting filtered time 
series.

Second step: combining forecasts to minimize the in-sample error.  Next, we pick the optimal number of embed-
dings from the = ⋅ ⋅P K L M  embeddings to minimize the error of the combined forecast. We compute 
in-sample forecasts by the embeddings for all of trainT , as done in the MVE or RDE aggregation schemes. We 
determine the optimal number of embeddings to integrate forecasts, which is neither the square root of the pos-
sible number of embeddings (as MVE does) nor the embedding dimension (as the RDE aggregation scheme 
does). Here, we define a tuple of the forecast indices sorted by the in-sample error for step p as Ip, and the i th best 
embedding is written as I i( )p . Note that Ip is separately computed for each forecast horizon because accurate 
embeddings may differ according to the forecast horizons, as discussed later. We obtain k̂p to minimize the com-
bined forecast as follows:
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We can obtain k̂p in a brute-force manner with a very small computational cost because the k th combined 
forecast + |Y t p t( )k  can be recursively computed as follows:
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(1)p . We compute Yk and the corresponding error for all k and 

pick the optimal value to minimize the squared error. Note that k̂p can be different for each p; empirically, k̂p tends 
to be larger for a longer step.

For unobserved samples t ≥ 0, the forecast + |ŷ t p t( )f  is computed as follows:
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Note that only k̂p forecasts are necessary to compute unobserved samples (test data) rather than ⋅ ⋅K L M 
forecasts. We summarize the whole algorithm in Algorithm 1 in Methods.

Numerical experiments.  Toy models.  We demonstrate our framework with toy models. We first tested 
with the 10-dimensional Lorenz’96I model19 using forcing term 8.0. The model is described as 10-dimensional 
differential equations, and we used five of their system variables and five random walks as a dataset–namely, 
Lorenz’96I’s x x x x x, , , ,0 1 2 3 4 and random walks x x x x x, , , ,5 6 7 8 9. We forecasted x0 up to 10 steps. The single time 
step corresponds to the 0.5 non-dimensional unit of the original system. Note that the 0.05 non-dimensional unit 
corresponds to 6 hours with the forcing 8.0 in terms of the error growth rate under the conditions of the original 
study19. See Supplementary Information for the detailed setup. We compared the proposed framework with exist-
ing frameworks–namely, randomly distributed embedding with an aggregation scheme (RDE), multiview embed-
ding (MVE), a variation of MVE (state-dependent weighting9 (SDW)), and the single best embedding via the 
(μ + λ)-ES algorithm. In addition, we also compared the proposed framework with a conventional single-variable 
embedding (SVE) and an all-variable embedding (AVE). See Supplementary Information for the detailed 
conditions.

We first tested the performance with the data length of 4000 for the database and 500 for the evaluation. 
Figure 2(a) shows that the proposed forecast achieved the best performance among the existing frameworks up 
to 10 steps ahead with the length of 4000.

We conducted a sensitivity analysis with the data length. We set the data length, i.e., the size of the training 
dataset, to {100, 200, 500, 1000, 2000, 4000} and tested the performance with 500 samples for all cases. Figure 2(b) 
shows that the proposed five-steps-ahead forecast yielded the minimum error among the existing frameworks 
for all the data lengths.

We also checked the robustness against observational noise. We added Gaussian observational noise scaled 
by the standard deviation of the target variable and tested the performance with a scale range of {0.0, 0.1, 0.2, 
0.3}. We set the training data length as 500 and evaluated with 500 samples. Figure 2(c) shows that a lower noise 
level results in better performance for the proposed framework compared with the other frameworks. Although 

(a) (b) (c)

Figure 2.  Forecast performance with the Lorenz’96I model: comparisons of the performance (a) up to 10 steps 
ahead with the fixed data length (4000) without noise, (b) with different values of the data length, and (c) with 
different scales of observational noise. We computed the RMSE of the five-steps-ahead forecasts with randomly 
distributed embedding (RDE), multiview embedding (MVE), state-dependent weighting (SDW), single-best 
embedding based on the (μ + λ)-ES algorithm (SBE), single-variable embedding (SVE), all-variable embedding 
(AVE), and the proposed framework. These tests were carried out with 20 datasets generated with different 
random initial conditions and noise. The median, upper quartile, and lower quartile are shown.
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the proposed framework achieved the best performance up to 10% noise, the performance was degraded by 
high-level noise and is the second best at most for 30% noise.

We profiled which variables were embedded for the combined forecasts for the case where the data length is 
4000 without noise. We summed k̂p embeddings for each variable, where 1 means embedded and 0 means not 
embedded. Then, we computed the proportion of embedding of each variable, normalizing the sum to one for 
each p. Figure 3(a) shows that random walks x x x x, , ,5 6 7 8, and x9 were seldom embedded with the proposed 
framework. This result suggests that our proposed framework can select the appropriate variables. The results also 
show that the proportion of embedding of the target variable x0 is large for short-term prediction and small for 
longer-term prediction. This result is consistent with that of an existing study20.

We also profiled the filter coefficient ρ and the embedding dimension E of the proposed combined forecasts. 
Details regarding the definition of ρ are presented in the Methods section. We averaged ρ and E over the k̂p com-
bined members for each step. Figure 3(b) shows that smaller dimensions are selected for shorter steps, and larger 
dimensions are selected for longer predictions. The figure also shows that smaller and larger values of ρ are 
selected for shorter and longer steps, respectively. Because we employ high-pass filtering (ρ ≤ 0) with this model, 
a smaller ρ focuses on a smaller time period and vice versa.

We investigated the number of combined forecasts and the forecast errors to check whether the proposed 
integration scheme works properly. Although the proposed framework determines k̂p on the basis of the 
in-sample error, k̂p also minimizes the test error in this example (see Fig. 3(c)).

We also demonstrate our framework with the Kuramoto–Sivashinsky equations21,22. We generated 
20-dimensional time series: the values of the first 10 grids of the Kuramoto–Sivashinsky equations …x x x, , ,0 1 9 
and 10 random walks …x x x, , ,10 11 19. Note that a single time step corresponds to 1.0 of the original system. See 
Supplementary Information for the detailed setup. We forecasted x0 up to 10 steps using the same parameter 
values, data length, and noise scales as used in the Lorenz’96I example. See Supplementary Information for the 
detailed conditions.

Despite the increases in the variables, Fig. 4(a,b) show that the proposed forecast yielded the minimum error 
among the existing frameworks, as in the Lorenz’96I example. Regarding the noise sensitivity, a lower noise level 
results in better performance for the proposed framework compared to the other frameworks. The proposed 
framework achieved the best performance for a wide data range and relatively small observational noise.

Finally, we tested the sensitivity to the number of variables. We changed the dimensions of Lorenz’96I to {10, 
20, 40, 80, 160, 320}, and we substituted a half of each dataset with random walks. We set the training data length 
to 500 and evaluated with 500 samples. For all ranges of variables, the proposed framework achieved the best 
performance (Fig. 5(a)). We also tested the case where all variables are available and the datasets do not contain 
random walks; this is the case in which delay embedding is not needed because all system variables are observed. 
In this case, the performance difference is negligible for all the top four frameworks, and RDE achieved the best 
score for the case where the number of variables is 320. Although this condition is too ideal because the observa-
tion function is an identity map, we can expect RDE to perform well for such cases that include many informative 
variables.

Flood dataset.  We tested the proposed framework with real-world data, namely the flood forecasting competi-
tion dataset at “Artificial Neural Network Experiment (ANNEX 2005/2006)”23. This dataset contains nine varia-
bles: the river stages of the target site (Q), and three upstream sites (US1, US2, and US3) and five rain gauges (RG1, 
RG2, RG3, RG4, and RG5) for three periods. We forecasted 6, 12, 18, and 24 h ahead of the target river stage using 
all nine variables. See Supplementary Information for the detailed conditions. We also compared our framework 
with three other conventional machine-learning methods used in an existing study9: a recurrent neural network 
with long short-term memory (LSTM)24, support vector regression (SVR)25, and random forest regression26. See 
the detailed conditions in ref. 9.

(a) (b) (c)

Figure 3.  Forecast profile of the Lorenz’96I model with the data length of 4000. Panel (a) shows the proportion 
of embedding of the proposed forecasts. The color indicates the proportion of embedding for each variable 
averaged over the number of combined forecasts for each step. Note that for each prediction step, the sum of the 
proportions of all variables is one. Variables …x x, ,0 4 are the variables of the 10-dimensional Lorenz’96I 
equations, and the other variables are random walks. Panel (b) shows the averaged filter coefficient ρ and 
embedding dimension E over the combined forecasts for each step. Note that the averaged dimensions can be a 
decimal fraction since they are averaged over the number of combined forecasts for each step. Panel (c) shows 
the relation between the number of combined forecasts and the errors. The solid line shows the in-sample error, 
and the dashed line shows the test error. The vertical solid line shows the selected number of combined forecasts 
kp to minimize the in-sample error.
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The results in Table 1 show that the proposed framework yielded the best root-mean-square error (RMSE) 
through 12–24 h ahead, and the differences compared to the other methods were expanded over the forecast 
horizon. Although the 6 h (one step)-ahead forecast was not the best, the difference compared to the best score 
was negligible. The dataset contains only 1460 points, and long-term memory is not required for this task; hence, 
LSTM did not perform well. Although the test data include the largest river stage on 1995-02-01, Fig. 6(a) shows 
that the proposed framework properly forecasted the inexperienced river stage.

(a) (b) (c)

Figure 4.  Forecast performance with the Kuramoto–Sivashinsky equations: comparisons of the performance 
(a) up to 10 steps ahead with the fixed data length (4000) without noise, (b) with different values of the data 
length, and (c) with different scales of observational noise. We computed the RMSE of the five-steps-ahead 
forecasts with randomly distributed embedding (RDE), multiview embedding (MVE), state-dependent 
weighting (SDW), single-best embedding based on the (μ + λ)-ES algorithm (SBE), single-variable embedding 
(SVE), all-variable embedding (AVE), and the proposed framework. These tests were carried out with 20 
datasets generated with different random initial conditions and noise. The median, upper quartile, and lower 
quartile are shown.

(a) (b)

Figure 5.  Forecast performance with the Lorenz’96I model for various numbers of variables: cases where (a) 
a half of the variables are substituted with random walks and (b) all variables are available. We computed the 
RMSE of the five-steps-ahead forecasts with randomly distributed embedding (RDE), multiview embedding 
(MVE), state-dependent weighting (SDW), single-best embedding based on the (μ + λ)-ES algorithm (SBE), 
single-variable embedding (SVE), all-variable embedding (AVE), and the proposed framework. These tests were 
carried out with 20 datasets generated with different random initial conditions and noise. The median, upper 
quartile, and lower quartile are shown.

Prediction steps [h] Proposed RDE MVE LSTM SVR Random Forest

6 0.068 0.069 0.060 0.123 0.073 0.079

12 0.167 0.174 0.171 0.213 0.177 0.185

18 0.247 0.278 0.273 0.291 0.268 0.275

24 0.349 0.389 0.373 0.372 0.365 0.363

Table 1.  RMSEs of the flood dataset computed using the proposed framework, randomly distributed 
embedding (RDE), and multiview embedding (MVE) and also compared with those obtained by long short-
term memory (LSTM), support vector regression (SVR), and the random forest. The proposed framework 
achieved the best accuracy for the 12-, 18-, and 24-h-ahead forecasts. Although the result obtained by the 
proposed framework for the 6-h-ahead forecast is the second best, the difference is slight.
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We compared the combined forecast with its individual members obtained with the (μ + λ)-ES algorithm. 
Regarding the individual members, the order of the in-sample score was different from the order of the test (see 
Fig. 6(b)). In contrast, the combined forecast achieved the minimum error by far for the both the in-sample and 
test errors. This forecast stability is one of the largest advantages of combining forecasts. Simultaneously, we pro-
filed the best embeddings for combination, as shown in Fig. 7. Although each embedding performs competitively, 
they exhibit vastly different embeddings. Interestingly, the embedding dimensions are approximately 10 for all 
embeddings. This suggests that the high-performing embedding dimensions are approximately identical although 
there are various high-performing embeddings for the forecasts.

We also profiled ρ and E averaged over the k̂p combined members for each step. The results in Fig. 6(c) suggest 
the same trends as the toy models, even for the real-world data. Specifically, smaller dimensions and smaller val-
ues of ρ were selected for shorter steps.

Discussion
Our numerical experiments suggest that our proposed framework works well for a wide range of the data length, 
including short time series such as 100. In contrast, the framework did not appear to work fine with very noisy 
data, and MVE achieved the best performance, as shown in the noise sensitivity analyses (Figs. 2(c) and 4(c)). 
This suggests that noise prevents the framework from selecting optimal embeddings on the basis of the squared 
errors, and it results in obtaining invalid embeddings. MVE can still be a good option for very noisy data. Note 
that the performance of RDE was not satisfactory in some of our numerical experiments, but this is because the 
RDE framework was originally proposed for extremely high-dimensional data, e.g., hundreds of variables. As 
shown in Fig. 5(b), we can expect RDE to perform well for cases that include many informative variables, and 
delay embedding is not needed.

The diversity of suboptimal embeddings is deeply linked to the performance of the proposed framework. 
As shown in the numerical experiments, the proposed framework worked well for high-dimensional dynam-
ics and datasets containing high-dimensional variables. On the other hand, it is not suitable to apply it to 
relatively low-dimensional data. We tested the framework with low-dimensional datasets, and the results sug-
gest that the proposed framework does not always yield the best performance, especially for low-dimensional 
datasets such as the Rössler equations27 (see Supplementary Information). This is because it is easy to find 
suitable embeddings to forecast in a brute-force manner, especially for low-dimensional datasets, while it 
becomes combinatorially difficult as the number of variables increases. In addition, the aim of K times optimi-
zation is to yield diverse embeddings (see the effect of K times optimization in Supplementary Information). 
However, if a dataset contains a small number of variables, almost the exact solutions are obtained for every 
optimization. We numerically ensured this behavior in the “Diversity of embeddings for split dataset” sec-
tion in the Supplementary Information. The result shows that high-dimensional datasets with smaller data 

(a)

(b) (c)

Figure 6.  Forecast results for the flood dataset. Panel (a) shows a comparison of the ground truth and the 
proposed 24-h-ahead forecast. The proposed forecast did not underestimate the maximum river stage, which 
is the maximum value of the whole dataset. Panel (b) shows a comparison of the in-sample and test errors of 
the ensemble members. The results demonstrate the difficulty of selecting the best forecast because the best in-
sample forecast does not always perform the best. In contrast, the combined forecast performed the best by far 
for both training and test data. Panel (c) shows the filter coefficient ρ and embedding dimension E averaged over 
the combined forecasts for each step.

https://doi.org/10.1038/s41598-019-57255-4


8Scientific Reports |          (2020) 10:664  | https://doi.org/10.1038/s41598-019-57255-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

length produced diverse embeddings, but low-dimensional datasets with larger data length obtained simi-
lar or common embeddings across segments. This property is consistent with the performance of high- and 
low-dimensional datasets.

The proposed method combines forecasts via the simple average, optimizing the number of forecasts. The 
simple average works fine for most cases because suboptimal embeddings can equally forecast well thanks to 
solving the combinatorial optimization problem, and the test performance order is not always the same as the 
corresponding training data, especially for real-world data (see Fig. 6(b)). If suboptimal embeddings show quite 
different forecast performances, the weighted average based on the error distribution10 may work better. We can 
also apply the expert advice framework28 if better forecasts are assumed to be changed over time.

We need to select the values of several parameters to apply the proposed framework, i.e., the number of split 
datasets K, the number of the suboptimal embeddings for each batch M, the criteria of the Hamming distance 
θ of Eq. (3), the number of filters L, and their components. We can control the variations in forecasts with these 
parameters. In order to set K, we consider the number of samples in each divided dataset; empirically, the frame-
work works well with more than 50 samples for each divided dataset. Note that the these samples are used only 
for the evaluation of an objective function, and the corresponding forecasts are yielded by using whole training 
data in an in-sample manner. Samples that are too small prevent the framework from finding good embeddings, 
but samples that are too large reduce the diversity of the embeddings. Although M can be any large integer (up to 
the total number of individuals of the evolution strategy), M ≤ 5 is sufficient for most cases. Note that the value of 
M that is too large is overkill and unnecessarily increases the computational cost. The criteria for the Hamming 
distance θ directly controls the similarity of suboptimal embeddings. We set θ = 3 in this study, and it worked 
fine for all cases. Note that conventional MVE and RDE guarantee that the Hamming distance among all embed-
dings is larger than two (i.e., θ = 2) for a fixed embedding dimension. In practice, appropriate filters depend on 
the prediction steps. If we predict shorter time periods, high-pass filters will work fine; if we predict longer time 
periods, low frequencies are needed to obtain fine forecasts, as the numerical experiments suggest. Although we 
treat high-pass filters in this study, low-pass filters may work for extremely noisy data. We need to understand the 
effects of these parameters and set the appropriate values within reason, P = KLM, which is usually much smaller 
than the total number of embeddings evaluated in the first step.

Our numerical experiments suggest that the appropriate embeddings vary with the prediction steps. The 
results show that a smaller E with a smaller ρ is preferable for a short-term forecast, and a larger E with a larger ρ 
is preferable for a longer-term forecast. These results are consistent with those of an existing study20 and with the 
fact that the longer-step forecasts need more complex map from the current inputs to the forecasts. Therefore, 
more information is needed to express the complex map.

Although we applied the (μ + λ)-ES algorithm to obtain the suboptimal embeddings, it is worth considering 
other methods to solve the combinatorial optimization problem. We can apply other evolution algorithms, e.g., 
simulated annealing29 and ant colony optimization30. Any algorithm may work as long as it can store the subopti-
mal embeddings through its optimization procedure. Testing and evaluating other algorithms are open problems.

Throughout this study, we used a variation of a local nonlinear prediction method to forecast the target vari-
able. One of the most significant advantages of these local prediction methods is that we can compute in-sample 
forecasts very easily with a small computational cost; all we have to do is to exclude the current query from the 
nearest neighbors. In addition, owing to recent progress in approximate neighboring search algorithms (e.g., 
refs. 31,32), these algorithms are fast enough to apply the evolution algorithms. Moreover, it is also suitable to obtain 
suboptimal embeddings through the forecast errors because local nonlinear prediction methods are sensitive to 
the false nearest neighbors derived from invalid features. However, we can apply other regression methods, e.g., 
Gaussian process regression14, as done in RDE10, for further improvements. Note that these methods incur a very 

Figure 7.  The top six embeddings to be combined for a 24-h-ahead forecast. Dark blue cells represent 
embeddings, and white cells indicate no embeddings. The horizontal axis indicates variables, and the vertical 
axis denotes the lags.
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large computational cost to yield in-sample forecasts, as mentioned in ref. 10. To reduce the computational cost, 
we can apply these methods to only the process in the second step and can approximate the in-sample error by 
the k-fold cross-validation error.

Methods
Delay embedding.  Delay embedding is a method of reconstructing the original state space using the delay 
coordinates v(t). Here, with the n-dimensional observed time series = …y t y t y t y t( ) [ ( ), ( ), , ( )]n1 2 , variable 
σ ∈ … n{1,2, , }i , and time lag τ ∈ … −l{0,1, , 1}i , ∈v t( ) E is defined as follows:

τ τ τ= 


− − ... − 
σ σ σv t y t y t y t( ) ( ), ( ), , ( ) , (9)E1 2 E1 2

where E is the embedding dimension, and no duplication is allowed for any element. According to embedding 
theorems1,3, an attractor reconstructed by v(t) is an embedding with the appropriate E. Note that the number of 
possible reconstructions increase combinatorially.

Optimizing embedding by an evolution strategy.  We optimize embedding via combinatorial optimi-
zation to minimize forecast errors. Based on existing studies15,16, we treat embeddings as a binary series, i.e., 1 
denoting embedded and 0 denoting not embedded, and solve Eq. (2) by using a combinatorial optimization 
problem. For example, with n = 3 and l = 2, the embedding −y t y t y t[ ( ), ( ), ( 1)]1 2 3  can be expressed by the nl = 6 
binary code =e [1, 0, 1, 0, 0, 1]: the first element 1 corresponds to y1(t) to embed, the second element 0 corre-
sponds to y1(t − 1) to embed, the third element 1 corresponds to y2(t) to embed, and so on. The optimization of a 
binary series is a typical combinatorial optimization problem. In this paper, we apply the (μ + λ) evolution strat-
egy17. The parameter μ denotes the number of parents, λ denotes the number of offspring, and + denotes plus 
selection, which means that the next parents are selected from both the previous parents and offspring. Precisely, 
the algorithm yields λ new offspring from the top-performing μ individuals selected from the previous parents 
and offspring. The algorithm is an elitist method since the algorithm retains the best individuals unless they are 
replaced by superior individuals. The algorithm tends to converge fast, but it is likely to become trapped at local 
optima. Therefore, the algorithm is suitable for our proposed framework. However, it is worth considering the 
application of other existing methods33–35 to obtain suboptimal embeddings.

Forecasting through FIR filters.  We apply FIR filters to the original time series, and create embeddings 
using the filtered time series to obtain various embeddings and forecasts. Note that this procedure can also be 
written using the delay coordinates composed of the original time series with the corresponding filter matrix. We 
apply the following linear transformation for each variable:

∑ μ σ=




 − −







=

−
z t h k y t k( ) ( ) ( ) / ,

(10)
i

k

N

i i i i
0

1

where hi’s are filter coefficients with N elements, = ∀h i(0) 1i , and μi and σi are the coefficients for standardiza-
tion. When we apply the filter to the target variable yf, we obtain filtered forecast ẑ t( )f . After forecasting z t( )f , we 
need to restore ẑ t( )f  for the original time series. For p = 1, we restore + |ŷ t p t( )f  using + |ẑ t p t( )f  as follows:

∑σ μ+ | = + | + − + − .
=

−
ˆ ˆy t p t z t p t h k y t p k( ) ( ) ( ) ( )

(11)f f f f
k

N

f f
1

1

For p ≥ 2, we obtain the p-steps-ahead forecast + |ŷ t p t( )f  by substituting forecasts for the unobserved 
≥ +y t t( 1)f  as follows:

∑ ∑σ μ+ | = + | +







− + − | + + −








.

=

−

=

−
ˆ ˆ ˆ( ) ( )y t p t z t p t h k y t p k t h k y t p k( ) ( ) ( ) ( ) ( ) ( )

(12)
f f f f

k

p

f f
k p

N

f f
1

1 1

We can restore + |ŷ t p t( )f  for any p to apply Eq. (12) recursively.
We can apply FIR filters such as low-pass filters to suppress noise. In contrast, an existing study18 focuses on 

the filtered delay coordinates constructed by blending the derivatives of time series and the original one to search 
the nearest neighbors. Although these are a type of high-pass FIR filters inspired by the difference of time series, 
such filters improve the prediction accuracy in less noisy time series. In this paper, we set the filter coefficients as 

ρ= = ∀h h i(0) 1, (1)i i  with the number of taps N = 2 for all numerical examples, based on an existing study18, 
although there are many possible filters to improve forecast. More suitable filters can be designed in a future work.

Overall algorithm of the proposed framework.  We denote a multivariate time series as ∈y t( ) n and 
the target variable to be forecasted as yf. The proposed forecasting framework is presented in Algorithm 1 in terms 
of the user-defined number of split training datasets K, the number of top-performing embeddings chosen for 
each split M, the linear filters, and the number of filters L.

https://doi.org/10.1038/s41598-019-57255-4


1 0Scientific Reports |          (2020) 10:664  | https://doi.org/10.1038/s41598-019-57255-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Data availability
To obtain the flood dataset, please make a contact with Professor Christian W. Dawson (Loughborough 
University) directly. The other data related to this paper are available from the corresponding author on 
reasonable request.
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