
1Scientific Reports |         (2019) 9:20255  | https://doi.org/10.1038/s41598-019-56600-x

www.nature.com/scientificreports

The Relation between Alpha/Beta 
Oscillations and the Encoding 
of Sentence induced Contextual 
Information
René Terporten1,2*, Jan-Mathijs Schoffelen   1, Bohan Dai1,2, Peter Hagoort1,2 & 
Anne Kösem 1,2,3

Pre-stimulus alpha (8–12 Hz) and beta (16–20 Hz) oscillations have been frequently linked to the 
prediction of upcoming sensory input. Do these frequency bands serve as a neural marker of linguistic 
prediction as well? We hypothesized that if pre-stimulus alpha and beta oscillations index language 
predictions, their power should monotonically relate to the degree of predictability of incoming 
words based on past context. We expected that the more predictable the last word of a sentence, 
the stronger the alpha and beta power modulation. To test this, we measured neural responses with 
magnetoencephalography of healthy individuals during exposure to a set of linguistically matched 
sentences featuring three levels of sentence context constraint (high, medium and low constraint). 
We observed fluctuations in alpha and beta power before last word onset, and modulations in M400 
amplitude after last word onset. The M400 amplitude was monotonically related to the degree of 
context constraint, with a high constraining context resulting in the strongest amplitude decrease. In 
contrast, pre-stimulus alpha and beta power decreased more strongly for intermediate constraints, 
followed by high and low constraints. Therefore, unlike the M400, pre-stimulus alpha and beta 
dynamics were not indexing the degree of word predictability from sentence context.

Sentence level language comprehension results from dynamic cognitive processes which combine and unify 
smaller linguistic units to create meaning1–6. These cognitive processes occur online, while the sentence unfolds, 
instantiating unified meaning which relates to the computation of semantics, spanning the whole utterance. 
During this process, a context representation is compared and updated on a moment to moment basis. The 
bias provided by the momentarily established context alters subsequent linguistic processing7–9. One classical 
approach to investigate the impact of linguistic predictions at the neuronal level is to measure the N400 compo-
nent, which is called the M400 in magnetoencephalographic (MEG) studies10–12. The N400 functionally marks 
how surprising the occurrence of a target word is provided the past sentential context13. The N400 amplitude 
is stronger for anomalous or unexpected items, but importantly it is also influenced by how constraining the 
preceding sentential context is (i.e. how predictive are subsequent linguistic items based on past context), such 
that the N400 amplitude increases with lower sentence context constraints11,14–18. While not being linked to pre-
dictive processes directly, these N400 modulations suggests that sentence context constraints alter predictions 
that are encoded prior to target word occurrence.

Prediction in its minimal sense can be understood as changes in brain states in response to contextual infor-
mation which facilitate the processing of new input19,20. Recent evidence suggests that neural rhythmic activity 
could be involved in the prediction of linguistic input during sentence processing. Neural oscillatory responses 
have been linked to the N400 and semantic predictions, such as theta (4–7 Hz) oscillations21,22 and gamma band 
(>40 Hz) activity23–26. Importantly however, theta and gamma oscillatory activity has mostly been observed as 
neural markers for semantic predictions after target word presentation. In contrast, and to the interest of the 
present study, other brain oscillatory responses in the alpha (8–12 Hz) and beta (16–20 Hz) frequency ranges 
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have been linked to both domain-general and linguistic predictive mechanisms prior to the apparition of a target 
word. Alpha and beta oscillations are hypothesized to reflect a domain-general mechanism for the prediction of 
upcoming sensory input27,28 and to constitute top-down mechanisms that shape the communication of sensory 
information between distant neural networks29–31. Beyond sensory processing, recent theory and evidence sug-
gests that alpha and beta oscillations would also be involved in linguistic prediction19,23,28. Decreases in alpha 
power21,25,32,33 and low-beta power25,33,34 have previously been linked to the processing of sentential context con-
straints. Specifically, the power decrease has been found to be stronger when sentential context is highly pre-
dictive of the last word of the sentence than when the prediction of the last word cannot be made based on past 
context21,25,32–37. The power decrease has been explained to reflect stronger engagement of the brain areas of 
the language network in scenarios in which predictions can be formed from past sentential context25,38. Yet, the 
evidence for alpha and beta oscillations being involved in language prediction is still debated, as it has only been 
observed between extreme situations, i.e. between very predictable sentences or completely unpredictable sen-
tences21,25,33. If alpha and beta power reflect the degree of predictability of an upcoming word, we hypothesized 
that alpha/beta power should gradually decrease with higher context constraint.

To test this, we presented multiple graded groups of sentences context constraints. Participants passively read 
sentences belonging to either a low (LC), medium (MC) or high (HC) context constraining condition (Table 1). 
Crucially, we constructed the sentence material using triplets of sentences, and modulating the context constrain 
by only changing one word in the sentence (see Methods for details). Neuronal activity was measured online using 
MEG, before and after display of a target word. Based on previous findings21,25, we predicted that pre-stimulus 
alpha and beta power would differ between different conditions of predictability. The power decrease is expected 
to be strongest for the HC, followed by the MC and LC condition (Fig. 1).

Materials & Methods
Participants.  In total, thirty-five students (mean age 24 years, range 18–43; 16 males) took part in the exper-
iment. All participants provided their informed consent in accordance with the declaration of Helsinki, and 
the local ethics committee (CMO region Arnhem-Nijmegen). All experimental protocols were approved by the 
review board of the Donders Centre for Cognitive Neuroimaging prior to the start of the experiment. The partic-
ipants were all Dutch native speakers, right-handed, had normal or corrected-to-normal vision and none of them 
suffered from neurological impairment or dyslexia. Two participants were excluded because they did not finish 
the experiment. Therefore, thirty-three participants were included for further analyses (mean age 24 years, range 
18–43; 15 males).

Stimulus material.  The stimulus set consisted of 253 sentence triplets, including 203 critical and 50 filler 
sentence triplets. Each sentence within a critical triplet belonged to either a high context (HC), medium context 
(MC), or low context (LC) constraining condition. The different degree of constraint within a triplet was achieved 
by manipulating only one word, the context constraining word, which was always at the same position within a 
sentence with regard to a triplet (Table 1). Across the conditions, these context constraining words were matched 
with regard to word length (F(2, 606) = 0.784, p = 0.457, with a Mean (SE) of HC: 7.12 (2.26); MC: 7.1 (2.54); LC: 
7.37 (2.61)) and word frequency (F(2, 584) = 1.984, p = 0.138, with Mean (SE) of HC: 2.4 (0.78); MC: 2.56 (0.87); 
LC: 2.5 (0.84); based on the Dutch SUBTLEX-NL database40. The stimuli were pretested in a sentence completion 

Stimulus material examples

Condition Stimulus

HC
(NL) Op dit gebouw heb je een goed uitzicht.

(EN) On this building you got a good view.

MC
(NL) Op deze toren heb je een goed uitzicht.

(EN) On this tower you got a good view.

LC
(NL) In deze wijk heb je een goed uitzicht.

(EN) In this area you got a good view.

Table 1.  Example Dutch sentence triplet from the final stimulus set with its English translation. The context 
constraining conditions were manipulated by changing one context constraining word.

Figure 1.  A schematic display of a trial procedure. A trial began with the display of a fixation period, followed 
by a blank screen. Subsequently the sentence was visually displayed by a word by word presentation, up to the 
final word as indexed by the period. Between words, a black screen served as delay before a subsequent word 
was shown.
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task in order to verify the step-like degree of context constraints within a triplet (from high, to medium, to low). 
For this task - independent from the MEG experiment - a sample of participants (N = 51) were required to com-
plete a sentence presented on a computer screen, for which the final word was missing. Participants performed 
the experiment with one of three counterbalanced lists. Each list included the same number of critical sentences 
from either of the three context constraining conditions. The validation of the conditions was performed in two 
subsequent steps: first, the degree of context constraint per sentence was evaluated by calculating the percentage 
of participants that would finish a sentence with the same word. These probabilities are thought to reflect the 
degree to which the sentential context biases subsequent language processing. As expected, HC sentences resulted 
in the highest percentage of participants proposing the same word as cloze (Mean (SE) = 77% (17.74)), followed 
by MC (Mean (SE) = 50% (18.67)) and LC (Mean (SE) = 28% (11.97)). The three conditions differed significantly 
from each other with regard to their degree of context constraints (F(2, 606) = 442.842, p < 0.001).

Second, and in order to create the final stimulus set, the final word from the HC sentences with the high-
est percentage was chosen as sentence ending for all sentences within a triplet. This approach resulted in cloze 
probabilities for the final word - the target word - that were different from the percentages of the context con-
straints for the MC and LC conditions. Still, the cloze probabilities differed significantly between conditions (F(2, 
606) = 468.155, p < 0.001), with HC showing the highest cloze probability (Mean (SE) = 77% (17.74)), followed 
by MC (Mean (SE) = 42% (25.94)) and LC (Mean (SE) = 15% (15.82)). The cloze probabilities are thought to 
reflect how surprising the final word occurrence is, given the past sentential context. In our stimulus set, context 
constraint measures were highly correlated with measures of cloze probability (r = 0.93, p < 0.001).

In the MEG experiment, participants were presented with one of the counterbalanced lists, with an additional 
set of 50 filler sentences. The filler sentences did not differ between lists but followed a different sentence structure 
as compared to the critical sentences.

Experimental procedure.  Participants were comfortably seated in a dimly illuminated and magnetically 
shielded room. All participants were instructed to place their arms on the arm rest of the chair, with access to a 
button box with their right hand. In front of each participant, at a distance of 80 cm and with a 25°–35° viewing 
angle, a screen was located on which all stimulus material was displayed. The words were shown in black, on a 
grey background. Participants were instructed to silently read the displayed sentences on the screen, and to focus 
on the content of each sentence. Furthermore, it was highlighted that sometimes (after 20% of the sentences; sub-
jects were not informed about the precise percentage) a question would be asked about the content of the previous 
displayed sentence. The participants were then required to answer this question with ‘yes’ or ‘no’ by button press. 
The answer possibilities (‘yes’/‘no’) were randomly displayed on the left or right side of the screen and a left or 
right button had to be pressed accordingly. These question trials were catch trials, intended to ensure that partic-
ipants were actively processing the meaning of the sentences, without focusing their attention on the contextual 
constraints. A trial started with the display of a fixation cross in the middle of the screen for 500 ms. The fixation 
cross was followed by a blank screen for a random interval of 500–1200 ms. Subsequently, the word-by-word pres-
entation of the sentence began, with each word being displayed for 200 ms, followed by a blank screen of 800 ms. 
An interval of 1000 ms was chosen in order to record pre-stimulus alpha and beta activity that is not influenced 
by the evoked response to the previous displayed word. After a sentence ended, another blank screen occurred for 
2000 ms (Fig. 1). After that, either a catch question was displayed, with the whole question in the middle of the 
screen and the yes-no answers randomly split to the left or right side, or the next trial began. In total, participants 
read 253 sentences (253 trials) in random order, which came from one of three lists, counterbalanced on the three 
levels of context constraints. The total amount of trials was divided into four blocks, separated by small breaks 
in-between. The length of a break was self-determined by the participants and the task could be continued by 
button press. In total, the data acquisition lasted 60 min.

Data acquisition.  All data were acquired using a 275 axial gradiometers CTF Omega MEG system. 
Horizontal and vertical bipolar electrooculography (EOG) as well as electrocardiography (ECG) were recorded 
in order to discard eye blinks, eye movements and heart beats contaminated trials. All electrophysiological signals 
were low-pass filtered at 300 Hz, digitized at 1200 Hz, and stored for off-line analysis. Three coils were placed on 
the nasion and the left and right ear canal to register the head position with respect to the gradiometers. The coils 
enabled real-time monitoring of the head position throughout the experiment41. Next to the MEG recordings, 
magnetic resonance images (MRIs) were obtained from 32 of the participants with a 1.5 T or 3.0 T Siemens sys-
tem. By means of attached markers at the same anatomical locations as the head coils, the MRIs could be aligned 
to the MEG coordinate system.

Data preprocessing.  All data were analyzed using the open-source Matlab toolbox Fieldtrip42. From the 
MEG data, a time-window of interest was segmented 2 s before and after the onset of a sentence’s final word for 
each trial. This segmentation therefore included the blank delay period just before onset of the target word, where 
the effect of context constraints is expected to occur, and the period after onset of the target word. The segmented 
data were low-pass filtered at 150 Hz. The 50 Hz line noise components were removed by using a notch filter. 
Artifact identification and rejection was done in three steps. First, MEG jump and muscle artifacts were identified 
by visual inspection of amplitude variance over trials. Second, artifacts related to eye-movements and cardiac 
activity were identified and removed by means of an independent component analysis (fastICA)43, followed by 
backprojection. The independent components were visually inspected and removed from the sensor data, if they 
resembled heartbeat, eye-movements or blinks (as compared to the recorded EOG and ECG). Third, the resulting 
data were again visually inspected to remove any remaining artifacts. From this procedure, on average 11% of 
trials and 1.5% of MEG sensors were excluded from further analysis.
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Event-Related Field (ERF) analysis.  Event-related fields were investigated to observe M400 modulations 
after the last word onset. This correlate is the magnetic counterpart of the classical N400 measured by electroen-
cephalography and inhabits the same time-course and response properties44,45. For each condition, the epochs 
were first low-pass filtered at 35 Hz. All ERFs were then baseline corrected based on a time window of −300 
ms–0 ms relative to target word onset. To facilitate comparison across participants the ERFs were transformed to 
a combined synthetic planar gradient representation46. The M400 component was calculated by averaging over 
the planar gradient field amplitude from 250 ms to 600 ms following target word onset.

Time-frequency analysis.  Time-frequency analysis was first done for the time-window of −800 ms to 
0 ms relative to the sentence’s target word onset, including only the blank delay period. Additionally, the M400 
sensitive time-window after target word onset was considered for time-frequency analyses, including a window 
from 200 ms up to 700 ms. Alpha and beta power were estimated for each condition using fast Fourier transform 
for a frequency range of 8 Hz to 12 Hz for the alpha, and 16 Hz to 20 Hz for the beta frequency bands (based on 
Wang et al.25), with a Hanning-tapered 500 ms sliding window in time steps of 10 ms. No baseline correction was 
performed on the time-frequency data, statistics were performed by contrasting individual conditions of context 
constraints. Time-frequency plots were created using a wider frequency range of 2 Hz to 30 Hz (using a fixed 
500 ms sliding Hanning window in time steps of 10 ms and frequency steps of 2 Hz) for a time window of −1000 
ms to 1000 ms. Power was averaged over channel clusters that were a result of the statistical comparison between 
conditions for the alpha and beta frequency band respectively.

Source analysis.  To estimate the sources of the oscillatory activity, the Dynamical Imaging of Coherent 
Sources (DICS) beamforming approach was applied to the data47. The volume conduction model was constructed 
from the individual anatomical MRI as a single shell representation of the inside of the skull. This model was used 
to compute the forward model according to Nolte48. The initial co-registration between the headmodel and MEG 
sensors was achieved by manually identifying the anatomical landmarks of the nasion and two auricular fiducials, 
and was additionally refined, using the subject-specific three-dimensional digitised representation of the scalp, 
as obtained by a Polhemus digitizer. The source space was discretized into a three dimensional grid with a 6 mm 
resolution. Source reconstruction was performed using a spatial filter, which was computed by combining the 
cross-spectral density (CSD) matrices from all three conditions (HC, MC, LC). The CSDs were computed using 
the Fast Fourier transform of the data with multitapering, with a center frequency of 10 Hz or 18 Hz for the alpha 
(averaged over the time window 540–0 ms, relative to target word onset) and beta (averaged over 450–0 ms) 
frequency band respectively. All visualizations are based on interpolated data onto the MNI template. The differ-
ent conditions of the source reconstructed data were compared based on cluster-based permutation statistics as 
described below.

Cluster-Based permutation statistics.  Statistical evaluation was done using non-parametric 
cluster-based permutation tests49. First, we computed F-statistics to quantify the effect of context constraints 
(three levels: HC, MC, LC) for each sensor and time point. These F-statistics were used to define the clusters 
for the non-parametric statistical testing: clusters consisted of samples whose F-values were above threshold 
(threshold: F-value associated with a p-value of 5%) and were adjacent in space and time. Cluster-level statistics 
were computed by taking the sum of F-values within each cluster. The distribution of the cluster-level statistics 
under the null hypothesis was obtained by repeating this procedure for 5000 permutations of random relabeling 
of the conditions. Clusters whose test-statistics fell in the highest 5th percentile of its reference distribution were 
considered significant.

Results
Behavioral performance.  In order to confirm the participant’s attention to the experimental task, their per-
formance was measured during catch trials that occurred after presentation of 20% of the sentences. The overall 
accuracy measures show a mean ceiling performance of 95% (SE = 4.65), 96% (SE = 4.42) and 97% (SE = 2.83) 
for the HC, MC and LC sentences respectively. There were no significant differences in accuracy with respect to 
the different conditions (Accuracy: F(2, 31) = 0.474, p = 0.627). This indicates that the participants were paying 
attention to the content of the presented sentences.

Event-Related fields after target word onset.  In this experiment, participants read words preceded 
by a context with different degrees of constraint (three context-constraint conditions: high, medium and low 
context constraints) while brain signals were recorded online. We first analyzed the effect of context constraints 
on the event-related fields upon target word presentation. Based on previous literature11,14 we expected a monot-
onous relationship between cloze probability and the M400 component. Consistently, as can be seen from the 
amplitude fluctuations of the event-related activity (Fig. 2), amplitude differences between the three conditions 
emerged within the typical M400 time-window. The M400 amplitude strength decreased with increasing cloze 
probability, such that the HC condition displayed the lowest M400 amplitude, followed by the MC and LC con-
ditions. The cluster-based statistics revealed a main effect of context constraints on the M400 amplitude strength 
in a pre-defined time window of 250 ms to 600 ms after target word onset; this effect was most pronounced over 
a left-frontal localized cluster of sensors (Fig. 2, cluster p = 0.005). The post-hoc contrasts (based on pairwise 
T-tests) revealed that the effect was mainly driven by a difference between HC vs. LC (p < 0.001) and HC vs. MC 
(p = 0.013). Although the M400 amplitude was smaller for MC than for LC condition, this difference was not 
significant. These effects were overall in line with the current literature showing that the M400 amplitude reflects 
semantic retrieval and unification of the target word with the preceding context.
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Alpha/Beta power modulations before target word onset.  Next, we investigated the effect of content 
constraints on alpha and beta power modulations before target word onset. Based on earlier research25, an effect 
was suggested to occur during the delay period, just before the display of the target word. The cluster-based sta-
tistics for the alpha (8–12 Hz) frequency band revealed a significant difference between all three conditions with 
regard to power (p = 0.019) for a time-window of −540 ms to 0 ms relative to target word onset. This effect was 
most pronounced over a widespread set of sensors, including anterior, central and posterior sensors (Fig. 3). Over 
these sensors, alpha power showed the strongest decrease for the MC condition, followed by HC and LC (Fig. 3). 
The post-hoc contrasts of these conditions indicate that the power decrease is significantly different between HC 
vs. MC (p = 0.023), MC vs. LC (p < 0.001), and HC vs. LC. (p = 0.026). Post-hoc comparisons of power (averaged 
over t(alpha) = −540–0 ms and t(beta) = −450 ms−0 ms) with respect to the whole spectrum (2 Hz to 30 Hz) 
showed that the strongest difference between context constraints peaks in the lower alpha range (8 Hz, Fig. 4).

We performed source reconstruction to allow for a more detailed description of the brain areas involved in the 
observed sensor-level effect. Source-level statistical evaluation indicated that this effect was most pronounced in 
parietal areas, with a bias to the right hemisphere (Fig. 5, p = 0.003, cluster-based corrected).

The sensor-level analyses in the beta (16–20 Hz) frequency band revealed a similar tendency as for the alpha 
results, though the effects were not significant (cluster with lowest p-value in cluster-based corrected statistics: 
p = 0.077, see Figs. 6 and 7).

Source statistics in turn indicated a significant F-contrast across all conditions with the effect being most 
pronounced over a set of frontal and parietal areas, biased to left frontal cortex (Fig. 8, p = 0.002, cluster-based 
corrected). The power fluctuations were, similar to the results on alpha power, non-monotonically related to each 

Figure 2.  The event related fields of the M400 component at target word onset as averaged across channel 
clusters. The M400 amplitude is gradually modulated by the degree of context constraints, resulting in the 
lowest amplitude in HC, followed by MC and LC. The black horizontal line in the main figure highlights the 
time window [250 ms, 600 ms] pre-defined for the spatial cluster-based permutation test. The upper right 
topography shows the MEG sensors that formed a cluster as result from the statistical comparison of the 
conditions. The effect is most pronounced over left lateralized sensors.

Figure 3.  Alpha power fluctuations vary as a function of context constraint before target word onset as 
averaged across channel clusters. The black horizontal line in the main figure highlights the time window [−540 
ms, 0 ms] of the spatio-temporal cluster for which the difference between conditions was significant. The upper 
right topography shows the MEG sensors of the cluster. The effect of context constrains is most pronounced 
over frontal and posterior sensors. Over these sensors, alpha power showed the strongest decrease for the MC 
condition, followed by HC and LC.
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other. The MC condition was again displaying the strongest decrease followed by HC and then the LC condition 
(Figs. 6, 7).

Alpha/Beta power modulations after target word onset.  To cover any oscillatory effects within the 
M400 sensitive time-window, alpha and beta power modulations were investigated as a function of context con-
straints after target word onset. The individual cluster-based statistics for both frequency bands revealed no sig-
nificant difference between the three conditions with regard to power, within this particular time-window.

Discussion
The current study investigated the role of pre-stimulus alpha and beta oscillations as a neural marker for sentence 
context constraints. Our results confirm the sensitivity of pre-stimulus alpha and beta power to different levels of 
constraint. Power of alpha and beta decreases when sentential context constraints are high as compared to when 
the context constraints are low, in line with previous findings21,25,33. However, we report the strongest decrease in 
alpha and beta power for the medium context constrain conditions. The data contradicts our initial hypothesis 
and instead indicate that pre-stimulus alpha and beta oscillations are non-monotically related to the amount of 
contextual constraint which in turn reflects the predictability of the sentence ending. In line with earlier findings, 
the M/N400 amplitude was monotonically modulated by the degree of constraint, resulting in the lowest ampli-
tude for high, followed by medium and low context constraints. The results suggest that pre-stimulus alpha and 
beta oscillations and the M/N400 component are neural markers that relate to distinct processes during sentence 
context evaluation.

In agreement with classic findings, our results show the M/N400 magnitude monotonically decreases 
with increasing context constraints, and this finding can be taken as support for M/N400 integration and/or 

Figure 4.  Time-frequency power contrasts between context constraint conditions within the alpha band sensor 
cluster. Time-frequency plots indicate power as averaged across sensors that were identified by the cluster-based 
permutation statistics of the alpha frequency band (8–12 Hz). The dashed line marks the onset of the target 
word. The rectangle indicates the time-window of the respective cluster, and alpha frequency band. Lower right 
figure shows the F statistics of the main effect of context constraints across frequencies, averaged within the time 
window [−540 ms, 0 ms]. The area under the curve indicates the pre-defined alpha frequency range used for 
cluster based analysis (8–12 Hz). The effect of context constraint is stronger in the lower alpha range (8 Hz).
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predictability accounts11. In contrast, the pre-stimulus alpha/beta power fluctuations do not linearly relate to 
the degree of predictability of the target word given its sentential context. Our findings partially replicate previ-
ous results, showing that high context constraints induced a stronger alpha/beta power decrease than low con-
straint21,23,25. Yet, the stronger alpha/beta power decrease for medium context constraints suggest that alpha and 
beta power does not reflect the degree of predictability of the target word given its context. Furthermore, while we 
initially defined the alpha frequency band between 8–12 Hz as in previous reports21,32,38,50, post-hoc analysis show 
that the strongest effects of context constraint were observed in the lower alpha range around 8 Hz. This suggests 
that alpha effects previously linked to sentential constraint processing25 may be more prominently observed in the 
lower alpha range. The interpretation of the results could still be framed within the general mechanistic account 
of alpha being indicative of neuronal engagement38, considering that lower alpha band activity in the 7–9 Hz has 
been linked to information gating regarding visual processing51,52. In addition to the differences in amplitude 
fluctuations between pre-stimulus alpha and beta oscillations and post-stimulus M400, our effects exhibit distinct 

Figure 5.  Reconstruction of the effect of context constraints in the alpha range (8–12 Hz). The source statistics 
reveal that the effect of the context constraint manipulation is most pronounced over left and right parietal 
regions. Upper figures show horizontal and sagittal as well as coronal slices for the alpha frequency band. Lower 
figures represent surface plots of the source statistics (F-values are thresholded at p < 0.05 and controlled for 
multiple comparisons using cluster-based permutation tests).

Figure 6.  Beta power fluctuations as a function of context constraints as averaged across channel clusters. The 
striped line marks target word onset. The black horizontal bar indicates the time window of the cluster [−500 
ms, 0 ms]. The right topography shows the sensors of the cluster. The effect of context constrains (which does 
not reach significance threshold) is most pronounced over frontal sensors. Over these sensors, beta power 
showed the strongest decrease for the MC condition, followed by HC and LC.
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topographical properties. The sources of the M400 have previously been localized to temporal as well as prefrontal 
areas, with a stronger prominence in the left hemisphere (see Lau and colleagues53). The topography of the M400 
results in the present study is in line with these common findings. In contrast, the sources of the pre-stimulus 
alpha and beta power changes cover distinct areas. Alpha power modulations were most pronounced over pari-
etal areas, and beta power effects were most pronounced over dorsolateral prefrontal areas. While alpha and beta 
power reacted similarly to the amount of context constrain within a sentence, the source reconstruction of these 
effects suggest that alpha power modulations and beta power effects do not reflect the same process. These results 
capture different alpha and beta dynamics that were reported in studies contrasting low and high sentence context 
constraints processing only25,39. These studies located the alpha and beta power differences predominantly over 
left inferior frontal areas and left middle and posterior temporal regions.

Pre-stimulus alpha and beta power modulations are not consistent with processes that relate to predictability. 
However, their dynamics and topographies could speculatively indicate that they relate to attention and/or work-
ing memory operations taking place during sentence processing39. Alpha oscillations have been previously related 
to attentional gating and the maintenance of task relevant items in working memory54–60. Parietal alpha power is 
shown to decrease with working memory load during encoding58,61,62, and may reflect the relative engagement 
of networks involved in the encoding of items to keep in memory, and the active inhibition of task irrelevant 
items56. The dorsolateral prefrontal cortex is a crucial region recruited for working memory operations63–65. The 
beta activity reported in our study could potentially reflect working memory load processing capacity66. This 
mechanism is crucial during sentence processing, where pre-stimulus alpha and beta oscillations could be then 
involved in the preselection and maintenance of lexical candidates39 (see also Piai and colleagues67). The set of 
target candidates that need to be retrieved and maintained should in particular be guided by semantic context68. 

Figure 7.  Time-frequency power contrasts between context constraint conditions within the beta band sensor 
cluster. Time-frequency plots are averaged across sensors that were identified by the cluster-based permutation 
statistics of the beta frequency band (16–20 Hz). The dashed line marks the onset of the target word. The 
rectangle indicates the time-window of the respective cluster, and the beta frequency band. Lower right figure 
shows the F statistics of the main effect of context constraints across frequencies, averaged within the time 
window [−500 ms, 0 ms]. The area under the curve shows the pre-defined beta frequency range used for cluster-
based analysis (16–20 Hz). For this cluster (over frontal sensors) the effect of context constraint is strongest in 
the beta range (16–18 Hz) and in the lower alpha range (8–10 Hz).
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We speculate that the amount of possible lexical items to be encoded and maintained might differ depending on 
the degree of constraint, which would lead to distinct alpha and beta power modulations before target word onset. 
Compared to low or high context constraining sentences, intermediate context constraints may generate the high-
est competition between lexical candidates. In the high context constraining conditions, few items are competing, 
which would require low working memory demands. In low context constraining conditions, the sentential con-
text is broad enough that the number of alternative candidates for sentence ending would be much higher than 
working memory capacities, resulting in working memory processes being disengaged in this setting. Eventually, 
in medium context constraining settings, more distractors are to be maintained in working memory than in other 
context constrains conditions, which in turn is reflected by the stronger alpha power decrease.

As an alternative explanation, the changes in alpha and beta activity could also reflect an overall change of 
alertness or attentional lapses as a function of the predictability of the stimulus61,69. In these studies, participants 
who had higher alpha power at the presentation of a relevant sentential context were more likely to discard this 
sentential information for incoming linguistic processing. A decrease in alpha power prior to target word onset 
could thus potentially reflect general higher levels of alertness that would affect the processing of relevant con-
textual words. However, we do not think that changes in alertness can explain our results as we controlled our 
design to result in similar levels of alertness across conditions by randomizing the presentation of the sentences 
and matching linguistic features like word frequency and length.

In sum, using sentences with different context constraints that are matched on other linguistic variables like 
lexical frequency and word length, this MEG study shows that pre-stimulus alpha/beta power in the course of the 
sentence is modulated by context constraints. However, the alpha/beta power decrease is strongest for medium 
constraining sentences, which defies previous interpretations of this marker in light of a prediction mechanism. 
The non-monotonic sensitivity of the alpha/beta power fluctuations to these different levels of constraints high-
light the importance of including intermediate conditions in language research. Therefore, our results do not 
support the hypothesis that alpha and beta oscillatory markers reflect linguistic predictability, and a mechanistic 
account relating alpha/beta oscillations and the degree of sentence context constraint remains to be elaborated.

Data availability
The datasets generated during and/or analyzed during the current study are available in the Donders repository, 
https://data.donders.ru.nl/collections/di/dccn/DSC_3011097.01_968?4.

Received: 15 July 2019; Accepted: 4 December 2019;
Published: xx xx xxxx

Figure 8.  Reconstruction of the effect of context constraints in the beta range (16–20 Hz). The source statistics 
reveal that the effect of the context constraint manipulation is most pronounced over left and right dorsolateral 
prefrontal regions and parietal regions. Upper figures show horizontal and sagittal as well as coronal slices for 
the beta frequency band. Lower figures represent surface plots of the source statistics (F-values are thresholded 
at p < 0.05 and controlled for multiple comparisons using cluster-based permutation tests).

https://doi.org/10.1038/s41598-019-56600-x
https://data.donders.ru.nl/collections/di/dccn/DSC_3011097.01_968?4


1 0Scientific Reports |         (2019) 9:20255  | https://doi.org/10.1038/s41598-019-56600-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

References
	 1.	 Cairns, H. S., Cowart, W. & Jablon, A. D. Effects of prior context upon the integration of lexical information during sentence 

processing. J. Verbal Learn. Verbal Behav. 20, 445–453 (1981).
	 2.	 Glucksberg, S., Kreuz, R. J. & Rho, S. H. Context can constrain lexical access: Implications for models of language comprehension. 

J. Exp. Psychol. Learn. Mem. Cogn. 12, 323 (1986).
	 3.	 Hagoort, P. Chapter 28 - MUC (Memory, Unification, Control): A Model on the Neurobiology of Language Beyond Single Word 

Processing. In Neurobiology of Language (eds. Hickok, G. & Small, S. L.) 339–347 (Academic Press). https://doi.org/10.1016/B978-
0-12-407794-2.00028-6.(2016)

	 4.	 Morris, R. K. Lexical and message-level sentence context effects on fixation times in reading. J. Exp. Psychol. Learn. Mem. Cogn. 20, 
92–103 (1994).

	 5.	 Moss, H. E. & Marslen-Wilson, W. D. Access to word meanings during spoken language comprehension: Effects of sentential 
semantic context. J. Exp. Psychol. Learn. Mem. Cogn. 19, 1254–1276 (1993).

	 6.	 Rommers, J., Dijkstra, T. & Bastiaansen, M. Context-dependent Semantic Processing in the Human. Brain: Evidence from Idiom 
Comprehension. J. Cogn. Neurosci. 25, 762–776 (2012).

	 7.	 Federmeier, K. D. Thinking ahead: The role and roots of prediction in language comprehension. Psychophysiology 44, 491–505 
(2007).

	 8.	 Frank, S. L. & Willems, R. M. Word predictability and semantic similarity show distinct patterns of brain activity during language 
comprehension. Lang. Cogn. Neurosci. 32, 1192–1203 (2017).

	 9.	 Xu, J., Kemeny, S., Park, G., Frattali, C. & Braun, A. Language in context: emergent features of word, sentence, and narrative 
comprehension. NeuroImage 25, 1002–1015 (2005).

	10.	 Janssen, E. M., van der Ven, S. H. G., van Hoogmoed, A. H. & Leseman, P. P. M. The effect of anticipated achievement feedback on 
students’ semantic processing as indicated by the N400 cloze effect. Learn. Instr. 47, 80–90 (2017).

	11.	 Kutas, M. & Federmeier, K. D. Thirty years and counting: Finding meaning in the N400 component of the event related brain 
potential (ERP). Annu. Rev. Psychol. 62, 621–647 (2011).

	12.	 Tromp, J., Peeters, D., Meyer, A. S. & Hagoort, P. The combined use of virtual reality and EEG to study language processing in 
naturalistic environments. Behav. Res. Methods 50, 862–869 (2018).

	13.	 Frank, S. L., Otten, L. J., Galli, G. & Vigliocco, G. The ERP response to the amount of information conveyed by words in sentences. 
Brain Lang. 140, 1–11 (2015).

	14.	 DeLong, K. A., Urbach, T. P. & Kutas, M. Probabilistic word pre-activation during language comprehension inferred from electrical 
brain activity. Nat. Neurosci. 8, 1117 (2005).

	15.	 Diaz, M. T. & Swaab, T. Y. Electrophysiological differentiation of phonological and semantic integration in word and sentence 
contexts. Brain Res. 1146, 85–100 (2007).

	16.	 Freunberger, D. & Roehm, D. The costs of being certain: Brain potential evidence for linguistic preactivation in sentence processing. 
Psychophysiology 54, 824–832 (2017).

	17.	 Ito, A., Corley, M., Pickering, M. J., Martin, A. E. & Nieuwland, M. S. Predicting form and meaning: Evidence from brain potentials. 
J. Mem. Lang. 86, 157–171 (2016).

	18.	 Van Petten, C. & Luka, B. J. Prediction during language comprehension: Benefits, costs, and ERP components. Int. J. Psychophysiol. 
83, 176–190 (2012).

	19.	 Kuperberg, G. R. & Jaeger, T. F. What do we mean by prediction in language comprehension? Lang. Cogn. Neurosci. 31, 32–59 
(2016).

	20.	 Molinaro, N., Monsalve, I. F. & Lizarazu, M. Is there a common oscillatory brain mechanism for producing and predicting language? 
Lang. Cogn. Neurosci. 31, 145–158 (2016).

	21.	 Rommers, J., Dickson, D. S., Norton, J. J. S., Wlotko, E. W. & Federmeier, K. D. Alpha and theta band dynamics related to sentential 
constraint and word expectancy. Lang. Cogn. Neurosci. 32, 576–589 (2017).

	22.	 Molinaro, N., Barraza, P. & Carreiras, M. Long-range neural synchronization supports fast and efficient reading: EEG correlates of 
processing expected words in sentences. NeuroImage 72, (2013).

	23.	 Lewis, A. G., Wang, L. & Bastiaansen, M. Fast oscillatory dynamics during language comprehension: Unification versus maintenance 
and prediction? Brain Lang. 148, 51–63 (2015).

	24.	 Wang, L., Zhu, Z. & Bastiaansen, M. Integration or Predictability? A Further Specification of the Functional Role of Gamma 
Oscillations in Language Comprehension. Front. Psychol. 3, (2012).

	25.	 Wang, L., Hagoort, P. & Jensen, O. Language Prediction Is Reflected by Coupling between Frontal Gamma and Posterior Alpha 
Oscillations. J. Cogn. Neurosci. 30, 432–447 (2017).

	26.	 Mamashli, F., Khan, S., Obleser, J., Friederici, A. D. & Maess, B. Oscillatory dynamics of cortical functional connections in semantic 
prediction. Hum. Brain Mapp. 40, 1856–1866 (2019).

	27.	 Arnal, L. H. & Giraud, A.-L. Cortical oscillations and sensory predictions. Trends Cogn. Sci. 16, 390–398 (2012).
	28.	 Lewis, A. G., Schoffelen, J.-M., Schriefers, H. & Bastiaansen, M. A Predictive Coding Perspective on Beta Oscillations during 

Sentence-Level Language Comprehension. Front. Hum. Neurosci. 10 (2016).
	29.	 Bastos, A. M. et al. Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels. Neuron 85, 

390–401 (2015).
	30.	 Bonnefond, M., Kastner, S. & Jensen, O. Communication between Brain Areas Based on Nested Oscillations. eNeuro 4 (2017).
	31.	 Fries, P. Rhythms For Cognition: Communication Through Coherence. Neuron 88, 220–235 (2015).
	32.	 Lam, N. H. L., Schoffelen, J.-M., Uddén, J., Hultén, A. & Hagoort, P. Neural activity during sentence processing as reflected in theta, 

alpha, beta, and gamma oscillations. NeuroImage 142, 43–54 (2016).
	33.	 Piai, V., Rommers, J. & Knight, R. T. Evidence for a causal link between left posterior alpha-beta power decreases and context-driven 

word production. bioRxiv 150748 https://doi.org/10.1101/150748 (2017).
	34.	 Bastiaansen, M. & Hagoort, P. Frequency-based Segregation of Syntactic and Semantic Unification during Online Sentence Level 

Language Comprehension. J. Cogn. Neurosci. 27, 2095–2107 (2015).
	35.	 Wang, L. et al. Beta oscillations relate to the N400m during language comprehension. Hum. Brain Mapp. 33, 2898–2912 (2012).
	36.	 Weiss, S. & Mueller, H. M. “Too Many betas do not Spoil the Broth”: The Role of Beta Brain Oscillations in Language Processing. 

Front. Psychol. 3 (2012).
	37.	 Willems, R. M., Oostenveld, R. & Hagoort, P. Early decreases in alpha and gamma band power distinguish linguistic from visual 

information during spoken sentence comprehension. Brain Res. 1219, 78–90 (2008).
	38.	 Jensen, O. & Mazaheri, A. Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition. Front. Hum. 

Neurosci. 4, (2010).
	39.	 Piai, V., Roelofs, A., Rommers, J. & Maris, E. Beta oscillations reflect memory and motor aspects of spoken word production. Hum. 

Brain Mapp. 36, 2767–2780 (2015).
	40.	 Keuleers, E., Brysbaert, M. & New, B. SUBTLEX-NL: A new measure for Dutch word frequency based on film subtitles. Behav. Res. 

Methods 42, 643–650 (2010).
	41.	 Stolk, A., Todorovic, A., Schoffelen, J.-M. & Oostenveld, R. Online and offline tools for head movement compensation in MEG. 

NeuroImage 68, 39–48 (2013).

https://doi.org/10.1038/s41598-019-56600-x
https://doi.org/10.1016/B978-0-12-407794-2.00028-6
https://doi.org/10.1016/B978-0-12-407794-2.00028-6
https://doi.org/10.1101/150748


1 1Scientific Reports |         (2019) 9:20255  | https://doi.org/10.1038/s41598-019-56600-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

	42.	 Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and 
Invasive Electrophysiological Data. Comput. Intell. Neurosci. 2011 (2011).

	43.	 Hyvärinen, A. & Oja, E. Independent component analysis: algorithms and applications. Neural Netw. 13, 411–430 (2000).
	44.	 Halgren, E. et al. N400-like Magnetoencephalography Responses Modulated by Semantic Context, Word Frequency, and Lexical 

Class in Sentences. NeuroImage 17, 1101–1116 (2002).
	45.	 Lau, E., Almeida, D., Hines, P. C. & Poeppel, D. A lexical basis for N400 context effects: Evidence from MEG. Brain Lang. 111, 

161–172 (2009).
	46.	 Bastiaansen, M. C. M. & Knösche, T. R. Tangential derivative mapping of axial MEG applied to event-related desynchronization 

research. Clin. Neurophysiol. 111, 1300–1305 (2000).
	47.	 Gross, J. et al. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. Proc. Natl. Acad. Sci. 98, 

694–699 (2001).
	48.	 Nolte, G. The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward 

calculation in realistic volume conductors. Phys. Med. Biol. 48, 3637–3652 (2003).
	49.	 Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164, 177–190 (2007).
	50.	 Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M. & Ro, T. To See or Not to See: Prestimulus α Phase Predicts Visual 

Awareness. J. Neurosci. 29, 2725–2732 (2009).
	51.	 Busch, N. A., VanRullen, R. & Spontaneous, E. E. G. oscillations reveal periodic sampling of visual attention. Proc. Natl. Acad. Sci. 

107, 16048–16053 (2010).
	52.	 Hanslmayr, S., Volberg, G., Wimber, M., Dalal, S. S. & Greenlee, M. W. Prestimulus Oscillatory Phase at 7 Hz Gates Cortical 

Information Flow and Visual Perception. Curr. Biol. 23, 2273–2278 (2013).
	53.	 Lau, E. F., Phillips, C. & Poeppel, D. A cortical network for semantics: (de)constructing the N400. Nat. Rev. Neurosci. 9, 920–933 

(2008).
	54.	 Hanslmayr, S., Staudigl, T. & Fellner, M.-C. Oscillatory power decreases and long-term memory: the information via 

desynchronization hypothesis. Front. Hum. Neurosci. 6 (2012).
	55.	 Röhm, D., Klimesch, W., Haider, H. & Doppelmayr, M. The role of theta and alpha oscillations for language comprehension in the 

human electroencephalogram. Neurosci. Lett. 310, 137–140 (2001).
	56.	 Roux, F. & Uhlhaas, P. J. Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM 

information? Trends Cogn. Sci. 18, 16–25 (2014).
	57.	 Bastiaansen, M. C. M., Posthuma, D., Groot, P. F. C. & de Geus, E. J. C. Event-related alpha and theta responses in a visuo-spatial 

working memory task. Clin. Neurophysiol. 113, 1882–1893 (2002).
	58.	 Jensen, O. & Tesche, C. D. Frontal theta activity in humans increases with memory load in a working memory task. Eur. J. Neurosci. 

15, 1395–1399 (2002).
	59.	 Piai, V. et al. Direct brain recordings reveal hippocampal rhythm underpinnings of language processing. Proc. Natl. Acad. Sci. 113, 

11366–11371 (2016).
	60.	 Bastiaansen, M. & Hagoort, P. Oscillatory neuronal dynamics during language comprehension. In Progress in Brain Research (eds. 

Neuper, C. & Klimesch, W.) vol. 159 179–196 (Elsevier, 2006).
	61.	 Boudewyn, M. A. et al. Sensitivity to Referential Ambiguity in Discourse: The Role of Attention, Working Memory, and Verbal 

Ability. J. Cogn. Neurosci. 27, 2309–2323 (2015).
	62.	 Sauseng, P., Klimesch, W., Schabus, M. & Doppelmayr, M. Fronto-parietal EEG coherence in theta and upper alpha reflect central 

executive functions of working memory. Int. J. Psychophysiol. 57, 97–103 (2005).
	63.	 Barbey, A. K., Koenigs, M. & Grafman, J. Dorsolateral Prefrontal Contributions to Human Working Memory. Cortex J. Devoted 

Study Nerv. Syst. Behav. 49, 1195–1205 (2013).
	64.	 Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 

475–483 (2000).
	65.	 Duncan, J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn. Sci. 14, 

172–179 (2010).
	66.	 Yoon, J. H., Grandelis, A. & Maddock, R. J. Dorsolateral Prefrontal Cortex GABA Concentration in Humans Predicts Working 

Memory Load Processing Capacity. J. Neurosci. 36, 11788–11794 (2016).
	67.	 Piai, V., Roelofs, A. & Maris, E. Oscillatory brain responses in spoken word production reflect lexical frequency and sentential 

constraint. Neuropsychologia 53, 146–156 (2014).
	68.	 Levelt, W. J. M. Speaking: From Intention to Articulation. (MIT Press, 1993).
	69.	 Boudewyn, M. A. & Carter, C. S. I must have missed that: Alpha-band oscillations track attention to spoken language. 

Neuropsychologia 117, 148–155 (2018).

Author contributions
All authors contributed to study concept and design. Data collection, analysis and interpretation were performed 
by René Terporten, data analysis was supported by Bohan Dai. Project execution, development and data 
interpretation were supervised by Anne Kösem and Peter Hagoort. Data analysis was supervised by Anne Kösem 
and Jan-Mathijs Schoffelen. René Terporten wrote the manuscript and Anne Kösem, Jan-Mathijs Schoffelen and 
Peter Hagoort provided critical revision. All authors approved the final version of the manuscript for submission.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to R.T.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/s41598-019-56600-x
http://www.nature.com/reprints


1 2Scientific Reports |         (2019) 9:20255  | https://doi.org/10.1038/s41598-019-56600-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-56600-x
http://creativecommons.org/licenses/by/4.0/

	The Relation between Alpha/Beta Oscillations and the Encoding of Sentence induced Contextual Information

	Materials & Methods

	Participants. 
	Stimulus material. 
	Experimental procedure. 
	Data acquisition. 
	Data preprocessing. 
	Event-Related Field (ERF) analysis. 
	Time-frequency analysis. 
	Source analysis. 
	Cluster-Based permutation statistics. 

	Results

	Behavioral performance. 
	Event-Related fields after target word onset. 
	Alpha/Beta power modulations before target word onset. 
	Alpha/Beta power modulations after target word onset. 

	Discussion

	Figure 1 A schematic display of a trial procedure.
	﻿Figure 2 The event related fields of the M400 component at target word onset as averaged across channel clusters.
	﻿Figure 3 Alpha power fluctuations vary as a function of context constraint before target word onset as averaged across channel clusters.
	﻿Figure 4 Time-frequency power contrasts between context constraint conditions within the alpha band sensor cluster.
	﻿Figure 5 Reconstruction of the effect of context constraints in the alpha range (8–12 Hz).
	﻿Figure 6 Beta power fluctuations as a function of context constraints as averaged across channel clusters.
	﻿Figure 7 Time-frequency power contrasts between context constraint conditions within the beta band sensor cluster.
	﻿Figure 8 Reconstruction of the effect of context constraints in the beta range (16–20 Hz).
	Table 1 Example Dutch sentence triplet from the final stimulus set with its English translation.




