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Influence of muscle length on the 
stretch-shortening cycle in skinned 
rabbit soleus
Atsuki Fukutani* & Tadao Isaka

Muscle force generated during shortening is instantaneously increased after active stretch. This 
phenomenon is called as stretch-shortening cycle (SSC) effect. It has been suggested that residual 
force enhancement contributes to the SSC effect. If so, the magnitude of SSC effect should be larger in 
the longer muscle length condition, because the residual force enhancement is prominent in the long 
muscle length condition. This hypothesis was examined by performing the SSC in the short and long 
muscle length conditions. Skinned fibers obtained from rabbit soleus (N = 20) were used in this study. To 
calculate the magnitude of SSC effect, the SSC trial (isometric-eccentric-concentric-isometric) and the 
control trial (isometric-concentric-isometric) were conducted in the short (within the range of 2.4 to 2.7 
μm) and long muscle (within the range of 3.0 to 3.3 μm). The magnitude of SSC effect was calculated as 
the relative increase in the mechanical work attained during the shortening phase between control and 
SSC trials. As a result, the magnitude of SSC effect was significantly larger in the long (176.8 ± 18.1%) 
than in the short muscle length condition (157.4 ± 8.5%) (p < 0.001). This result supports our hypothesis 
that the magnitude of SSC effect is larger in the longer muscle length condition, possibly due to the 
larger magnitude of residual force enhancement.

Muscle force generated during shortening is potentiated after active stretch. This phenomenon is called as 
stretch-shortening cycle (SSC) effect1,2. At present, the primary mechanisms are considered to be the stretch 
reflex3,4 and tendon elongation5,6. However, because the SSC effect was also confirmed in single skinned muscle 
fiber preparations which do not include the influence of neural activation and tendon elongation7, it is highly 
likely that other factors also contribute to the SSC effect. It has been suggested that residual force enhancement 
(RFE)8,9 also contributes to the SSC effect7,10,11 because SSCs include active stretch which induces RFE.

It is shown that RFE is, at least in part, attributable to the titin elongation, because RFE was observed at the 
sarcomere length of 6 μm which cannot expect cross bridge interactions12,13. This is in line with the results that 
the magnitude of RFE is prominent in the descending limb of the force-length relationship14–16, although the 
cross bridge interactions are less in the descending limb than in the plateau region. Taking this into account, it is 
hypothesized that the magnitude of SSC effect is larger in the descending limb because the magnitude of RFE, one 
of the possible mechanisms of the SSC effect, is larger in the descending limb.

Therefore, the purpose of this study was to examine the influence of muscle length on the magnitude of SSC 
effect. We performed the same magnitude and same velocity of active stretch and shortening within the average 
sarcomere length of 2.4 μm to 2.7 μm as the short muscle length condition and within the average sarcomere 
length of 3.0 μm to 3.3 μm as the long muscle length. We hypothesized that the magnitude of SSC effect is larger 
in the long muscle length condition due to the larger RFE in the long muscle length condition14–16.

Methods
Muscle samples and experimental setups. The isolated soleus obtained from New Zealand white rab-
bits were purchased from the SHIMIZU laboratory Supplies. The New Zealand white rabbits were euthanized 
according to a guideline for the Japanese Society for Laboratory Animal Resources (17-026). We adopted the 
soleus which is mainly composed of slow twitch fiber17 to minimize the influence of fatigue and/or damage. 
Strips of soleus muscles were harvested and tied to wooden sticks to preserve the in situ sarcomere length. The 
strips were then placed in a 50% rigor and 50% glycerol solution with protease inhibitors (cOmplete™, Roche 
Diagnostics, Canada) to chemically disrupt the muscle membrane. Subsequently, the strips were stored in a 
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freezer at −20 °C for 2–4 weeks. On the day of the experiments, a single fiber of the soleus muscle was isolated 
using fine forceps under a dissecting microscope (SM-1TSW2-L6W-M, AmScope, US). The isolated fiber was 
transferred to an experimental chamber containing a relaxing solution with protease inhibitors. One end of the 
fiber was attached to a force transducer (Model 403A, Aurora Scientific, Canada), and the other end was attached 
to a length controller (Model 322C, Aurora Scientific, Canada). Sarcomere length was measured using a He-Ne 
laser-based diffraction system (HNLS008L-JP, THORLABS, Japan). Fiber length was measured using a micro-
scope (SM-8TW2-144S, AmScope, US). All experiments were performed at room temperature (22–26 °C).

Experimental procedures and measurements. Single skinned fibers of rabbit soleus (N = 20) were sub-
jected to short muscle length condition and long muscle length condition, and each condition included the SSC 
trial and control trial (Fig. 1). For the short condition, fibers were isometrically activated at an average sarcomere 
length of 2.4 μm and then stretched to 2.7 μm. Immediately after the end of stretch, fibers were shortened to 2.4 
μm in 2 s. This is the SSC trial in the short condition. Then, the reference pure shortening contraction (control 
test) was performed. Fibers were isometrically activated at an average sarcomere length of 2.7 μm and then short-
ened to 2.4 μm in 2 s without prior active stretch. For the long condition, fibers were isometrically activated at an 
average sarcomere length of 3.0 μm and then stretched to 3.3 μm. Immediately after the end of stretch, fibers were 
shortened to 3.0 μm in 2 s. This is the SSC trial in the long condition. Then, the reference pure shortening contrac-
tion (control test) was performed after the SSC trial. Fibers were isometrically activated at an average sarcomere 
length of 3.3 μm and then shortened to 3.0 μm in 2 s without prior active stretch. The order of the short and long 
conditions was randomized. Tests were separated by a 2 min rest.

Data were collected at 10 kHz. The SSC effect was quantified by the mechanical work attained during the 
shortening phase. The force 15 seconds after the end of shortening was adopted for the index of RFE. The magni-
tude of SSC effect and RFE were expressed as the relative increase in the mechanical work or force in the SSC trials 
compared to that in the control trial. These values were compared between short and long conditions.

Solutions. The recipe of solutions was the same with Fukutani et al.7 Specifically, the relaxing solution con-
tained (in mM) 170 potassium propionate, 2.5 magnesium acetate, 20 MOPS, 5 K2EGTA, and 2.5 ATP, pH 7.0. 
The washing solution contained (in mM) 185 potassium propionate, 2.5 magnesium acetate, 20 MOPS, and 2.5 
ATP, pH 7.0. The activating solution contained (in mM) 170 potassium propionate, 2.5 magnesium acetate, 10 
MOPS, 2.5 ATP and free Ca2+ buffered with EGTA (CaEGTA and K2EGTA mixed in order to obtain a pCa value 
of 4.2), pH 7.0. One tablet of protease inhibitors was added to each 100 ml of relaxing solution.

Figure 1. Force and length responses for the short and long muscle length conditions. Blue lines indicate 
the SSC trials (isometric-stretch-shortening-isometric) and red lines indicate the control trials (isometric-
shortening-isometric). Average sarcomere length at a given timing is shown as the inset.
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Statistical analysis. Descriptive data are presented as means ± SD. To examine the difference between long 
and short conditions, a paired t-test was used for the magnitude of SSC effect and RFE. The level of significance 
was set at α < 0.05. Statistical analyses were conducted by using the IBM SPSS Statistics version 25.

Results
The magnitude of SSC effect was significantly larger in the long (176.8 ± 18.1%) than in the short condi-
tion (157.4 ± 8.5%) (p < 0.001) (Fig. 2). Similarly, the magnitude of RFE was significantly larger in the long 
(115.6 ± 6.5%) than in the short condition (107.2 ± 3.9%) (p < 0.001) (Fig. 3).

Discussion
The purpose of this study was to examine the influence of muscle length on the magnitude of SSC effect. This 
hypothesis was based on the fact that the magnitude of RFE is larger in the longer muscle length condition14–16. 
As expected, the magnitude of SSC effect was larger in the long condition than in the short condition. In addition, 
the index of RFE measured 15 s after the end of shortening was also larger in the long than in the short condition.

As hypothesized, the magnitude of SSC effect was larger in the long condition. Because we adopted single 
skinned muscle fiber preparations, the mechanism(s) for the observed SSC effect should be attributable to the 
contractile proteins in the muscle cell. The possible mechanisms are cross bridge component and titin compo-
nent7. We observed the larger SSC effect in the long than in the short condition. The operating region for the long 
condition was within the average sarcomere length of 3.0 μm to 3.3 μm, while that for the short condition was 
within the average sarcomere length of 2.4 μm to 2.7 μm. Therefore, it is reasonable to assume that the number of 
attached cross-bridge was smaller in the long than in the short condition. Taking this into account, the observed 
larger SSC effect in the long condition should not be attributable to the cross bridge. On the other hand, the 
influence of titin, which is considered to be the mechanism of RFE12,13, is known to be greater in the descending 
limb than in the plateau region14–16. Thus, the influence of titin can explain the observed larger SSC effect in the 
long condition.

Regarding the contribution of RFE on the SSC effect, we have to consider the effect of shortening on the RFE 
because the effect of RFE should be eliminated or canceled out by shortening18. In fact, some studies reported 
no RFE after the shortening (SSC)7,19–21, possibly due to the above negative effects induced by shortening while 
others reported the existence of RFE even after shortening11,18,22. These contradicting results can be explained 

Figure 2. Magnitude of SSC effect for the short and long muscle length conditions. * indicates significant 
difference between conditions (p = 0.05).

Figure 3. Magnitude of RFE evaluated 15 seconds after the end of shortening for the short and long muscle 
length conditions. *Indicates significant difference between conditions (p = 0.05).
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by the muscle length. As discussed, the effect of RFE is prominent in the longer than shorter muscle length con-
dition14–16. Thus, one can speculate that even after shortening, the effect of RFE still exists in the longer muscle 
length condition. In fact, the previous study reported in the whole muscle preparations that the force at the end 
of shortening was enhanced only in the long muscle length condition23. Although they did not evaluate the iso-
metric force after the shortening, the observed larger force at the end of shortening would be explained by RFE. 
To clarify this point, we measured the isometric force after the end of shortening as the index of RFE, and found 
that the extent of increase in the isometric force was larger in the long than in the short condition. Therefore, it 
is reasonable to assume that the magnitude of RFE was larger in the longer muscle length condition. This result 
strengthens the hypothesis that whether the effect of RFE exists after the end of shortening is, at least in part, 
explained by the operating region of muscle (muscle length). Based on this finding, the effect of SSC derived 
from RFE is expected to occur when muscles behave under the longer length, indicating that the effect of SSC is 
motion-dependent in the case of human movements.

In conclusion, the SSC effect is larger in the longer muscle length condition. This may be caused by the contri-
bution of RFE which is prominent in the longer muscle length conditions (descending limb).
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