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Diagnosis of Thyroid Nodules: 
Performance of a Deep Learning 
Convolutional Neural Network 
Model vs. Radiologists
Vivian Y. Park1, Kyunghwa Han1, Yeong Kyeong Seong2, Moon Ho Park2, Eun-Kyung Kim   1, 
Hee Jung Moon   1, Jung Hyun Yoon1 & Jin Young Kwak1*

Computer-aided diagnosis (CAD) systems hold potential to improve the diagnostic accuracy of thyroid 
ultrasound (US). We aimed to develop a deep learning-based US CAD system (dCAD) for the diagnosis of 
thyroid nodules and compare its performance with those of a support vector machine (SVM)-based US 
CAD system (sCAD) and radiologists. dCAD was developed by using US images of 4919 thyroid nodules 
from three institutions. Its diagnostic performance was prospectively evaluated between June 2016 and 
February 2017 in 286 nodules, and was compared with those of sCAD and radiologists, using logistic 
regression with the generalized estimating equation. Subgroup analyses were performed according 
to experience level and separately for small thyroid nodules 1–2 cm. There was no difference in overall 
sensitivity, specificity, positive predictive value (PPV), negative predictive value and accuracy (all 
p > 0.05) between radiologists and dCAD. Radiologists and dCAD showed higher specificity, PPV, and 
accuracy than sCAD (all p < 0.001). In small nodules, experienced radiologists showed higher specificity, 
PPV and accuracy than sCAD (all p < 0.05). In conclusion, dCAD showed overall comparable diagnostic 
performance with radiologists and assessed thyroid nodules more effectively than sCAD, without loss of 
sensitivity.

Ultrasound (US) is the primary diagnostic tool for both the detection and characterization of thyroid nodules1. 
Several US features have been associated with thyroid cancer, including nodule hypoechogenicity, microcalcifi-
cations, irregular margins, and taller than wide shape1,2. However, interobserver variability is inevitable, with fair 
to moderate interobserver agreement being reported for most US features3–5. In addition, assessments based on 
individual US features have shown lower sensitivity and accuracy than assessments based on combined features, 
and therefore many professional societies and investigators have proposed US-based risk stratification systems 
that incorporate multiple US features for thyroid nodules1,2,6–9. Yet, such systems are also based on subjective 
assessments, and although reported values for interobserver agreement are somewhat higher, observer variation 
still exists for reporting US classifications and recommending biopsy4,10–12.

Computer-aided diagnosis (CAD) systems have been recently applied in the differential diagnosis of thyroid 
nodules, and hold potential to reduce operator dependence and improve the diagnostic accuracy of thyroid US. 
Previous studies have reported relatively high diagnostic performances of thyroid US CAD systems for thyroid 
malignancy, but were based on small study populations13–17. In addition, studies have compared the diagnostic 
performance of thyroid US CAD systems with those of one or two experienced radiologists, but their findings do 
not reflect actual clinical practice in which varying levels of experience are unavoidable17–19.

Several machine learning methods have been utilized for the development of thyroid US CAD systems, and 
the first commercialized thyroid US system using artificial intelligence utilized hand-crafted features and sup-
port vector machine (SVM) methods to classify thyroid nodules20. A prospective validation of this CAD system 
showed lower specificity (74.6%) and accuracy (81.4%) than those of an experienced radiologist, but similar sen-
sitivity (90.7%)19. Recently, deep learning using convolutional neural networks (CNNs) has also been investigated 
as a tool for diagnosing thyroid nodules. Previous studies based on a retrospective collection of thyroid nodules 
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reported sensitivities of 82.4–96.7% but still showed lower specificities (48.5–84.9%) than those of experienced 
radiologists16,17. With the recent rapid advances in machine learning technology and the inclusion of larger study 
populations, further improvement of such thyroid US CAD systems is expected21.

The purpose of this study was to develop a deep learning-based US CAD system for the diagnosis of thyroid 
nodules, and to prospectively compare its diagnostic performance with those of a SVM-based CAD system and 
radiologists.

Results
The characteristics of the validation data set are described in Table 1. Among the 286 nodules, 130 (45.5%) were 
benign and 156 (54.5%) were malignant. Of the malignant nodules, 150 (96.2%, 150 of 156) were confirmed by 
surgical pathology and 6 (3.8%, 6 of 156) by malignant cytology. Of them, 149 (95.5%, 149 of 156) were papillary 
thyroid carcinoma, 6 (4.1%, 6 of 156) were minimally invasive follicular carcinoma, and one (0.6%, 1 of 156) was 
medullary carcinoma. For the 130 benign nodules, 58 (44.6%, 58 of 130) were confirmed as benign by surgical 
pathology, 66 (50.8%) by fine needle aspiration (FNA) cytology, two (1.5%) by core-needle biopsy (CNB) histol-
ogy, and four (3.1%) by US findings of pure cystic nodules.

Overall diagnostic performance.  Table 2 lists the performance measures of the deep learning-based US 
CAD system (dCAD), the SVM-based CAD system (sCAD), and all radiologists in diagnosing thyroid malig-
nancy. The radiologists showed higher specificity (76.9% vs. 58.5%, p = 0.001), positive predictive value (PPV) 
(83.1% vs. 72.3%, p = 0.001) and accuracy (86.4% vs. 75.9%, p < 0.001) than sCAD. There was no significant 
difference in all performance measures between radiologists and dCAD (p value range, 0.137 to 0.862). dCAD 
also demonstrated higher specificity (80.0% vs. 58.5%, p < 0.001), PPV (84.5% vs. 72.3%, p < 0.001) and accuracy 
(86.0% vs. 75.9%, p < 0.001) than sCAD.

Diagnostic performance according to the experience level of the radiologists.  Table 3 shows the 
performance measures of the CAD systems and radiologists according to different experience levels in thyroid 
imaging. The experienced radiologist group showed higher specificity (87.2% vs. 58.1%, p < 0.001), PPV (89.2% 
vs. 71.2%, p < 0.001), and accuracy (90.8% vs. 75.5%, p < 0.001) than sCAD. However, none of the performance 
measures significantly differed between the experienced radiologist group and dCAD. When comparing the two 
CAD systems, dCAD had higher specificity (84.9% vs. 58.1%, p < 0.001), PPV (87.3% vs. 71.2%, p < 0.001) and 
accuracy (88.0% vs. 75.5%, p < 0.001) than sCAD.

In the inexperienced radiologist group, there were no significant differences in all of the performance meas-
ures between radiologists and each CAD systems (p value range, 0.145 to 0.409) (Table 3).

Characteristic
Experienced 
Radiologist

Inexperienced 
Radiologist p-Value

Age (years)a 47.9 ± 13.3 45.9 ± 13.0 0.239

Sexb

No. of men 38 (22.4) 14 (14.7)
0.134

No. of women 132 (77.6) 81 (85.3)

Nodule size (mm)c 16.14 ± 0.80 16.49 ± 1.07 0.795

Benign/Malignantc

No. of benign nodules 86 (46.7) 44 (43.1)
0.569

No. of malignant nodules 98 (53.3) 58 (56.9)

Table 1.  Characteristics of the validation data set. aThe independent two-sample t-test was used for 
comparison. bThe chi-square test was used for comparison. cFor nodule-based comparison, the generalized 
estimating equations (GEE) method was used.

Performance 
measures Radiologists dCAD sCAD p-Value

p-Value

Radiologists 
vs. dCAD

Radiologists 
vs. sCAD

dCAD vs. 
sCAD

Sensitivity 94.2%
(89.3, 97.0)

91.0%
(85.5, 94.6)

90.4%
(84.7, 94.1) 0.137

Specificity 76.9%
(68.6, 83.6)

80.0%
(72.4, 85.9)

58.5%
(49.9, 66.6) <0.001 0.431 0.001 <0.001

PPV 83.1%
(76.5, 88.0)

84.5%
(78.3, 89.2)

72.3%
(65.6, 78.2) <0.001 0.552 0.001 <0.001

NPV 91.7%
(84.9, 95.7)

88.1%
(81.0, 92.9)

83.5%
(74.4, 89.8) 0.084

Accuracy 86.4%
(81.7, 90.0)

86.0%
(81.6, 89.5)

75.9
(70.6, 80.5) <0.001 0.862 <0.001 <0.001

Table 2.  Overall diagnostic performance of CAD systems and radiologists for diagnosing thyroid malignancy 
in the validation data set (n = 286). Note – 95% confidence intervals are shown in parentheses.
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Diagnostic performance in small thyroid nodules 1–2 cm in Size.  Among the 286 thyroid nodules, 
84 (29.4%) were 1–2 cm in maximum diameter. Of the 84 small thyroid nodules, 36 (42.9%) were benign and 48 
(57.1%) were malignant. None of the patient and nodule characteristics of small thyroid nodules significantly 
differed between the experienced radiologist and inexperienced radiologist groups (Supplementary Table S1). 
For all small thyroid nodules (n = 84), there were no significant differences in diagnostic performance between 
radiologists and each CAD systems (Supplementary Table S2). However, when performing subgroup analyses 
according to the experience level of the radiologists, the experienced radiologist group demonstrated significantly 
higher specificity (95.2% vs. 61.9%, p = 0.011), PPV (95.2% vs. 71.4%, p = 0.023) and accuracy (95.4% vs. 76.7%, 
p = 0.006) than sCAD (Supplementary Table S3).

In the experienced radiologist group, radiologists tended to show higher specificity (95.2% vs. 81.0%, 
p = 0.089) and accuracy (95.4% vs. 88.4%, p = 0.084) than dCAD, although the differences were not statistically 
significant. In addition, dCAD tended to show higher specificity (81.0% vs. 61.9%, p = 0.095), PPV (84.0% vs. 
71.4%, p = 0.089), and accuracy (88.4% vs. 76.7%, p = 0.056) than sCAD in the experienced radiologist group 
(Supplementary Table S3).

In the inexperienced radiologist group, there were no significant differences in all performance measures 
between radiologists and both CAD systems (p value range, 0.104 to 0.368).

Incorrectly classified cases by radiologists or CAD systems.  The radiologists incorrectly classified 
39 cases (13.6%, 39 of 286) in the validation data set, of which there were 9 misclassified cancers. These consisted 
of four (44.4%, 4 of 9) cases of follicular variant of papillary thyroid carcinoma (FVPTC) and five (55.5%, 5 of 9) 
cases of minimally invasive follicular thyroid carcinoma.

sCAD incorrectly classified 69 cases (24.1%, 69 of 286) in the validation data set, of which there were 11 mis-
classified cancers. These consisted of eight (72.7%, 8 of 11) cases of conventional papillary thyroid carcinoma, one 
(9.0%, 1 of 11) case of FVPTC, one (9.0%, 1 of 11) case of minimally invasive follicular thyroid carcinoma and one 
(9.0%, 1 of 11) case of medullary thyroid carcinoma.

dCAD incorrectly classified 40 cases (14.0%, 40 of 286) in the validation data set, of which there were 12 mis-
classified cancers. These consisted of four (33.3%, 4 of 12) cases of conventional papillary thyroid carcinoma, two 
(16.7%, 2 of 12) cases of FVPTC, five (41.7%, 5 of 12) cases of minimally invasive follicular thyroid carcinoma and 
one (8.3%, 1 of 12) case of medullary thyroid carcinoma. Among the misclassified cancers by dCAD, 50% (6 of 
12) were also misclassified by radiologists as well.

Discussion
Our study results demonstrated that dCAD had performance comparable to radiologists for diagnosing thyroid 
malignancy, regardless of the experience level of the radiologists. Compared to sCAD, dCAD showed overall sig-
nificantly improved specificity, PPV, and accuracy, while maintaining similar sensitivity. This indicates a clinically 
significant improvement in diagnostic performance, which supports the use of dCAD in clinical practice.

Several studies have investigated US CAD systems to diagnose thyroid malignancy14,16,17,19,22. SVM-based 
methods with textural features have been commonly used to classify thyroid nodules in these systems14,19,22, but 

Performance 
measures Radiologists dCAD sCAD p-Value

p-Value

Radiologists 
vs. dCAD

Radiologists 
vs. sCAD

dCAD vs.
sCAD

Nodules Assessed by Experienced Radiologists (n = 184)

Sensitivity 92.9%
(85.8, 96.6)

90.8%
(83.3, 95.2)

90.8%
(83.3, 95.2) 0.599

Specificity 87.2%
(78.3, 92.8)

84.9%
(75.9, 90.9)

58.1%
(47.7, 67.9) <0.001 0.527 <0.001 <0.001

PPV 89.2%
(81.5, 93.9)

87.3%
(79.4, 92.4)

71.2%
(62.7, 78.4) <0.001 0.476 <0.001 <0.001

NPV 91.5%
(83.1, 95.9)

89.0%
(80.2, 94.2)

84.8%
(73.2, 91.9) 0.318

Accuracy 90.8%
(83.3, 95.2)

88.0%
(82.6, 92.0)

75.5%
(68.8, 81.2) <0.001 0.284 <0.001 <0.001

Nodules Assessed by Inexperienced Radiologists (n = 102)

Sensitivity 96.6%
(87.5, 99.1)

91.4%
(81.3, 96.3)

89.7%
(78.9, 95.3) 0.145

Specificity 56.8%
(41.6, 70.9)

70.5%
(55.9, 81.8)

59.1%
(44.0, 72.7) 0.221

PPV 74.7%
(62.9, 83.7)

80.3%
(68.8, 88.3)

74.3%
(62.5, 83.3) 0.270

NPV 92.6%
(74.8, 98.1)

86.1%
(70.7, 94.1)

81.3%
(63.9, 91.4) 0.241

Accuracy 79.4%
(70.1, 86.4)

82.4%
(73.9, 88.5)

76.5%
(67.2, 83.8) 0.409

Table 3.  Diagnostic performance according to the experience level of the radiologists. Note – 95% confidence 
intervals are shown in parentheses.

https://doi.org/10.1038/s41598-019-54434-1


4Scientific Reports |         (2019) 9:17843  | https://doi.org/10.1038/s41598-019-54434-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

have shown lower diagnostic performance than radiologists or have been based on studies retrospectively per-
formed with a small number of thyroid nodules. Our study results were consistent with a prior prospective study 
evaluating the performance of sCAD, in which the CAD system showed similar sensitivity (90.7%) but lower 
specificity (74.6%) than an experienced radiologist19. Recently, Gao et al. assessed the diagnostic performance 
of an US CAD system based on a CNN framework, and reported similar sensitivity (96.7%) but lower specificity 
(48.5%) than an experienced radiologist17. Our method uses not only an input image, but also US feature infor-
mation defined in TI-RADS, which radiologists have used to diagnose thyroid lesions in general. This approach 
may have contributed to the higher specificity in our study. Although the US features calculated by dCAD were 
not adjusted or used by the radiologist in this study, this approach may also potentially improve diagnostic per-
formance in real clinical practice through interaction with users by providing TI-RADS US features as well as 
benign and malignant results. Nonetheless, in our study, dCAD still demonstrated higher specificity (80.0%) than 
the CAD system developed by Gao et al.17, while showing similar sensitivity, PPV, NPV, and accuracy. Our study 
is the first to report an US CAD system which shows comparable diagnostic performance with radiologists for 
diagnosing thyroid malignancy, and thus, has high potential for improving the diagnosis of thyroid nodules in 
actual clinical practice.

In this study, we further analyzed the diagnostic performances of radiologists and CAD systems according to 
experience level. Despite none of the patient and nodule characteristics differing according to the experience level 
of the radiologists, we found that only experienced radiologists exhibited higher specificity, PPV and accuracy 
than sCAD. In small thyroid nodules, experienced radiologists tended to show higher specificity and accuracy 
than dCAD, although without statistical significance. As the specificity range appeared to be lower in the inexpe-
rienced radiologist group in all nodules (56.8%) and the small thyroid nodule subgroup (53.3%), such differences 
may be attributed to the higher performance of experienced radiologists. Previous studies have shown that the 
accuracy of thyroid US depends on the experience of the interpreting physician8. In addition, whereas the CAD 
systems used two representative images of each thyroid nodule for assessment, the radiologists assessed thyroid 
nodules based on real-time US. Therefore, radiologists were able to make assessments based on more thorough 
imaging of each thyroid nodule, which may explain the higher performance seen in experienced radiologists. As 
the selection of representative images and semiautomatic segmentation would theoretically be influenced by the 
experience of the operator, this may also partially explain why there were no statistically significant differences 
between the performance measures of dCAD and sCAD in the inexperienced radiologist group. Another possible 
reason is the smaller sample size, as the number of included nodules in the inexperienced group was almost half 
the number included in the experienced group. Nevertheless, there was no significant difference in overall diag-
nostic performance between all radiologists and dCAD.

Interestingly, the specificity range of dCAD also appeared to be low in the inexperienced radiologist group 
in all nodules (70.5%) and the small thyroid nodule subgroup (46.7%). A possible reason for this is that the 
malignancy rate varies depending on the size of the lesion, and dCAD seems to automatically incorporate nodule 
size information from the input image itself to maximize overall performance, whereas sCAD is less affected by 
nodule size because the same feature values are extracted regardless of the size of the lesion. Therefore, the perfor-
mance of dCAD may be more influenced by nodule size. On the other hand, experienced radiologists may select 
more representative images and achieve better lesion segmentation, which may lead to final assessments being 
less affected by size information.

Although most management guidelines recommend FNA for large thyroid nodules, controversy exists regard-
ing the management of small thyroid nodules that are 1–2 cm in diameter1,6,23–25, which is why we chose to per-
form subgroup analysis for this size group. Yoon et al. reported that the criteria from Kim et al.26 showed the 
highest specificity (83.1%), PPV (59.6%), and accuracy (84.0%) among six previously published guidelines for 
thyroid nodules in this subgroup27, which was the same criterion used in our study. As the experienced radiologist 
group tended to show higher specificity and accuracy than dCAD in this subgroup, our results may suggest that 
the performance of the CAD system using CNN may be slightly lower in this size group – however, the number 
of small thyroid nodules 1–2 cm in diameter included in this study was small. Considering the ability of deep 
learning to discover intricate structure in large data sets28, future additional training with an even larger data set 
would likely further improve performance.

When reviewing the cases that were incorrectly classified by the radiologists or the CAD systems, we found 
that radiologists showed excellent performance in diagnosing conventional papillary thyroid carcinoma. This 
would be expected, as established suspicious US features are suggestive of this cancer type2. All of the misclassi-
fied cancers by radiologists were either FVPTC or minimally invasive follicular thyroid carcinoma, which tend 
to show more benign US features29,30. Although sCAD and dCAD showed a similar number of misclassified 
cancers, they differed in characteristics – conventional papillary thyroid carcinoma accounted for 72.7% (8 of 
11) of the misclassified cancers by sCAD, whereas it accounted for only 33.3% (4 of 12) of the misclassified 
cancers by dCAD. Therefore, dCAD showed more similar classification results with radiologists, with 50% of its 
misclassified cancers overlapping with those of radiologists. Our results imply that deep learning-based methods 
not only improves diagnostic performance compared to SVM-based methods, but also in a direction similar to 
assessments made by radiologists.

Our study had several limitations. First, this study was conducted at a single academic center. As our insti-
tution is a referral center and we included thyroid nodules that underwent surgical excision or FNA, the overall 
malignancy rate was high (54.5%). In addition, a selection bias was inevitable since we excluded thyroid nodules 
with nondiagnostic or indeterminate cytology or histology. Further multi-center validation studies would be 
required to confirm our results. Second, the inexperienced radiologist group was composed of trainee fellows, 
who had varying experience with thyroid imaging during their residencies. Different results may be obtained in 
physicians with lower experience levels — however, our results still demonstrated differences in performances 
according to the experience level of the radiologists. Third, the experienced and inexperienced radiologist group 
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assessed different thyroid nodules. Although characteristics of the validation data set did not differ between the 
two groups, this could have affected performance measures. Finally, a majority of the included malignancies were 
papillary thyroid carcinoma (95.5%), and thus, the diagnostic performance of the CAD systems may differ in 
populations with higher prevalence of other types of thyroid cancer.

In conclusion, the thyroid US CAD system using deep learning showed comparable performance with 
radiologists in diagnosing thyroid malignancy, regardless of the experience level of the radiologists. The newly 
developed CAD system is a promising tool for the assessment of thyroid nodules on US, by showing improved 
specificity, PPV and accuracy without loss of sensitivity.

Methods
This prospective study was supported by a grant from Samsung Medison Co. in Seoul, South Korea, which also 
provided the equipment for this study. The study protocol was reviewed and approved by the Institutional Review 
Board of Severance hospital. Written informed consent was obtained from all patients before each US examina-
tion. All methods were performed in accordance with the relevant guidelines and regulations.

Patients.  Patients were prospectively recruited at our hospital, a tertiary referral center, between June 2016 
and February 2017. Potentially eligible patients were those requiring US for preoperative evaluation or those who 
underwent US-guided FNA for the diagnosis of thyroid nodules ≥ 5 mm. Patients with typical benign purely 
cystic nodules were also eligible. Only patients who received a malignant or benign diagnosis were included in 
the final study population. A malignant diagnosis was confirmed by surgical pathology or by CNB histology or 
FNA cytology. A benign diagnosis was confirmed by surgical pathology or CNB histology, FNA cytology, or US 
findings of benign purely cystic nodules1. In total, 1501 nodules in 1326 patients (mean age, 46.4 years ± 12.9; 
range, 19 to 85 years) with a definitive diagnosis were included (Fig. 1). All of the US images were acquired with 
a RS80A US system (Samsung Medison Co., Seoul, South Korea).

In this study, 1215 thyroid nodules diagnosed at our institution were used to develop a thyroid US CAD sys-
tem using deep learning (S-Detect for thyroid, now loaded on RS85, Samsung Medison Co., Seoul, South Korea; 
referred to as dCAD), in addition to 3704 other thyroid nodules obtained from two other institutions using three 
US systems (iU22, Philips Healthcare, Bothell, WA, USA; EUB-7500, Hitachi Medical Systems, Tokyo, Japan; and 
RS80A, Samsung Medison Co., Seoul, South Korea). Therefore, US images of 4919 thyroid nodules from three 
institutions were used as a development data set for dCAD, which applied CNNs to classify thyroid nodules. An 
additional 286 thyroid nodules in 265 patients (213 women and 52 men; mean age, 47.2 years ± 13.2 [standard 
deviation]; mean nodule size, 16. 3 mm ± 10.9) diagnosed at our institution were used as an independent valida-
tion data set for which the performance of dCAD was prospectively evaluated.

US examination and assessment by radiologists.  Ten radiologists including four faculty members, 
with 5–20 years of experience in thyroid imaging, and six fellows training in thyroid radiology were involved 
in image acquisition. US examinations were performed with a 3–12-MHz linear high-frequency probe using a 
RS80A US system (Samsung Medison Co., Seoul, South Korea). US features of each thyroid nodule were pro-
spectively recorded by the radiologist who performed the US or US-guided FNA, according to composition, 
echogenicity, margin, shape and calcifications26. Marked hypoechogenicity, microlobulated or irregular margins, 
microcalcifications, and nonparallel shape were considered as US features suspicious for malignancy26. When 
thyroid nodules exhibited at least one of the suspicious US features, they were assessed as “suspicious”. When thy-
roid nodules had no suspicious US features, there were assessed as “probably benign”. US-guided FNA was per-
formed on nodules assessed as suspicious or on the largest nodule when there were only probably benign nodules.

Figure 1.  Flowchart of study population.
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Data acquisition for the CAD system.  The first version of the commercial thyroid US CAD software 
(S-Detect for Thyroid loaded on RS80A, Samsung Medison Co., Seoul, South Korea; referred to as sCAD) was 
integrated into the US system when US examinations were performed for this study. This CAD software let the 
user select two points indicating the top-left and bottom-right of a region of interest (ROI) box that included 
the thyroid nodule of interest in the US system19. Based on the ROI box, the CAD software calculated the nod-
ule contour for segmentation. The software also provided a series of other candidates for nodule segmentation, 
from which the user was allowed to select if considered more accurate. When the semiautomatic segmentation 
included the adjacent normal thyroid tissue or neck structures, the user was allowed to manually select a point 
along the nodule margin, and the software would recalculate the nodule contour (Fig. 2). US features of the 
segmented nodule, including shape (ovoid-to-round or irregular), orientation (parallel or non-parallel), margin 
(ill-defined or microlobulated/spiculated or well-defined), echogenicity (hyper/isoechogenicity or hypoecho-
genicity), composition (cystic or partially cystic or solid) and spongiform appearance were quantified by the soft-
ware. Consequently, the software automatically displayed the features of the nodule in real time, and presented a 
diagnosis as to whether the nodule was possibly benign or malignant. This process was performed twice for each 
nodule, on one representative image each for the transverse and longitudinal view, respectively. The US features 
and diagnosis provided by sCAD were later recorded for data analysis, but were not used by the radiologist for 
final clinical assessment.

Development of thyroid US CAD system using deep learning (dCAD).  The development of dCAD 
consists of three steps. The first is the segmentation step to extract the boundaries of a lesion and the second 
is the classification step to extract the US features of the lesion. The last is the classification step to determine 
whether the lesion is benign or malignant (Fig. 3). The segmentation algorithm for extracting the boundaries of 
the lesion uses a modified algorithm based on a Fully Convolutional Network (FCN)31. The FCN is an algorithm 
for fully automated segmentation. However, lesions, especially thyroid lesions, are often not clear on US images, 
so a semi-automated segmentation method is used to reduce errors by specifying the location of the lesion with 
a bounding box. In the preprocessing module, the input image is transformed using the bounding box input 
selected by the user. That is, segmentation is performed on the area with some margins added to the bounding 
box. Because the lesion is located at the center of the modified image, the central region is enhanced in feature 
layers to improve segmentation performance.

In the second step, a new rectangular region is generated using the lesion boundary extracted in the first step, 
and this region is classified as an input image. In the pre-processing module, three images with different mar-
gins are generated for the input image. This is to analyze not only the lesion area but also the farther peripheral 
area together. We used AlexNet32, a type of CNN to output classification results for seven US features including 
composition (cystic or partially cystic or solid), echogenicity (hyper/isoechogenicity or hypoechogenicity) ori-
entation (parallel or non-parallel), margin (ill-defined or microlobulated/spiculated or well-defined,), spongi-
form (appearance, non-appearance), shape (ovoid-to-round or irregular), and calcification (macrocalcifications, 
microcalcifications, no calcifications) for one image input.

In the third and last classification step, the lesion area which was obtained in the first step is used as an input 
image, and the US features which were obtained in the second step are integrated in the feature layer of the 
image to the lesion as benign or malignant. We modified GoogLeNet to take grayscale images as input and to 
have 2-class output of benign/malignant and removed two auxiliary classifiers33. We trained our network with 
ImageNet dataset which was converted into grayscale images and then used as a pre-trained model34. CNN train-
ing was implemented with the Caffe deep learning framework, using a NVidia K40 GPU on Ubuntu 12.04. A 
model snapshot with the lowest validation loss was taken for the final model. The learning hyperparameters were 

Figure 2.  Example of ROI correction using semiautomatic segmentation by the first version of the CAD 
software (sCAD). (a) Image of a 51-year-old female patient with a 4.6-cm FNA-proven benign mass at the right 
thyroid. (b) When the user selected two points indicating the top-left and bottom-right points of a ROI box 
enclosing the thyroid nodule of interest, the initial semiautomatic segmentation results calculated by the CAD 
software included the adjacent normal thyroid tissue and trachea. (c) The user then manually selected a point at 
the correct nodule margin where the contour was miscalculated, and the CAD software correctly recalculated 
the contour of the nodule. The segmentation results shown in (c) were used for analysis. The nodule was 
assessed as possibly benign by both dCAD and sCAD.
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set as follows: momentum 0.9, weight decay 0.0002, and a poly learning policy with base learning rate of 0.25. The 
image batch size was 32, which was the maximum batch size that worked with our system.

Evaluation of the thyroid US CAD system.  Clinical validation of dCAD was performed with the inde-
pendent validation data set. For each thyroid nodule, two representative images, one for the transverse view and 
one for the longitudinal view, were used for analysis. For each image, the developed dCAD presented a diagnosis 
as to whether the nodule was possibly benign or malignant. When at least one image was assessed as possibly 
malignant by dCAD, the nodule was classified as possibly malignant. The same approach was used when evalu-
ating the performance of sCAD.

Data and statistical analysis.  We compared the diagnostic performance of dCAD in the validation data 
set, which utilized CNNs for the diagnosis of thyroid nodules, with those of sCAD and radiologists. Subgroup 
analyses were performed according to the experience level of the radiologists and nodule size, with an additional 
analysis performed for small thyroid nodules 1–2 cm in maximum diameter. The four faculty members (5–20 
years of experience in thyroid imaging) were designated as experienced radiologists, and the six fellows training 
in thyroid radiology (1–2 years of experience in thyroid imaging) were designated as inexperienced radiologists 
for subgroup analyses. We compared demographics and nodule characteristics between the experienced and 
inexperienced radiologist group. For subject-based comparisons of demographics, the independent two-sample 
t-test and chi-square test were used. For nodule-based comparison of nodule characteristics, the generalized 
estimating equations (GEE) method was used.

The sensitivity, specificity, PPV, negative predictive value (NPV) and accuracy for thyroid malignancy diagno-
sis were calculated and compared by using logistic regression with GEE. Pairwise comparisons were performed 
for variables that showed statistically significant differences between the three groups (dCAD, sCAD, and radiolo-
gists). All statistical analyses were performed with SPSS software (version 23.0, IBM Corporation, Armonk, NY). 
A two-tailed P value of less than 0.05 was considered to indicate a statistically significant difference. In addition, 
we reviewed the cases that were incorrectly classified by the radiologists and both CAD systems.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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