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Super Damping of Mechanical 
Vibrations
Ka Yan Au-Yeung   , Brian Yang, Liang Sun, Kehang Bai    & Z. Yang*

We report the phenomenon of coherent super decay (CSD), where a linear sum of the displacement of 
several damped oscillators can collectively decay much faster than the individual ones in the first stage, 
followed by stagnating ones after more than 97% of the energy has been dissipated. The parameters 
of the damped oscillators for CSD are determined by the process of response function decomposition, 
which is to use several slow decay response functions to approximate the response function of a fast 
decay resonator. Evidence established in experiments and in finite element numerical simulations not 
only strongly supported the numerical investigations, but also uncovered an unexplored region of the 
tuned mass damper (TMD) parameter space where TMD’s with total mass less than 0.2% of a stainless 
steel plate can damp its first resonance at 100 Hz up to a damping ratio of 4.6%. Our findings also shed 
light onto the intriguing underline relationships between complex functions with different singular 
points.

Damped vibrations are common phenomena in many physical systems, including merging black holes1 and neu-
tron stars2. The classical vibrations can be described by a simple expression in time domain and in frequency 
domain3. Mitigating unwanted vibration in machinery, buildings, bridges, airplane, satellites, etc. is still a great 
challenge in engineering science despite of worldwide intensive efforts over the last century4,5. The distribution 
of vibration energy is mostly within the first few low frequency resonant modes of the structures. Since its inven-
tion nearly 100 years ago6, the toned mass dampers (TMD’s) or dynamic vibration absorbers (neutralizers) are 
particularly effective in suppressing vibrations with discrete frequencies, because their maximum effect is within 
a narrow band width around their individual working frequency, which can be designed to suit particular appli-
cation needs. As a result, they have been widely used to specifically target at the first few resonant modes in 
many structures7–33. For comprehensive summary and reviews, see refs. 7–10. A TMD can be generically described 
by a damped harmonic oscillator6. The first theoretical investigation of the optimum TMD design was carried 
out in 192811,12. Optimizations with generic TMD’s soon followed and are still being pursued today11–29. Most 
TMD’s are made of cantilevers or mass-spring that each weighs about 100 g or more for working frequency below 
100 Hz30–32. The optimizations have been limited to the parameter space where the total mass of the TMD’s was 
a few percent of the primary structures, even though in some cases the TMD mass was up to 35% of the primary 
structures27,28. Damping the vibration in free bodies, such as satellites and airplanes, are even more challenging. 
While part of the vibration energy of a supported structure can be dissipated by the supporting bodies, i. e., the 
vibration energy of a building or bridge can partially be transmitted to the ground, or the vibration of a floor can 
be partially transmitted to the building, the vibration energy of a free body can only be dissipated internally. As a 
result, active control is the preferred choice for free bodies33–42.

In this paper we report solid experimental evidence and theoretical analysis of super damping of the first 
resonant mode at 100 Hz of a nearly free elastic body (a stainless steel plate about 6.24 kg in mass) brought by 
effective TMD’s with total mass less than 0.2% of the steel plate. Under an impulse excitation, the decay of the first 
resonance of the plate was nearly complete within a time scale of 100 ms, or about 10 periods of the oscillation. As 
the plate had negligible internal loss, almost all the impulse energy was eventually dissipated by the TMD’s. This 
shows that all the previous studies have missed an important parameter space of TMD’s with added mass about 
50 times lighter than the conventional ones. Such phenomenon is explained with the concept of coherent super 
decay. A design strategy of the damper parameters based on response function decomposition is developed to 
achieve such super decay.

Basics of Coherent Super Decay
We first present numerical investigations on the coherent super decay. Consider a group of five damped oscillators 
with their time dependent displacement {xn(t)}, n = 1, 2, 5 and the combined displacement x(t) in the form
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, ωn, Qn, and An are the intrinsic frequency, the quality factor, and the vibra-

tion amplitude of the n-th oscillator ωn(t), respectively, and t is the time. The imaginary part of the angular fre-
quency of the n-th oscillator ωn

I is the inverse of the decay time constant (DTC) of the damped oscillator. As a 
typical example for illustration, we choose Qn = 20, ω δω= +1n n, {δωn} = {−0.09, −0.0389, −0.0048, 0.0267, 
0.0792}, and {An} = {0.0515, 0.1516, 0.358, 0.229, 0.0792}. The unit for the angular frequencies is Hz. For simplic-
ity but without losing generality, the angular frequency ωn is chosen to be around 1 Hz because the results at 
higher frequencies can readily be obtained by simply shrinking the time scale proportionally, i. e., the results at 
time = 1 second for ωn = 1 Hz in the present case is the same as the one at time = 0.01 seconds for ωn = 100 Hz. The 
choice of Qn = 20 is made because it represents a modestly damped oscillator3–5. With these parameters the DTC 
of each oscillator is ≈

ω
s401

n
I

. As a modest task we show below that with the purposely chosen values of {An} and 

{δωn} listed above, the total displacement x(t) behaves like a single oscillator with ω ≈ 10  Hz, DTC close to 20 s, 
and therefore a Q-factor Q0 = 10, which happens to be close to the experimental results presented in the later part 
of the paper.

Figure 1(a) depicts the time dependent displacement curves for several vibration conditions. The initial ampli-
tude of all the displacements is normalized to the value of 1. The curves are shifted vertically for clarity. The 
displacement of a representative oscillator x3(t) is shown in Fig. 1(a) as the red Curve-1. Its DTC is 40 s as deter-
mined by the resonant frequency and the Q-factor. As the Q-factors of the other four oscillators are also equal to 
20, and their resonant frequencies deviate from ω3 by at most 9%, the DTC of each individual oscillator ranges 
from 44 s for the 1st oscillator to 37 s for the 5th oscillator, which are within ±10% of x3(t). Intuitively, one would 
expect the DTC of the combined displacement x(t) given by Eq. (1) to be about 40 s also. After all, if we set all 
{δωn} = 0, the combined displacement x(t) would almost exactly follow that of x3(t) regardless of the values of An. 
However, the actual x(t) obtained is the green solid Curve-2 in Fig. 1(a). The DTC extracted from the curve is 
20 s, which is about half of that of x3(t) or any of the other individual oscillators xn(t). In fact, the DTC is close to 
that of a single oscillator with ω0 = 1 Hz and Q0 = 10, the displacement of which is depicted as the purple Curve-3 
in Fig. 1(a) for reference. In other words, when the parameters {An} and {δωn} are properly selected as presented 
above, the combined decay of several oscillators x(t) can be much faster than each individual ones. We refer to 
such phenomenon as the coherent super decay (CSD) of harmonic oscillators.

The CSD is caused by the coherent interference among the oscillators. To see this more clearly, the time 
dependent combined displacement x(t) without the damping factors ω−e{ }tn

I
 in Eq. (1) was also calculated and 

shown as the brown dashed Curve-4 in Fig. 1(a). It can be seen that the first minimum of the displacement by 
interference alone occurs at almost the same time when the combined decay (green solid curve) is near comple-
tion. At this moment, the phases of the individual oscillators are mutually destructive. Without damping, how-
ever, the displacement recovers its strength when the phases become mutually enhancing again as time goes by. 
With damping, sufficient vibration strength of each oscillator has already been consumed and the resurgence is 
negligible.

We now show an approach to determine the parameters that can realize CSD. According to classical mechan-
ics3, the time dependent displacement given in Eq. (1) is resulted from the frequency response function given by

Figure 1.  (a) The displacement as a function of time of several damped oscillators obtained by numerical 
computations. The curves are shifted vertically for clarity. (b) The reference response function (red disks) and 
the approximation response function (solid green curve) made by the sum of the response functions of five 
individual oscillators (green dashed curve) with the parameters given in the main text.
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being the complex eigen-frequency of the n-th eigenmode, and the projection amplitude of the excitation on the 
n-th mode being An

3,41. The time dependent displacement in response to a unit impulse δ(t) is given by
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The integral can be calculated by using the standard path integral and residue theorem in complex analy-
sis3,41,42 to recover Eq. (1). As the CSD behaves like a reference oscillator with resonant frequency = 1 and Q0 = 10, 
we plot the imaginary part of the response function of the reference oscillator in the form ω =

ω ω ωω− +
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in Fig. 1(b) as the red disks. The real part is not shown due to space limit. The green solid curve is the imaginary 
part of the response function in Eq. (2) using the CSD parameters for Eq. (1). It is no coincidence that the two 
response functions are nearly the same, because we had deliberately chosen the amplitudes {An} and the resonant 
frequencies {δωn} to approximate, or mimic, the reference oscillator response function with Q0 = 10. The green 
dashed curves are the response functions of the five mimicking resonators plotted individually, each with Q = 20. 
We refer to such process as response function decomposition (RFD), that is, if a response function with large line 
width can be mimicked by the sum of a number of response functions with much smaller line width, then the 
time dependent displacement generated by the two response functions will be almost the same, even though each 
mimicking oscillator has narrower line width (larger Q-factor) and decays much slower. That is the underline 
strategy to identify the amplitude and the central frequency parameters for the response functions with slow 
individual decay to collectively generate a much faster decay. In principle, the amplitude An in each term in Eq. (2) 
can be complex, which is equivalent to introducing an initial phase for each term in Eq. (1), as long as the final 
outcome via Eq. (2A) mimics the reference oscillator well. In this work we limit our search of An to real numbers 
just to avoid excessive numerical complications.

In the above example, we decompose one reference (mother) resonator of Q0 = 10 into five Q = 20 daughter 
resonators (Case-A). The same can be done to decompose each daughter resonator into five granddaughters with 
Q = 40, so as to mimic the mother resonator with 25 granddaughter resonators, each with four times the Q-factor 
of the mother. The resulting time dependent displacement curve is shown in Fig. 2(a), together with the response 
function in the insert (Case-B). The corresponding results by 125 great granddaughter response functions with 
Q = 80 (Case-C) are shown in Fig. 2(b). In Case-C we deliberately kept the mimicking curve relatively rough 
while keeping the average line shape nearly tracing the original mother resonator. Despite the rough mimicking, 
the time dependent displacement curve of the 125 great granddaughters is still very close to that of the mother 
resonator.

If the reference oscillator response function is poorly mimicked (Case-D), as is shown in the insert of Fig. 2(c), 
the resulting decay will resurge after initial fast decay, as is shown in the main graph, and the decay lasts for quite 
a long time.

For more in-depth examination of the decay behavior, we calculate the quantity that is proportional to the 
remaining total energy of a vibrating elastic body, given by

Figure 2.  (a) The computed time dependent displacement of case-B (green curve) together with the reference 
(red curve). The insert depicts the response function of case-B (green curve) and that of the reference (red 
curve). (b) The corresponding quantities for case-C. (c) The corresponding quantities for case-D. All the time 
dependent displacement curves are vertically shifted for clarity. Their initial amplitudes are normalized to 1.
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The curve by the mother (reference) resonator is shown in Fig. 3 as the red curve, which takes the simple form 
of − .e t0 1 . We refer to such decay as a uniform decay, in that the DTC remains the same throughout the decay pro-
cess. The corresponding curve by the five daughters (Case-A) is shown as the green curve in the same figure, 
together with the one made by the 25 granddaughters (Case-B, blue curve) and the 125 great granddaughter res-
onators (Case-C, purple curve). All of them exhibit similar decay in the first stage as the reference, and staged 
decays with different DTC’s in different stages afterwards. This is the consequence that their mimicking of the 
reference resonator is only approximate.

For Case-A, the normalized decay curve in the first stage decay follows closely that of the reference resonator 
up to t = 38 s (6.05 periods for an angular frequency of 1 Hz) where E = 2.56%. The initial quick drop levels off at 
around t = 81 s, after which the system is in the stagnating second decay stage. However, by then only 0.12% of 
the original vibration energy still remains, so in practical applications the stagnation will not have any material 
implications in the vibration damping of a primary structure. The reference resonator will take 69 s to reach such 
energy reduction. Therefore, for all practical engineering purposes Case-A can be regarded as decaying as fast as 
the reference.

The decay curve of Case-B (blue curve) matches well with the reference up to t = 69 s, where E = 0.1%. The 
curve for Case-C (purple curve) decays even slightly faster than the reference up to t = 38 s, where E = 2.5%. This 
is consistent with its response function being a little wider in the combined line width than the reference. It levels 
off at t = 69 s, with E = 1.0%.

Case-D with poorly mimicking response function is also interesting. Its apparent line width is almost twice of 
that of the reference. So the question is when it will slow down after the initial fast decay. The result, shown as the 
brawn dashed curve in Fig. 3, indicates that it takes only t = 25 s (4 periods) to bring E down to 2.0%, as compared 
to 44 s for the reference. At the time of leveling off of the decay curve, only 1.7% of the initial energy is still present. 
Therefore, in practical applications, the decay can already be regarded as complete, and the damper parameters 
chosen to create such response function are really good for optimization purposes.

Experimental verifications.  The CSD realized by following the RFD strategy can lead to the design and 
realization of fast vibration decay of primary structures brought by multiple TMD’s that are much lighter than the 
ones reported in the literature4–29, as will be shown in the experiments below.

The primary structure for the damping experiments is a 40 cm × 40 cm × 5 mm stainless steel plate (6.24 kg 
in mass) with free edges. Figure 4(a) is a schematic of the experiment setup. The steel plate was hanging by soft 
threads through the two clear holes near its top edge at about 10 cm apart. For frequency response measurements, 
the plate at the position 7 cm from the lower right corner along the plate diagonal line was attached to a shaker 
similar to the one reported earlier43. The response displacement was measured by a miniature accelerometer at 
the corresponding position relative to the left upper corner. Single frequency excitation was used, and the excita-
tion and the response displacement signals were measured by lock-in amplifiers. The first eigenmode of the bare 
steel plate was found to be 100.24 Hz with a Q-factor over 3000 (damping ratio η = 0.5/Q = 1.7 × 10−4). This is 
expected for a bare stainless steel plate free body. For free vibration decay measurements, the shaker was removed, 
and a gentle knock was applied near the same position where the shaker was originally attached, and the time 
dependent displacement of the plate vibration was recorded by a data collection card afterwards.

For an elastic body such as the steel plate here, the response function of the vibration in a particular direction 
(the off-plane direction of the plate in this case) is given by the Green’s function formulism41,44,
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Figure 3.  The remaining vibration intensity as a function of time for the cases studied above, together with that 
of the reference (red line).
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where un(x) is the vibration field of the n-th eigenmode, x is the position where the response displacement is 
measured, x’ is the position of excitation, ∫ ρ≡ → →m r u r dv( ) ( )n n

2 , and ρ →r( ) is the mass density distribution of the 
elastic body. For a bare steel plate the frequencies of the first few lowest primary eigenmodes are well separated. 
For example, the frequency of the 2nd primary eigenmode is near 125 Hz. When four miniature TMD’s with their 
working frequencies strategically selected around the 1st eigen-frequency of 100 Hz are mounted on the plate, five 
secondary eigenmodes near the original primary eigenmode at 100 Hz are generated. The time dependent vibra-
tion displacement of any part of the object would be of the form as Eq. (1) with each oscillator corresponding to 
an eigenmode, and the summation includes all the eigenmodes, including the primary and the secondary ones3. 
The response function near 100 Hz would be reduced to the same form as Eq. (2A) if the higher primary 
eigen-modes are only weakly excited and be neglected. As has been mentioned above, the results obtained in the 
numerical studies of CSD done at angular frequency of 1 Hz can be directly applied here for the angular frequency 
of 628 Hz by simply shrinking the time scale by a factor of 628. The dampers are purposely fine-tuned to collec-
tively produce a response function that mimics a single peak around 100 Hz with an apparently wider line width 
and smaller effective Q-factor. It was then hoped that, if the numerical studies are correct, CSD would occur in 
the real mechanical system and be verified experimentally.

The miniature TMD’s used in this study were made of decorated membrane resonators (DMR’s) reported 
earlier43,45. The photo of one of the DMR’s used in the experiments is shown in the insert of Fig. 4(b). The diam-
eter of each stretched membrane was 25 mm with its boundary fixed on the circular plastic frame about 5 mm 
in width and 5 mm in height. The thickness of the rubber membrane is 0.2 mm. The frame weighs about 0.5 g. A 
steel platelet 10 mm in diameter and 1.0 g in mass was attached to the center of the membrane. The total mass of 
a DMR-type TMD is therefore about 1.5 g, while the oscillating mass is about 1.0 g. The mass density, Poisson’s 
ratio, Young’s modulus, and pre-stress of the membrane were 980 kg/m3, 0.49, 5 × 105, and 0.4 MPa, respectively. 
The pre-stress was estimated by matching the theoretical eigen-frequency obtained from simulations to the exper-
imental one near 100 Hz. The method to measure the dynamic effective mass of the DMR’s reported earlier43 
was used here. In simple terms, the dynamic mass of the DMR was obtained by the measured force acting on 
the frame divided by the acceleration of the frame, with the frame of the DMR firmly mounted on the shaker. 

Figure 4.  (a) The schematic of the experimental setup. The red dot at the lower right corner is the location of 
excitation, while that on the upper left corner is the location where the response displacement is measured. (b) 
The real part (red curve) and the imaginary part (green curve) of the experimental dynamic mass of a typical 
DMR damper. The insert is a photo of a DMR damper. (c) The normalized experimental time trace of the 
displacement of the steel plate with the four DMR dampers attached after a single impulse excitation. The insert 
depicts the experimental response function. (d) The delayed Fourier transform spectra at different delay time 
obtained from the time trace in (c). The insert is the time dependent peak amplitude (red disks) obtained from 
the spectra and the exponent fitting (the green line).
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Vacuum grease was applied on the membrane to reduce its Q-factor from around 100 for a pristine DMR to about 
25. The second resonance of the DMR’s was above 500 Hz so it will not be considered further in this work. Small 
amount of plasticine was added onto the platelet to fine tune the first resonance frequency of each DMR, so that 
collectively they would spread around the first primary resonance of the steel plate near 100 Hz. Due to the very 
small mass of the miniature TMD’s, the resonance peak of the plate only shifted by about 0.3 Hz when 4 DMR’s 
were attached, one to each of the four corners of the steel plate.

A typical measured dynamic mass of a DMR is shown in Fig. 4(b). We chose the convention of negative imagi-
nary mass for energy dissipation. The positive imaginary part of the eigen-frequency would then lead to the decay 
of vibration amplitude with time. At the first resonance of the DMR, the maximum amplitude of the imaginary 
mass was about 25 g, while the Q-factor obtained from the line width at half height is about 25. It is noted that for 
a classical TMD, the peak imaginary mass Mi is equal to the Q-factor times the oscillator mass M0, i.e., Mi = QM0, 
which is well validated here. It is a clear indication that the DMR behaves like a classical TMD as far as its damp-
ing effect on a primary structure is concerned. Also, the line shapes of the real and the imaginary parts of the 
dynamic mass resemble well the Lorentzian form that satisfies the Kramers-Kronig relations.

The measured first resonant frequency of each of the four DMR’s is listed in the first row in Table 1. These 
frequencies were the results of fine-tuning so that with these DMR’s, one at each corner of the steel plate, the 
resulting frequency response of the steel plate near 100 Hz is shown in the insert of Fig. 4(c). The reason to place 
the DMR’s at the corners of the steel plate is that the vibration amplitude of the first resonance of the plate is the 
largest at the corners. The line shape of the frequency response nearly resembles a single resonance with an appar-
ent Q-factor of 13 as estimated from the line width, even though the total mass of the dampers is less than 0.1% 
of the primary structure, which is in stark contrast to the typical ones in the literature which are more than 10 to 
100 times heavier27,28,30–32. As a reminder, it is noted that the Q-factor of the bare steel plate is close to 3000. The 
decrease of the Q-factor is quite impressive. However, the question of whether such small value of the apparent 
Q-factor would really bring fast vibration decay in the free vibration of the steel plate still remains to be answered. 
Compared to the added mass by multiple TMD’s of the order of 5% or more of the primary structure reported in 
the literature, our dampers would have been considered as insignificant, let alone causing significant damping. 
We have also noticed that the measured frequency response remained almost unchanged when the damper on 
the upper left corner was moved to the upper right corner, such that there was no damper on the upper left corner 
while there were two on the upper right corner.

The question of whether such frequency response with an ‘apparent’ Q-factor of 13 would indeed produce a 
fast decay comparable to such Q-factor is answered by the normalized experimental time dependent displace-
ment curve shown in Fig. 4(c). Fast decay of vibration is indeed observed within the first 70 ms (~7 periods) 
after an impulse excitation. The remaining slow decay is mostly due to the second primary resonance of the plate 
around 125 Hz. To examine the displacement curve more closely, we carried out Fourier transform of the remain-
ing portion of the time-dependent curve after certain delayed time from the impulse, i. e, delayed Fourier trans-
form analysis. The selected moments of time were the ones at the consecutive maximum positive displacement 
where the phase is an integer number of 2π to avoid oscillatory behavior in the amplitude decay curve obtained 
from the delayed Fourier transform. Each spectrum was therefore taken at about 10 ms (~1 period) later than the 
earlier one. The resulting spectra are shown in Fig. 4(d), where a fast decrease of the peak amplitude around the 
first resonance of 100 Hz of the steel plate can be clearly seen. In the insert of Fig. 4(d) is the normalized amplitude 
of the peak versus the delay time (the red disks). A fast decay in the first stage followed by a second stage slow 
decay is clearly seen. A DTC of 44 ms is extracted from fitting the first stage decay curve with an exponent func-
tion (the green line). The corresponding Q-factor is 14, which is in good agreement with the one estimated from 
the response function of the steel plate in the insert of Fig. 4(c), verifying experimentally the mutual dependence 
of the time dependent vibrational displacement in the time domain and the corresponding response function in 
the frequency domain. The second stage decay was also clearly revealed, with its DTC much larger than that of 
the first stage. The 2nd eigenmode at 125 Hz was also excited, but within the decay time scale of the 1st eigenmode 
it decayed little, as expected.

To further increase the damping effect, four more DMR’s were added, one at each corner, and their resonant 
frequencies were fine-tuned to obtain the experimental response function as shown in the insert of Fig. 5(a), 
which nearly resembles a single oscillator with an apparent Q = 11. The time trace is shown in Fig. 5(a). The reso-
nant frequencies of the eight dampers are listed in the second row in Table 1. The delayed Fourier transform spec-
tra of the decay curve are shown in Fig. 5(b), while the peak amplitude decay curve is shown as the insert in the 
same figure. The obtained Q-factor is 10.8, which again matches well with the one from the measured response 
function. The decay time constant is 35 ms. It has also demonstrated the damping efficiency of the DMR’s with 
total mass of 12 g, or less than 0.2% of the primary structure, that can bring out a damping ratio as high as 4.6% 
for the first resonance of the steel plate.

Although in principle the response function, and therefore the decay behavior, depends on the locations of 
excitation and response, our experimental investigations showed that the super decay phenomenon was quite 
robust. Applying the impact excitation at different locations of the steel plate resulted in the variation of relative 

Damper # #1 #2 #3 #4 #5 #6 #7 #8

Group-1 99.3 99.3 105.2 105.3

Group-2 96.2 98.2 100.4 101.4 101.6 101.8 102.8 104.2

Table 1.  The measured peak frequency of the imaginary effective dynamic mass of each DMR damper used in 
the experiments.
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strength of the eigenmodes being excited, but as long as the 1st primary eigenmode is excited, its decay followed 
the same as reported above, so the experimental findings presented above are robust.

Simulations.  The finite element simulations for the damping of the primary structure by the four DMR 
dampers in the experimental investigation were performed by using COMSOL multi-physics using the follow-
ing materials parameters for the steel plate, namely density = 7850 kg/m3, Young’s modulus = 2.0 × 1011 Pa, and 
Poisson ratio = 0.33. The vibration pattern of the first primary resonance of the bare steel plate is shown in the 
insert of Fig. 6(a). The red color indicates high vibration amplitude, while the deep blue color indicates near zero 
vibration. For damping simulations, instead of calculating the steel plate with the real DMR’s, which could take 
up a large amount of computer memory and computational power because of the thin membrane structure of 
the DMR’s, the measured dynamic mass spectra of the DMR’s were used instead as the effective input parameters 
for their damping effects43. The dampers were placed at the corners of the plate because it is where the vibration 
amplitude of the first resonance is the largest.

The numerical simulations were carried out in the following steps. We first compare the response function, 
and then the characteristics of the time dependent displacement with the experiments. In doing so, we also verify 
theoretically the mutual dependence of the time dependent vibrational displacement of a real object in the time 
domain and the corresponding response function in the frequency domain.

In step-1, the response function of the primary structure in the same excitation-response scheme as the exper-
iments was calculated when four DMR dampers with the parameters shown in Table 1 were attached to the steel 
plate. The resulting response function is shown as the red curve in Fig. 6(a), with an apparent Q = 11, which 
agrees well with the experimental one shown in the insert of Fig. 5(a) with Q = 13. The reason for the small dis-
crepancy in the Q-factor is most likely due to the imperfection of the real DMR dampers. The numerical response 
function cannot provide time dependent vibration of the steel plate to compare with the experimental results. 
According to Eq. (1), doing so requires the numerical eigen-frequencies {ω

n}, which will be obtained in step-2, 
and the corresponding mode amplitudes {An} of the steel plate, which will be obtained in step-3 below.

In step-2 the lowest eigen-frequencies of the steel plate with the four dampers attached onto the corners were 
calculated. It was found that the original primary mode near 100 Hz of the bare steel plate now splits into five sec-
ondary modes, because four additional virtual degrees of freedom were introduced by the four effective TMD’s. 
The eigen-frequencies of the secondary modes obtained from the simulations are ω

π

∼{ }2
n  = {96.4678 + 1.74668i,  

98.2078 + 2.06091i, 100.159 + 1.80042i, 102.455 + 2.4188i, 104.085 + 2.02823i} in Hz, revealing the induced secondary  
modes with the frequencies spreading across the original primary resonance of the steel plate and the imaginary 
parts due to DMR damping. The complex eigen-frequency of the n-th secondary eigenmode ω

n is related to ωn and 
Qn via Eq. 2(B). Accordingly, the Q-factors of these secondary modes, given by the ratio of the real part of the 
eigen-frequency over the imaginary part, range from 55 to 43, none being close to the experimental value of 13, or 
the apparent Q-factor of 11 in the simulations. Therefore, the response function obtained in step-1 is a ‘mimicked’ 
one by the combination of the individual response functions of these secondary modes with a factor of 3 to 4 times 
narrower line widths. As the imaginary part of the eigen-frequencies is much smaller than the real part, the 
eigen-mode vibration field (un(x) in Eq. (4)) is mostly real, leading to negligible initial phase in each oscillator. Our 
choice to exclude initial phases in Eq. (1) is therefore well justified.

In step-3, the response function amplitudes of the five secondary modes, which corresponds to the {An} in 
Eq. (1), were then found following Eq. (2) to produce a response function that mimics the one obtained in step-1.  
The resulting response function is shown as the green curve in Fig. 6(a), which matches well with the red one 
obtained in step-1.

With all the parameters to calculate x(t) using Eq. (1A) now available, in step-4 the time dependent displace-
ment was then calculated, followed by the delayed Fourier transform on the numerical x(t). The resulting spectra 
are shown in Fig. 6(b). The time interval between two consecutive spectra is about 20 ms, or 2 periods. The evolu-
tion of the spectra resembles well the experimental one in Fig. 4(d).

Figure 5.  (a) The experimental time trace of the displacement of the primary structure with 8 DMR dampers 
attached. The insert depicts the experimental response function. (b) The delayed Fourier transform spectra 
at different delay time obtained from the time trace in (a). The insert is the time dependent peak amplitude 
obtained from the spectra.
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Finally, in step-5 the total energy decay curve was calculated by using Eq. (4) and the time dependent dis-
placement found in step-4. The outcome is shown in Fig. 6(c). The decay curve clearly exhibits the characteristic 
multi-stage fast and slow decays similar to that in Fig. 3. The decay started with a fast drop that lasts for about 
100 ms, followed by a slow decay till about 200 ms, then fast decay again. The Q-factor obtained from the first 
stage fast decay is 12, which is in good agreement with the value of 11 obtained from the spectrum in Fig. 6(a), 
and the experimental value of 14. The DTC so obtained is 35 ms, which agrees fairly well with the experimental 
value of 44 ms. The decay in the remaining stages is negligible because the vibration amplitude is already minute.

Overall, the results from the simulations agree well with the experimental ones both in terms of the frequency 
response function and in terms of DTC. Furthermore, the mutual dependence of the time dependent vibrational 
displacement in the time domain and the corresponding response function in the frequency domain has been 
firmly verified both experimentally and theoretically.

Discussions
Although we have only reported the damping of the first resonance of the primary structure, it is straightforward 
to damp the second resonance which has maximum vibration at the center of each edge, away from that of the 
first resonance. One would expect that four dampers similar to the one in Fig. 2(a) are needed. The total added 
mass to damp the first two resonances would most likely be below 0.5%. As for most structures the vibration 
energy is concentrated in the first few resonances, our approach could suppress the vibration of nearly free bodies 
with no more than 1% added mass by TMD’s.

After nearly 100 years since the invention of TMD’s, the parameter space for optimizing the performance of 
TMD’s seem to have already been exhaustively combed. What we report in this work reveals a piece of fertile and 
yet unexplored land in the parameter space, where TMD’s with mass only a fraction of a percent of the primary 
structure can effectively tame the individual resonant modes of the primary structure. The intuitive method of 
using the apparent line width in the frequency response function to adjust the design parameters of the TMD’s 
for effective damping is simple to use in designs and in experiments. The non-uniform multiple-stage decay 
processes where the decay time constant changes in different stages, such that at the beginning there could be a 
fast decay of most vibration energy followed by a stage of stagnating decay, could be very beneficial for practical 
applications, where the real effect of the remaining few percent of the initial vibration energy on the primary 
structure after a stage-1 rapid decay is almost negligible. Therefore, the effectiveness of the dampers is almost 
entirely determined by the first stage.

Our findings also reveal some interesting underline connections between two complex functions which are 
mutual approximation of each other. Take for example the case of the mother resonance ω =

ω ω ωω− +
X ( )M i Q

1
/0

2 2
0 0

 

being approximated by five daughter resonances ω = ∑
ω ω ωω= − +

X ( )D n
A

i Q1
5

/
n

n n n
2 2

. XM(ω) and XD(ω) are a mimick-
ing pair, that is, ≈X XRe( ) Re( )M D  and ≈X XIm( ) Im( )M D , and are expressed in the form of ω ωX X( ) ( )M D  to 
denote such relation. Furthermore, ≈x t x t( ) ( )M D , where

	 (5A)

and

	 (5B)

The closed integral path is an infinitely large semicircle shown in Fig. 7, with its straight edge along the real 
axis of the complex ω- plane42.

The expression ≈x t x t( ) ( )M D  means that the two functions are nearly equal in the first stage, as exemplified in 
Fig. 3 and in Fig. 6(c), and the difference between them is negligible when compared to their initial strength. 

Figure 6.  (a) The frequency response functions of the primary structure with four attached DMR dampers 
obtained directly from simulations (the red curve), and from mimicking using the five secondary eigenmodes 
(the green curve). The insert shows the vibration pattern of the first resonance of the bare steel plate. (b) The 
delayed Fourier transform spectra obtained from the time dependent displacement obtained from simulations. 
(c) The amplitude of the peak in (b) as a function of delay time (the red dashed curve) and the numerical fit by a 
single exponent function with a small offset (the green curve).
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However, the two complex functions cannot be equal in the domain of complex analysis. The complex function 
XM(ω) has two simple poles with residue ‘1’ in the complex ω-plane, as represented by the two red dots in Fig. 7. 
The complex function XD(ω), on the other hand, has ten simple poles (the green dots in Fig. 7) with proper resi-
dues, both taking the values according to the mimicking conditions given in Eq. (1). The poles are closer to the 
real axis because they have smaller imaginary parts as compared to XM(ω). If one carries out the path integral 
along the red loop in Fig. 7, the integral with XD(ω) will be zero while that with XM(ω) will be of non-zero. 
Likewise, along the green loop the path integral with XM(ω) will be zero while that with XD(ω) is non-zero. In 
more general terms, for two complex functions F1(ω) and F2(ω), ω ωF F( ) ( )1 2  when F1(ω) only has two simple 
poles as XM(ω) with the same residues, and F2(ω) only has ten simple poles and the residues as those in XD(ω), as 
long as the integrals along the big semicircle is negligible for both F1(ω) and F2(ω). As any response function can 
be mimicked by almost an infinite number of combinations of mimicking functions with their own simple poles 
and residues, a complex function with two simple poles would somehow be related to many other complex func-
tions with the right poles and residues. Such intriguing mathematics is yet to be explored.
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