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Spontaneous eye blink rate 
predicts individual differences in 
exploration and exploitation during 
reinforcement learning
Joanne c. Van Slooten  1*, Sara Jahfari2,3,4 & Jan theeuwes1,4

Spontaneous eye blink rate (seBR) has been linked to striatal dopamine function and to how individuals 
make value-based choices after a period of reinforcement learning (RL). While seBR is thought to 
reflect how individuals learn from the negative outcomes of their choices, this idea has not been tested 
explicitly. This study assessed how individual differences in sEBR relate to learning by focusing on the 
cognitive processes that drive RL. Using Bayesian latent mixture modelling to quantify the mapping 
between RL behaviour and its underlying cognitive processes, we were able to differentiate low and 
high seBR individuals at the level of these cognitive processes. further inspection of these cognitive 
processes indicated that seBR uniquely indexed explore-exploit tendencies during RL: lower seBR 
predicted exploitative choices for high valued options, whereas higher seBR predicted exploration of 
lower value options. this relationship was additionally supported by a network analysis where, notably, 
no link was observed between sEBR and how individuals learned from negative outcomes. Our findings 
challenge the notion that seBR predicts learning from negative outcomes during RL, and suggest that 
sEBR predicts individual explore-exploit tendencies. These then influence value sensitivity during 
choices to support successful performance when facing uncertain reward.

During our life we learn a lot by trial and error. When cooking a new dish, we learn from the feedback we receive 
about the outcome and change our future actions by repeating those dishes that tasted good. How we learn from 
interacting with our environment can be captured by reinforcement learning (RL) theory, which describes the 
mapping of situations to actions in order to maximise reward1. The neuromodulator dopamine (DA) plays an 
important role in how individuals learn from their interactions with the environment2,3 and has also been linked 
to individual variability in spontaneous eye blink rate (sEBR)4–6. While research suggest that sEBR reflects the 
extent to which individuals learn from negative outcomes of their actions5, this idea has not been tested explicitly. 
Here, we set out to address this issue by associating sEBR to individual differences in how we exploit actions that 
likely produce desirable outcomes and learn from positive and negative feedback: the cognitive mechanisms that 
drive RL.

More than 30 years of research has shown that sEBR, or the frequency of blinks per unit time, is affected by 
DA, particularly in the striatum (for a recent review, see7). In general, pharmacological studies in animals and 
humans have shown that DA-enhancing drugs elevate sEBR, while DA-decreasing drugs suppress them4,6,8–12. 
Moreover, sEBR is altered in clinical conditions that are associated with dysfunctions of the DAergic system13,14. 
For example, sEBR is decreased in Parkinson’s disease (PD)15,16, a condition characterised by depleted striatal 
DA levels. These findings align with animal studies showing that MPTP - a DAergic neurotoxin that induces 
Parkinsonian symptoms - reduced blink rates17 in proportion to the post-mortem measured DA concentrations 
in the caudate nucleus18. Together, these studies generally indicate that sEBR is positively related to striatal DA 
function. As sEBR is a non-invasive, easily accessible measure, it can be used as a reliable yet non-specific marker 
of DA function. Still, it remains to be determined to which specific aspects or functions of the DA system sEBR 
relates19,20.
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Recent studies have touched upon how sEBR, as a behavioural measure of individual differences in striatal 
DA function, relates to learning by observing links with punishment5,6 and reversal learning21. In particular, two 
studies found that sEBR predicted RL effects on future value-based choices5,6. In one of these, Slagter et al. (2015) 
employed a probabilistic RL task consisting of a learning and test phase. During learning, participants learned the 
value of different options using probabilistic feedback. Value learning was tested in a subsequent test phase where 
participants’ ability to avoid the least rewarded option and to approach the most rewarded option was evaluated. 
They found that individuals with a lower sEBR were better at avoiding the least rewarded option, while individ-
uals with a higher sEBR were not better at approaching the most rewarded one. Thus, sEBR correlated negatively 
with the extent to which participants avoided the least rewarded option. The authors concluded that sEBR pre-
dicted learning from negative, but not positive, outcomes during earlier RL. However, the relation between sEBR 
and earlier RL was not explicitly studied, as only choices from the test phase were evaluated, and at that stage, 
learning had already been internalised.

Formal learning theories posit that different cognitive processes contribute to learning1: the learning rate 
determines the magnitude by which individuals update their beliefs about the environment after positive or neg-
ative outcomes, and their explore-exploit tendency describes the sensitivity to exploit actions that likely result 
in reward. But these different processes can have similar effects on final learned behaviour. On the one hand, 
avoiding the least-rewarded option in the test phase could be caused by enhanced learning from negative out-
comes (negative learning rate). On the other hand, by an exploitative choice strategy (explore-exploit tendency) in 
which the most-rewarded option is consistently chosen, hence, the least-rewarded choice option is learned to be 
avoided22. This makes previous findings5 ambiguous regarding which specific cognitive processes sEBR reflects. 
Even more so as recent literature suggests very different dopaminergic mechanisms in using value to make deci-
sions (explore-exploit) and updating values (learning)23–25.

Extending the work of Slagter et al. (2015), the current study sought to understand how sEBR relates to learn-
ing by focussing on the underlying cognitive processes that drive learning (Fig. 1a). To specify these underlying 
processes, we used a hierarchical Bayesian version of the Q-learning RL model22,26,27 (Supplementary Fig. 1). This 
model separates RL into two different functions: an update function that updates the value of options by learning 
from reinforcement and a choice function that uses those learned values to guide decisions between differently 
valued options. The choice function calculates the probability of choosing one option over the other (e.g. option 
A over B), based on an individual’s sensitivity to the value difference of presented options, or explore-exploit 
tendency (β; Fig. 1b). The outcome function updates value beliefs by reward prediction errors, which reflect the 
difference between predicted and actual rewards. The degree to which reward prediction errors update value 
beliefs is scaled by the learning rate28 (α; Fig. 1b). As value beliefs are differently updated after positive and nega-
tive reward prediction errors via striatal D1 and D2 receptors29, we defined separate learning rate parameters for 
positive (αGain) and negative (αLoss) feedback22,27,30–33.

To our knowledge, this is the first study that directly assesses how sEBR relates to individual differences in 
learning. Using Bayesian latent mixture modelling techniques34 (Fig. 1c and Methods), we quantify the cognitive 
processes that underlie learning and show that individuals with high and low sEBR can be distinguished on the 
basis of these cognitive processes. We then evaluate how variability in each underlying cognitive process uniquely 
relates to individual differences in sEBR, thereby controlling for the effects of all other variables with a network 
approach. We find that sEBR uniquely reflects an individual’s explore-exploit tendency (β), but not the tendency 
to learn from negative feedback (αLoss). These results suggest that sEBR can be used as an easy to measure behav-
ioural index of an individual’s explore-exploit tendency, that in turn affects the sensitivity to value differences at 
the time of a value-based choice.

Results
Blinking. On average, participants blinked 12 times per minute (median = 10.6; SD = 8.3, range = 1.3–34.9; 
Fig. 2a), a rate that is comparable to earlier reports5,35,36. When dividing participants into low and high sEBR 
groups based on a median split of across-subject sEBR values, low sEBR individuals blinked 5.8 times per 
minute (SD = 2.7, range = 1.3–9.3), whereas high sEBR individuals blinked 18.3 times per minute (SD = 7.3, 
range = 11.9–34.9). Females blinked numerically more than males (13 times versus 9 times per minute), however, 
their sEBR did not significantly differ (t(19.8) = 1.26, P = 0.22, Welch’s t-test; BF10 = 0.61).

Behavioural differences between low and high sEBR groups. Participants with low and high sEBR 
performed differently in the learning phase of the probabilistic RL task. Overall, lower sEBR predicted better 
learning phase performance (r = −0.46, P = 0.005; BF10 = 12.52, Fig. 2b). As shown in Fig. 2c, this difference 
was further evidenced by a mixed ANOVA with factors accuracy (AB, CD, EF) and sEBR which again showed 
better overall learning performance at lower sEBR (F(1,34) = 7.23, P = 0.01; BF10 = 17.6), and a trend towards 
an interaction effect (F(2,68) = 2.66, P = 0.08). This was consistent with a Bayesian Mixed ANOVA reveal-
ing that the interaction effect model was only slightly preferred over the main effect model by a BF of 1.04. 
Exploratory post-hoc tests suggested that lower sEBR related to better learning performance in the more certain 
AB (t(34) = −2.5, P = 0.02; BF10 = 3.18) and CD pairs (t(34) = −3.7, P < 0.001; BF10 = 39.4), but not in the uncer-
tain EF pair (t(34) = −0.5, P = 0.59, BF10 = 0.36).

In the transfer phase, all participants were able to approach the most rewarded option (approach-A: mean 
accuracy = 80%, SD = 24%) and to avoid the least rewarded option (avoid-B: mean accuracy = 79%, SD = 21%) 
well above chance (one-sample t-test; both P-values < 0.001), indicating they successfully used previously learned 
option values in novel choice contexts. Overall, participants were equally successful at approach-A and avoid-B 
choices (F(1,35) = 0.05). Nevertheless, we observed a pattern that numerically replicated Slagter et al. (2015), such 
that lower sEBR related to better avoid-B performance. Importantly, however, we did not find enough evidence for 
a reliable effect within this sample, as neither the observed interaction (F(1,34) = 1.79, P = 0.2; BF = 5.5 in favour 
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of the null-model), nor the correlation between sEBR and avoid-B accuracy (r = −0.29, P = 0.08, BF10 = 0.88) 
reached significance (Fig. 2d).

As fatigue is tied to poorer task performance and increased blink rates and blink durations37–41, we addressed 
the possibility that differences in fatigue explained why individuals with a higher sEBR performed worse on 
the learning task. To exclude this possibility, we examined how participants’ median blink durations related to 
learning phase choice accuracy and sEBR. If fatigue affected choice performance, median blink durations should 
negatively predict learning phase choice accuracy and positively predict sEBR. Neither of these relationships were 
observed, as median blink durations did not correlate with learning phase choice accuracy (r = 0.18, P = 0.28, 
BF10 = 0.36), nor with sEBR (r = 0.04, P = .8, BF10 = 0.21). Additional analyses of learning phase choice reaction 
times and sEBR showed no relation (r = 0.22, P = 0.2, BF10 = 0.46), indicating sEBR did not predict differences 
in selection speed. Based on these results, we did not find evidence that performance differences during learning 
between sEBR groups were explained by differences in fatigue.

To summarise, our behavioural results suggest that individual variability in sEBR relates to how participants 
learn from probabilistic feedback, with lower sEBR predicting better learning, especially from more reliable 
feedback.

Figure 1. Task and model. (a) In the learning phase (left), three different option pairs (AB, CD and EF) were 
presented in random order and participants had to learn to select the most rewarding option of each pair (A, 
C and E). Each choice was followed by probabilistic auditory feedback indicating they earned a reward (+0.1 
points) or no reward (no points). The probability of receiving a reward is presented for each option. The transfer 
phase (right) tested how value-based choices were influenced by earlier learning. All six options were paired 
with one another to create 12 novel options, and participants selected the most rewarding option based on 
previous learning, importantly, while choice feedback was omitted. The ability to approach the most rewarding 
option A and to avoid the least rewarding option B was evaluated, as the latter behaviour has been linked 
to sEBR5. (b) The β-parameter (left) describes how one’s sensitivity to option value differences (ΔQ-value) 
influences value-based choices. High β-values indicate more sensitivity to ΔQ-value, hence, more exploitatory 
choices for high reward options. The learning rate (α-parameter; right) describes how beliefs are updated after 
feedback. High learning rates indicate rapid but also volatile belief updating compared to lower learning rates. 
Note that only one learning rate is depicted for simplicity. (c) Cartoon of our Bayesian latent mixture model 
analysis, which we used to assess whether a participant’s sEBR (low or high) could be predicted on the basis of 
the estimated cognitive processes (αGain, αLoss and β) that described learning. Group-level priors were obtained 
from fitting a hierarchical Bayesian Q-learning model separately for low and high sEBR groups. Subsequently, 
the group-level priors and choice data from all participants were used as input to the latent mixture model 
where, critically, sEBR group membership was left out. The latent mixture model estimated for each participant 
the cognitive processes that described learning (using Q-learning) and calculated the probability that this 
participant belonged to either the low or high sEBR group, given observed learning.
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Q-learning parameter estimation for low and high seBR groups. Our behavioural analysis sug-
gested that variability in sEBR relates to how individuals learn from probabilistic feedback. To understand 
how this relationship is associated with, or shaped by, the cognitive processes that drive learning, we analysed 
choices in the learning phase of low and high sEBR groups using a Bayesian hierarchical Q-learning model 
(Supplementary Fig. 1).

We first assessed the predictive accuracy of our model by performing parameter recovery on the αGain, αLoss 
and β-parameter (see also Methods). This procedure evaluates whether the fitted model produces meaningful 
parameter values in a scenario where data is generated (simulated) using the originally estimated parameter val-
ues42. As shown in Fig. 3a, true (estimated) and recovered (simulated) parameter estimates were tightly correlated 
across all three parameters (r > 0.99; P < 0.001; BF10 = ∞), indicating that the parameters were well recovered 
by our model. Second, we used posterior predictive checks (PPC) on learning curves of the AB, CD and EF pair 
to evaluate whether our model could reproduce participants’ choice behaviour in the learning phase. As can be 
seen in Fig. 3b, our model correctly captured learning curves across all three learning pairs and separate sEBR 
groups. Finally, we evaluated a simpler Q-learning model with a single learning rate that was agnostic to the sign 
of the reward prediction error and used model comparisons to show that a model with two learning provided the 
best fit to the data (see Methods). Specifically, model comparison using Pareto smoothed importance-sampling 
leave-one-out cross-validation (PSIS-LOO) indicated the model with two learning rates best described choices in 
the learning phase (elpd difference = 289.23; SD = 51.98). Together, these analyses suggest our model provides a 
good description of choice behaviour in the learning phase.

Next, we evaluated the relationship between sEBR and the estimated Q-learning model parameters to under-
stand how sEBR related to learning. As shown in Fig. 4, we observed shifts between the high and low sEBR groups 
in the group-level posterior distributions of all parameters, but particularly for the β- and αLoss-parameter. These 
observations suggested that the low sEBR group exploited high value options more often (higher β-parameter) 
and updated value beliefs stronger after negative feedback (higher αLoss-parameter). Note, however, that these 
observations were based on visual inspections of the group-level posteriors. To formally test whether high and 
low sEBR groups can be distinguished on the basis of the observed differences in the estimated Q-learning param-
eters, we used a recently developed Bayesian latent mixture modelling approach43 that we adapted for Q-learning 
(Fig. 1c).

classifying seBR group membership using Bayesian latent mixture modelling. To test whether 
an individual’s sEBR group membership (i.e. low or high) could be predicted solely on the basis of the estimated 
Q-learning parameters (αGain, αLoss and β), we implemented a two-group Bayesian latent mixture model (Fig. 1c 
and Methods for a detailed description of this approach).

As shown in Fig. 5a, our Bayesian latent mixture model correctly classified 72% of participants using the esti-
mated Q-learning parameters, a percentage that was well above chance (P = 0.011, BF10 = 14.5; one-sided binomial 
test). Consistently, higher probabilities to be classified as a member of the high sEBR group by the latent mixture 
model predicted higher sEBR values (r = 0.51, P < 0.001, BF10 = 24.9, Fig. 5b), which effectively shows that the 
learning-based mixture classification positively related to sEBR measurements that were recorded prior to the 
probabilistic RL task. Together, these results highlight that low and high sEBR groups can be distinguished on the 
basis of the cognitive processes they relied on during learning.

sEBR predicts individual differences in exploration and exploitation. Our prior analyses showed 
that sEBR relates to differences in learning that were driven by a differential use of underlying cognitive processes. 
However, it remains unknown what the relative influence is of each cognitive process on sEBR, leaving open the 

Figure 2. sEBR data and choice performance in the learning and transfer phase. (a) sEBR distribution 
across participants (N = 36), recorded prior to the probabilistic RL task. (b) Lower sEBR predicts better 
overall choice performance in the learning phase. This correlation was explained by higher choice accuracy 
in the AB and CD pairs, but not in the EF pair (c). (d) In the transfer phase, choice performance was 
nummerically comparable to previous research5, but there was no reliable difference between low and high 
sEBR groups in how they approached the most rewarded option and avoided the least rewarded option. 
*P < 0.05; **P < 0.001; BF10 = evidence in favour of the alternative model.
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question how sEBR relates to individual variability in how we update our beliefs after desired (αGain) and unde-
sired (αLoss) outcomes, or the variability by which we exploit actions that will likely result in reward (β).

We used a multiple regression model that incorporated all three cognitive processes (αGain, αLoss and β) to 
explain individual variability in sEBR. The model well accounted for the variability in sEBR (F(3,32) = 5.8, 
P = 0.003, R2 = 0.35), which was driven by a significant contribution of the β-parameter (bβ (SE) = −4.5 (1.2), 
z = −3.7, P < 0.001, BF10 = 33.8), but not the αGain- (b

Gainα (SE) = −1.5 (1.4), z = −1.1, P = 0.28, BF10 = 1.2) or the 

Figure 3. Q-learning parameter recovery and posterior predictive checks for high and low sEBR groups. (a) 
The close correspondence between each participant’s true (observed) parameter modes and simulated modes 
indicate the Q-learning model is well able to recover the original parameters that were used for data simulations. 
(b) Participants’ choice accuracy averaged across six bins of 60 trials (observed; triangle markers) was plotted 
against simulated data (simulated; circle markers) by using parameter draws from the posterior predictive 
distribution. Shown separately for the two sEBR groups (low, high) and different option pairs (AB, CD, EF), the 
Q-learning model correctly predicts participants’ observed choice patterns. Error bars represent SEM.

Figure 4. Q-learning parameter estimation for low and high sEBR groups. Posterior distributions of group-
level parameters for high and low sEBR groups obtained by fitting the Bayesian hierarchical Q-learning model 
separately for both groups.
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αLoss-parameter ( αb
Loss

(SE) = −0.5 (1.5), z = −0.4, P = 0.71, BF10 = 0.8). As shown in Fig. 6a, the Bayesian linear 
regression analysis further indicated that the model that only incorporated the β-parameter to explain individual 
variability in the sEBR data was 47 times more likely to explain the data compared to the null-model, which is 
regarded very strong evidence in favour of this model44 (Supplementary Table 1). Figure 6b illustrates the negative 
relationship between the β-parameter and sEBR, indicating that exploitative decision makers had a lower sEBR. 
Together, these results link sEBR to individual variability in exploiting actions that lead to rewarding outcomes, 
but not to the magnitude by which individuals update their value beliefs after positive or negative outcomes.

Learning effects on choices in the transfer phase. Our results thus far relate sEBR to how participants 
make value-based choices during learning, but show no reliable effect of sEBR on avoid-B or approach-A choices 
in the transfer phase. Because this relationship has been reported in the past5, this section additionally examined 
how the Q-learning parameters (αGain, αLoss, β), related to approach-A and avoid-B performance in the transfer 
phase.

Results from a multiple regression analysis indicated that individual variability in avoid-B, but not approach-A, 
performance was predicted by the Q-learning model parameters F(3,32) = 3.7, P = 0.02, R2 = 0.26; Fig. 7). This was 
driven by a significant contribution of the β-parameter (bβ(SE) = 0.069 (0.03), z = 2.066, P = 0.047, BF10 = 2.4) 
and a smaller, albeit non-significant, contribution of the αLoss-parameter (b

Lossα (SE) = 0.072 (0.04), z = 1.8, 
P = 0.08, BF10 = 2.4). The Bayesian linear regression analysis further indicated that a model that incorporated 
both the β- and αLoss-parameter as main factors to explain individual variability to avoid-B performance was 7 
times more likely to explain the data compared to the null-model, and 3.7 times more likely compared to all other 

Figure 5. Bayesian latent mixture model classification of sEBR group membership. (a) Per-participant posterior 
classification probability to belong to the high sEBR group. A low posterior classification probability suggest 
that a participant is very likely to fall into the low sEBR group, whereas a high posterior classification probability 
indicates the participant very likely belongs to the high sEBR group. (b) The probability to be classified into the 
high sEBR group correlated positively with sEBR measurements.

Figure 6. sEBR predicts individual differences in exploration and exploitation. (a) Beta coefficients of a 
multiple regression analysis indicating that β-parameter estimates uniquely and negatively relate to sEBR. 
This was further illustrated by a negative correlation between individual β-parameter estimates and sEBR 
(b), showing that low sEBR individuals exploited highly values options more often compared to high sEBR 
individuals. Error bars represent SEM.
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candidate models (Supplementary Table 2). Together, these analyses show that an exploitative decision-making 
style and enhanced updating after negative outcomes predicts better avoid-B performance in the transfer phase. 
These results suggest that the ability to avoid undesirable outcomes is related to how individuals learn, but is 
unrelated to their sEBR.

network interactions between seBR, cognitive learning processes and choices in the transfer 
phase. sEBR uniquely predicted an individual’s tendency to exploit high valued options during learning, but 
not approach-A or avoid-B performance given prior learning. However, individual differences in avoid-B perfor-
mance were associated both with β (which also predicted sEBR during learning) and αLoss (which is hypothesized 
to be associated with variability in sEBR5). To understand the association between these variables across learning 
and transfer phases, we assessed all relationships directly in one model using a network analysis.

In this final analysis, each connection in the network represents a partial correlation coefficient between two 
variables after conditioning on all other variables in the network. Thus, each coefficient encoded the unique associ-
ation between two variables after controlling for all other information included45. Supplementary Table 3 shows all 
partial correlations between the variables, which are graphically depicted in Fig. 8. In this graph, three important 
between-node relationships were observed. First, individual differences in sEBR were significantly and negatively 
related to the β-parameter (partial r = −0.515, P < 0.001), consistent with our previous finding that exploitative 
decision makers had a lower sEBR. Second, the αGain- and αLoss-parameter were significantly and positively related 
to each other (partial r = 0.522, P < 0.001), but not to sEBR, which is inconsistent with earlier work that hypothe-
sized sEBR indexes how much individuals learned from the negative outcomes of their choices5. Lastly, the ability 
to avoid the least rewarded option in the transfer phase related to the β- and αLoss-parameter, consistent with our 
previous results. However, the network analysis indicated these relationships were not robust. More importantly, 
the ability to avoid the least rewarded option was unrelated to sEBR, an observation that is not in line with earlier 
work5. Overall, this analysis paints a clear picture of how sEBR relates to learning and subsequent value-based 
choices, namely that it uniquely reflects a decision maker’s explore-exploit tendency during learning.

Discussion
The present study shows that performance on a probabilistic RL task is related to individual differences in sEBR. 
Our latent mixture modelling approach indicated that these learning differences were driven by a differential 
use of underlying cognitive processes, as we were able to distinguish individuals with low and high sEBR on the 
basis of their estimated learning rates and decision-making strategy. In addition, we found that sEBR uniquely 
predicted an individual’s explore-exploit tendency, thereby reflecting the sensitivity to value differences during a 
value-based choice. Specifically, choices of individuals with a lower sEBR were mostly determined by the value dif-
ference of presented options: they consistently exploited high valued options which resulted in better performance 
in the learning task. In contrast, individuals with a higher sEBR exhibited a more stochastic choice pattern with 
more frequent exploration of lower valued options, which resulted in lower learning phase performance. Our data 
suggest that variability in sEBR is related to an individual’s explore-exploit choice tendency during learning, with 
lower sEBR predicting stable, value-driven decisions, and higher sEBR predicting flexible, exploratory choices.

Our study investigated the link between sEBR and RL, but shows parallels with studies investigating cognitive 
flexibility, which is considered a behavioural component of explore-exploit decision-making24. In line with our 
finding that higher sEBR related to more explorative value-based choices, these studies have generally found 
that higher sEBR is associated with enhanced cognitive flexibility to support the detection of novel information 
in reversal learning21, working memory46 and attentional set-shifting tasks36,47–49. As exploration or enhanced 
cognitive flexibility supports behaviour aimed at detecting novel information, this either improves or deteriorates 

Figure 7. Avoid-B, but not approach-A, choices in the transfer phase are related to individual variability 
in negative learning rates and explore-exploit tendencies during learning. (a) Exploitation of high valued 
options (high β) and enhanced learning from negative feedback (high αLoss) during learning related to better 
performance to avoid the least rewarded option in the transfer phase. (b) Approaching the most rewarded 
option was unrelated to the cognitive processes that underlie learning. Error bars represent SEM.
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performance depending on the environmental demands. In the learning phase of our task, participants expe-
rienced uncertainty due to the different reward probabilities of options, but not due to environmental change. 
Therefore, optimal task performance was achieved by making stable, exploitative choices for options with higher 
reward probabilities22. This explains why exploitative individuals with a relatively low sEBR performed better in 
the certain AB and CD pairs, but not in the uncertain EF pair where more exploration was needed to discover the 
most rewarded option.

Previous work that investigated sEBR in the context of probabilistic RL hypothesised that sEBR predicted 
how much individuals learned from the negative outcomes of their choices during prior learning5. This reasoning 
was based on the finding that sEBR correlated negatively with the ability to avoid the least rewarded option in 
a transfer phase that was administered after learning. As the relationship between sEBR and learning was not 
investigated directly, it remained unknown which cognitive process drove their observed effect. Both an exploit-
ative decision-making strategy aimed at avoiding the least rewarded option and enhanced learning from negative 
feedback could explain the negative correlation between sEBR and avoidance of the least rewarded option. In the 
present study, we evaluated these alternative explanations directly by employing the Q-learning model that for-
malised learning and choice processes into learning rates and explore-exploit tendencies, respectively. We did not 
observe a relation between sEBR and negative learning rates (αLoss), which indicated that sEBR did not relate to 
the magnitude by which participants learned from the negative outcomes of their choices as was hypothesized by 
Slagter et al. (2015). Consistently, sEBR was also unrelated to individuals’ learning rates after positive outcomes. 
Notable, while our analyses show that sEBR is not a reliable predictor of how individuals learn from feedback, we 
find that it can be used to index how individuals use value to make a value-based choice.

While we observed strong effects of sEBR during learning, effects on later value-based choices were rather 
weak or unreliable. Our network analysis - in which the unique relationship between two variables was estimated 
after controlling for the influence of all other variables - indicated that sEBR was unrelated to participants’ ability 
to avoid the least rewarded option. This finding is inconsistent with earlier work observing that sEBR did relate to 
the ability to avoid the least rewarded option5, or that it predicted the modulatory effect of dopaminergic drugs on 
approach and avoidance behaviours6. An important difference between these and our study, is that we evaluated 
both the effects of sEBR on learning as well as on later value-based choices, in one model. This analysis indicated 
that sEBR primarily related to an individual’s explore-exploit tendency during learning, that in turn related to 
the ability to avoid the least rewarded option in the transfer phase. Thus, individuals with a lower sEBR tended 
to exploit high valued outcomes, which especially improved learning in the AB pair and might be the reason that 
they avoided the least rewarded option B in the transfer phase. This could suggest that earlier observed effects 
of sEBR on approach and avoidance behaviours may be driven by underlying variability in explore-exploit ten-
dencies. Nevertheless, various studies have shown that separate “Go” (approach-A) and “NoGo” neuronal pop-
ulations (e.g. avoid-B) represent positive and negative action values that determine action selection50–52. Future 

Figure 8. Network analysis. Graphical depiction of the partial correlation network of sEBR, approach-A/
avoid-B performance and the cognitive processes underlying learning. Variables of interest are represented as 
nodes. The estimated relations between variables are represented as edges, where the colour of an edge (blue, 
red) indicates the direction of a relation (positive, negative) and the width of an edge indicates the strength of 
the observed relation. Edges are missing whenever the estimated relation between two nodes is zero. All nodes 
represent across-subject estimates. β = explore-exploit parameter; αGain = positive learning rate; αLoss = negative 
learning rate; avoid = avoid-B accuracy, approach = approach-A accuracy.
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studies that include dopaminergic manipulations combined with computational modelling to evaluate how sEBR 
relates to learning and later value-based decision biases might provide fruitful to answer this question.

Our observation that sEBR primarily reflects individual explore-exploit tendencies during learning could rec-
oncile our work with the aforementioned studies5,6, as these and other studies4,8,18 have suggested that sEBR may 
reflect tonic, or baseline, striatal dopamine levels. It has been proposed that fluctuations in tonic dopamine levels 
predominantly affect the expression, rather than learning, of motivated behaviour53,54, which agrees with our find-
ing that sEBR uniquely predicted how value was used to make decisions. For example, studies have shown that 
mice with chronically elevated tonic DA levels were highly motivated to work for food rewards, even when their 
increased efforts did not result in better outcomes55–57. Conversely, depleted tonic DA levels in nucleus accumbens 
lowered motivation to work for rewards58. These findings agree with computational modelling studies observing 
that genetic, simulated or pharmacological differences in tonic DA levels uniquely related to explore-exploit ten-
dencies, but not to learning rates57,59–62. Also in Parkinson’s patients, some effects of dopaminergic medication on 
reward and punishment learning can be explained by motivational differences at the time of choice, rather than 
by differences in feedback learning63–65. Together, these studies suggest that tonic DA levels impact the expression 
of motivated behaviour, or more specifically, explore-exploit tendencies. With respect to our findings, higher 
sEBR - potentially indexing higher tonic DA levels - may reflect increased motivation and energy expenditure to 
promote the exploration of novel options. Lower sEBR - potentially indexing lower tonic DA levels - may reflect 
decreased motivation and energy conservation to promote the exploitation of options with known reward. We 
note, however, that in a recent study where Parkinson patients were evaluated on and off medication with a sim-
ilar task and model, we observed no reliable within-patient changes in the explore-exploit trade-off66. Thus, on 
the behavioural level our data agree with studies linking sEBR to tonic DA levels and variability in explore-exploit 
tendencies. However, our data preclude any strong conclusions about the biological mechanisms affecting sEBR 
without any direct manipulations of DA, which should be the focus of future studies.

To conclude, sEBR predicted an individual’s explore-exploit tendency during learning, thereby reflecting the 
sensitivity to value differences during a value-based choice. To our knowledge, this study is the first to associate 
sEBR to the underlying cognitive processes of learning, thereby providing a mechanistic understanding of the 
relation between sEBR, learning and the effects of learning on future value-based choices. We believe that using 
these methods advances our understanding of how sEBR relates to DA-dependent cognitive performance which 
may unify the diverse behavioural effects linked to sEBR, such as punishment or avoidance learning5,6, reversal 
learning21, as well as cognitive flexibility36,47–49. Together, our results indicate that sEBR can be used as an easy to 
measure behavioural index of individual explore-exploit tendencies during learning. Whether this is driven by 
fluctuations in tonic DA levels should be validated by other studies that directly measure or manipulate DA in a 
reinforcement learning task design.

Methods
participants. The pupillometry data of the current data set was previously published27, but all sEBR data and 
analyses presented here are new. Forty-two healthy participants (10 males; mean age = 24.9, range = 18–34 years) 
with normal to corrected to normal vision participated in the experiment. Each participant was paid 16€ for two 
hours of participation and could earn an additional monetary bonus that depended on correct task performance 
(mean monetary bonus = 10.2€, SD = 1.8). The ethical committee of the Vrije Universiteit approved the study. 
All experimental protocols and methods described below were carried out in accordance with the guidelines and 
regulations of the Vrije Universiteit. Written informed consent was obtained from all participants. Four partici-
pants were excluded from analyses: one participant reported seeing more than three unique option pairs in the 
learning phase, and three participants had (almost) perfect choice accuracy in the learning phase, which com-
plicated behavioural model fitting, leaving in total 38 participants for subsequent analyses. Note that the current 
dataset includes four more participants compared to the previously published one27 where these participants were 
excluded due to inadequate fixation to the centre of the screen during reinforcement learning which rendered 
their pupil data unreliable.

Blink rate recordings. Participants were seated in a dimly lit, silent room with their chin positioned on a 
chin rest, 60 cm away from the computer screen. An EyeLink 1000 Eye Tracker (SR Research) recorded at 1000 Hz 
seven minutes of spontaneous eye blinks from the continuously tracked eye data, which provides reliable sEBR 
estimates67. Participants were kept naive about the sEBR measurements and were asked to maintain a normal gaze 
at a central fixation cross on the screen. All sEBR data was collected before 6 P.M., as sEBR is reported to be less 
stable during night time68. Furthermore, participants were asked to sleep sufficiently the night before the experi-
ment and to avoid the use of alcohol and other drugs of abuse.

task and procedure. After the blink rate recordings, participants performed a probabilistic RL task69 that 
consisted of a learning and a transfer phase. For an extended description of the task, stimuli and trial structure, 
we refer to27. Shortly, in the learning phase, participants completed 6 runs of 60 trials each (360 trials in total, 
120 presentations of each option pair), with small breaks in-between runs. After each run, the earned number 
of points was displayed. At the end of the learning phase, the total number of earned points was converted into a 
monetary bonus.

Participants immediately proceeded to the transfer phase. In this phase, participants completed 5 runs of 60 
trials each (300 trials in total, 20 presentations per option pair), with small breaks in-between runs. At the end of 
the transfer phase, choice accuracy across all trials was displayed and participants were fully debriefed about the 
sEBR measurements.
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Behavioural analyses. To assess how sEBR related to RL, we assigned each participant to the ‘low’ or ‘high’ 
sEBR group on the basis of a median split on across-subject sEBR values. We excluded two participants from 
analyses, as their sEBR fell exactly on the group-level median, leaving 36 participants for subsequent analyses. All 
36 participants reliably choose A over B in the test phase; a learning criterion that has previously been used in the 
context of this task5,69. A choice was regarded ‘correct’ when the option was chosen with the highest reward prob-
ability of each pair. Approach accuracy in the transfer phase was calculated as the percentage of trials in which the 
most rewarded option A was chosen when it was paired with another option. Avoidance accuracy was calculated 
as the percentage of trials in which the least rewarded option B was not chosen when it was paired with another 
option. In calculating approach and avoidance accuracy, the previous learning pairs (AB, CD, EF) were excluded 
to account for repetition effects.

Q-learning model. To investigate how sEBR related to the cognitive processes underlying RL, we applied a 
Q-learning model1,70 to each participant’s sequence of choices in the learning phase. During Q-learning, individu-
als update their value belief, or “Q-value”, of the recently chosen option by learning from feedback that resulted in 
an unexpected outcome. All Q-values were initialised at 0.5. Learning is captured by the reward prediction error 
(RPE) and can be formally described by a delta rule:






Q Q
α r t Q t if r
α r t Q t if r

(t + 1) = (t) +
[ ( ) − ( )] = 1
[ ( ) − ( )] = 0i i

Gain i i

Loss i i

where parameters 0 ≤ αGain, αLoss ≤ 1 represent positive and negative learning rates, that independently regulate 
the impact of recent positive and negative prediction errors on current value beliefs. A relatively high learning rate 
indicates more sensitivity to recent prediction errors, whereas a relatively low learning rate indicates a stronger 
focus on the integration of prediction errors over multiple trials30. Modeling two learning rates was validated 
by comparing this model to a hierarchical Q-learning model with a single learning rate that was agnostic to the 
sign of the reward prediction error. Model comparison was based on Pareto smoothed importance-sampling 
leave-one-out cross-validation (PSIS-LOO)71 that uses the difference in the estimated log predictive density (elpd) 
between the two models to evaluate differences in model fit. This analysis showed a positive elpd difference (elpd 
diff = 289.23), that was larger than the estimated standard error (SD = 51.98), indicating the model with two 
learning rates had higher prediction accuracy compared to the one with a single learning rate. This finding was 
further highlighted by model performance evaluations using posterior predictive checks (Supplementary Fig. 2) 
and agrees with other studies showing superior performance of a Q-learning model with separate learning rates 
to explain choice behaviour in probabilistic selection tasks26,27,30,31,33,66,72.

A choice between two presented stimuli on the next trial was described by a “softmax” choice rule:

P t Q t
Q t Q t

( ) exp( ( ))
exp( ( )) exp( ( ))A

A

B A

β
β β

=
⋅

⋅ + ⋅

Here, 0 ≤ β ≤ 100, or the explore-exploit parameter, describes an individual’s sensitivity to value differences 
between presented stimuli, where a higher β value indicate greater sensitivity to smaller value differences, hence, 
exploitative choices for high reward options (Fig. 1b).

Bayesian hierarchical implementation of the Q-learning model. We implemented the 
Q-learning model in a hierarchical Bayesian framework (Supplementary Fig. 1)22,26,27,73, in which group-level 
and individual-level parameter distributions are simultaneously fit that mutually constrain each other. This 
approach results in greater statistical power and more stable parameter estimation compared to procedures using 
individual-level maximum likelihood74,75. To examine the cognitive processes underlying learning for low and 
high sEBR groups, we fit separate group-level parameter distributions of positive and negative learning rates 
(αLoss, αGain) and explore-exploit tendencies (β). For an extended description of the applied Bayesian hierarchical 
model, we refer to27.

Bayesian latent mixture modelling. We performed Bayesian latent mixture modelling on participants’ 
choice data in the learning phase to assess whether an individual’s sEBR could be predicted on the basis of the 
estimated cognitive processes (αLoss, αGain and β) underlying learning (Fig. 1c)34,76. We evaluated all participants 
in one dataset and discarded information about their measured sEBR. Importantly, we still assumed that each 
participant belonged to either of the two sEBR groups, but that their group membership had to be determined. 
Thus, the goal of this analysis was to investigate whether a participant’s sEBR group membership can be inferred 
from the estimated cognitive processes alone.

To estimate a participant’s group membership, we used a binary indicator variable xi, where xi = 0 and xi = 1 
indicates that participant i belongs to the low or high sEBR group, respectively. For each participant, the posterior 
mean of the xi variable reflected the probability to be classified into the high sEBR group. Following Steingroever 
et al. (2017), we used informative priors to inform the group membership indicator variable during model fitting. 
These priors were derived from the previous Bayesian hierarchical parameter analyses, and approximated the 
group-level posterior parameter distributions (αGain, αLoss and β) for the low and high sEBR groups. Specifically, 
for each group probit transformed individual-level parameters were drawn from group-level normal distributions 
z′ ∼ 𝒩(µz, σz). These normal prior distributions were characterised by each group’s mean and standard devia-
tion that we derived from the posterior distributions of our previous model fits. Thus, the group-level posterior 
parameter distributions of low and high sEBR groups were used as informative prior distributions for the latent 
mixture modelling analysis. It is important to note that the mixture model was at all times blind about each 
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participant’s sEBR group membership. This was predicted by modelling each participant’s choice data and evalu-
ation against the group-level priors. As we used the behavioural data both to construct the prior distributions and 
to fit the latent mixture model, we cannot make inferences about the model parameters34. However, this analysis 
provides a way to investigate whether a participant’s sEBR group membership can be inferred on the basis of the 
cognitive processes that drive RL.

Model estimation and validation. Our model-based analyses were implemented in PyStan mc-stan.org 
and fit to all trials of the learning phase that fell within the correct response time window 150 ms ≤ RT ≤ 3500 ms. 
We ran four Markov Chain Monte Carlo (MCMC) chains for both the Bayesian hierarchical parameter estima-
tion and latent mixture model, of which we collected 5000 and 9000 samples each (after discarding the first 1000 
samples of each chain for burn-in). Visual inspection of the chains suggested the model converged. This was 
validated by the Rhat statistic74, a convergence diagnostic that compares between and within chain variability, as 
all Rhats were <1.05. We further assessed the predictive accuracy of our Bayesian hierarchical Q-learning model, 
by performing parameter recovery and posterior predictive checks (Fig. 3a). For parameter recovery, we selected 
the mode of the posterior parameter distributions of each participant to simulate 200 new learning phase datasets 
per participant. The originally observed parameter estimates (αGain, αLoss and β) were correlated with the param-
eter modes of the 200 simulation fits to evaluate our model’s ability to recover the originally observed parameter 
estimates used for the simulations. Posterior predictive checks were calculated for mean choice accuracy across 
the learning phase by sampling 500 parameter sets from the joint posterior distribution and generating 500 inde-
pendent learning phase datasets using those parameters. From these datasets mean accuracy was calculated for 
each dataset separately for learning pairs and trial bins (Fig. 3b).

Multiple regression analyses. We performed frequentist and Bayesian multiple regression analyses in 
JASP jasp-stats.org to quantify the relative influence of each model parameter (αGain, αLoss and β) on 1) individual 
variability in sEBR and 2) approach/avoidance behaviour in the transfer phase. For all Bayesian multiple regres-
sion analyses we used the default priors from JASP. Bayesian multiple regression analyses in JASP follow a model 
comparison approach, in which the influence of each parameter and combinations thereof are evaluated step 
by step. Resulting Bayes Factors (BF) are interpreted as the odds supporting one model over another. BF-values 
between 3–10 indicate substantial support for the alternative model over the null model that a regressor’s true 
value is zero, whereas BF-values > 10 indicate strong support that the alternative model is favoured over the null 
model44. For all analyses, we selected the modes of the individual posterior parameter distributions of all partici-
pants. These variables were log-transformed and normalised prior to analysis to account for parameter skewness 
and scaling effects.

network analysis. We performed a network analysis in JASP, in which the relation between any two varia-
bles in the network is estimated directly while accounting for the influence of all other variables in the network. 
Thus, the analysis reflects the unique relationship between two variables that cannot be explained by or result 
from other factors. We estimated a partial correlations network to capture the unique relationships between 1) 
sEBR, 2) the cognitive processes driving learning (αGain, αLoss and β), and 3) approach-A and avoid-B choices in 
the subsequent transfer phase.
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