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Convolutional Neural Networks 
enable efficient, accurate and fine-
grained segmentation of plant 
species and communities from 
high-resolution UAV imagery
Teja Kattenborn*, Jana Eichel & Fabian Ewald Fassnacht

Recent technological advances in remote sensing sensors and platforms, such as high-resolution 
satellite imagers or unmanned aerial vehicles (UAV), facilitate the availability of fine-grained earth 
observation data. Such data reveal vegetation canopies in high spatial detail. Efficient methods are 
needed to fully harness this unpreceded source of information for vegetation mapping. Deep learning 
algorithms such as Convolutional Neural Networks (CNN) are currently paving new avenues in the field 
of image analysis and computer vision. Using multiple datasets, we test a CNN-based segmentation 
approach (U-net) in combination with training data directly derived from visual interpretation of UAV-
based high-resolution RGB imagery for fine-grained mapping of vegetation species and communities. 
We demonstrate that this approach indeed accurately segments and maps vegetation species and 
communities (at least 84% accuracy). The fact that we only used RGB imagery suggests that plant 
identification at very high spatial resolutions is facilitated through spatial patterns rather than spectral 
information. Accordingly, the presented approach is compatible with low-cost UAV systems that are 
easy to operate and thus applicable to a wide range of users.

Accurate information on the spatial distribution of plant species and communities is fundamental for various 
fields of application, including research, nature conservation management, forestry, agriculture, or ecosystem 
service assessments. In this regard, remote sensing technologies have evolved as a promising tool and continue to 
develop at unpreceded pace1–4. Due to novel sensors and platforms, such as very high-resolution satellite missions 
or Unmanned Aerial Vehicles (UAV), there is a growing availability of optical earth observation data revealing 
both high spatial and temporal detail on vegetation patterns5. Using photogrammetric techniques, this optical 
feature space can further be extended with information on the 3D structure of vegetation canopies6–8. Efficient 
methods are needed to fully harness this unpreceded source of information for vegetation mapping.

In this regard, deep learning, also known as self-learning artificial intelligence approaches, are paving new 
avenues for data analysis and computer vision9. In the field of remote sensing, so-called Convolutional Neural 
Networks (CNN) are currently revolutionizing possibilities for object detection and pattern recognition10,11. In 
contrast to common pixel-based methods, CNN allow for an efficient analysis of image textures, i.e., the contex-
tual signal of multiple neighbouring pixels. The self-learning capabilities of CNN enable an efficient analysis of 
such textures, which in turn can reveal the decisive leaf and canopy traits required for identifying vegetation com-
munities or species12,13. Thus, it is expected that in tandem with advances in high-resolution sensor technology, 
CNN will revolutionize our capabilities to map vegetation patterns14.

CNN have been initially designed for image categorization tasks15. Examples from the field of vegetation sci-
ence are apps like Flora Incognita or Pl@ntNet, which assign a species name to plant photographs12,16,17. Such CNN 
autonomously extract the contextual features of an image dataset and learn which of these features (e.g,. leaf forms 
or traits of the flowers) are relevant for assigning the observations to the specified categories. Given the myriad 
of ways and scales to characterize spatial context18, the self-learning capabilities of CNN are a great advantage in 
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terms of computational efficiency and automatization since a feature design process is not required10. A key con-
stituent of common CNN architectures for identifying such features are multiple and subsequent pooling oper-
ations that aggregate the feature maps derived from convolutions to a coarser spatial scale, and thereby increase 
the robustness and efficiency of the network. The last layer of the network will simply contain the (aggregated) 
information whether a feature that is indicative for the target class was visible anywhere in the image or not.

Yet, the above-described mode of CNN-based categorization of entire images is not appropriate for remote 
sensing-based vegetation mapping, where the goal is to provide spatially-continuous, fine-grained classifications 
within the extent of an image (e.g., an airborne mosaic). Here, the question is not whether the target class is 
present, but where it is present. Ideally, such classifications are performed at the original resolution of the remote 
sensing imagery to preserve spatial detail. In this regard, a powerful CNN-based approach for fine-grain image 
classification is given by fully convolutional networks, as these remember and reconstruct the position of the con-
textual features through an encoder/decoder mechanism (Fig. 1). Fully convolutional networks thus enable the 
extraction of contextual features within a wide receptive field (here an extract of an orthoimage), while preserving 
the spatial origin of these features to produce a fine-grained and spatially explicit segmentation of the object10,19.

One of the most successful fully convolutional network architectures is the U-net19 (Fig. 1), as has been 
demonstrated in several contests, such as the Inria Aerial Image Labelling (IAIL) Benchmark10,11. A few pioneer-
ing studies have already indicated the potential of the U-net architecture for vegetation mapping13,14. Yet, the 
application of the U-net and other fully convolutional network architectures remains sparse, and the potential is 
not fully explored. This may partly be explained by a general bottleneck of CNN training: the need for ample ref-
erence observations for identifying and learning the decisive image features20,21. In remote sensing of vegetation, 
reference observations are commonly acquired in the field, involving high logistic efforts, inaccuracies due to 
geolocation errors and sampling and observation bias22–24. A promising alternative for an efficient reference data 
collection in the field is given if the spatial resolution of the remote sensing imagery enables the visual identifica-
tion, and thus, delineation of training data directly in the images6,13,25.

Accordingly, we test if a CNN segmentation approach (U-net) and training data derived from visual interpre-
tation allow for robust and fine-grained mapping of vegetation species and communities in high-resolution UAV 
data. For this task, we only consider high-resolution UAV data derived from off-the-shelf RGB sensors, including 
3D information derived with photogrammetry. The segmentation accuracy is tested for three growth forms, i.e., 
i) herbaceous plant communities along a successional gradient, ii) a shrub species (Ulex europaeus) and iii) a tree 
species (Pinus radiata).

Results
The accuracy of the CNN-based segmentation process was assessed using independent validation data derived 
from visual interpretation, and is presented in Table 1. Overall, we found the segmentation to be very accurate 
(>84%) for all growth forms and target classes considered, i.e., mapping of herbaceous vegetation communities, 
the shrub species Ulex europaeus and the tree species Pinus radiata. Systematic segmentation errors were not 
observed, as indicated by the low bias values, which were calculated by averaging the residuals of the prediction 
derived from the independent validation data.

Maps of the predictions, together with the visual delineated reference data, are shown in Figs. 2–4 and reveal 
a very high correspondence. Overall, the predicted patterns do include few false negatives and false positives, i.e. 
missing segmentation within the reference polygons or segmentation outside the reference polygons. False posi-
tives usually feature a small size. Likewise, false negatives are mostly found for small-sized canopies of the target 
class. Almost no false positives or negatives were found for medium or large canopies of the target class. For Pinus 
radiata, we observed a few cases where occurrences of very dark cast shadows, resulting from large crowns and 
dense canopies, show an increased chance of false negatives. The results for Ulex europaeus (Fig. 3) as well as the 

Figure 1.  Scheme showing the CNN-based segmentation implemented using the U-net architecture. The 
input tile (left), an extract of 128 × 128 pixels, is input for multiple convolutions (encoding layers), which 
extract decisive spatial patterns at the respective scale (grey). Subsequently, the feature maps are resampled 
(max pooling) to a coarser resolution before the next convolution process is being applied (etc.). Eventually, 
the spatial features learned at the different spatial scales are combined through a series of decoding layers (up-
convolutions) to segment the spatial extent of the target class (right, pink).
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Pioneer community (Fig. 2) appeared to be noisier, especially in case of gradual transitions and in the presence 
of sparse canopies.

Discussion
The results demonstrate that the CNN-based segmentation approach using the U-Net architecture accurately 
predicts plant species and communities in high-resolution orthoimagery. Our results are thus in line with previ-
ous studies that have demonstrated the high value of deep learning for vegetation mapping using remote sensing 
imagery14,19. Although we used only data acquired with off-the-shelf RGB sensors, the CNN-based segmentation 
procedure proved to be very accurate. The results obtained here even exceeded classification accuracies that have 
been derived on the same test sites using pixel-based methods (MaxEnt) together with comparably expensive 

Target class Accuracy [%] Bias

Pinus radiata 87 0.0024

Ulex europaeus 84 −0.0662

Pioneer community 2 90 0.0529

Intermediate successional 
community 2 89 0.0401

Table 1.  Predictive performance of segmenting the target classes using the U-net architecture.

Figure 2.  Mapping herbaceous vegetation communities along a successional gradient, i.e., a pioneer vegetation 
community (top) and an intermediate vegetation community (bottom) in the Mueller glacier foreland. Left: The 
input RGB imagery used for the CNN-based segmentation. Right: The reference data (white polygons) and the 
segmentation results (purple). Centre coordinates top: 1366085, 5156801; bottom: 1365921, 5157281, EPSG: 
2193.
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UAV-based hyperspectral imagery6,25 (data only available for Pinus radiata and Ulex europaeus). The accuracy 
of these pixel- and hyperspectral-based classifications has not exceeded 62.5% for Ulex europaeus and 65.4% 
for Pinus radiata. The clear superiority of the CNN-based approach with RGB data indeed seems very plausi-
ble considering that 1) our human cognition, as well restricted to RGB information, also enables us to visually 
differentiate the target classes and 2) considering that CNN have been found to resemble the functioning of our 
visual cortex26,27. Our results thus show that high-resolution spectral information (multispectral or hyperspectral 
data) might not be an essential requirement for identifying vegetation species or communities at the spatial scales 
considered here. This somewhat contrasts the experience that has emerged from studies that have used compa-
rably coarser airborne or satellite imagery with pixel-based approaches to classify plant species or communities, 
where a high spectral resolution is commonly expected a prerequisite for a high classification accuracy28–30. In 
fact, pixel-based classification approaches have even been found to be unfavourable at high spatial resolutions 
due to increasing within-class-heterogeneity6,31–33. Accordingly, our results indicate that with higher spatial res-
olution, spatial patterns resulting from traits such as leaf forms, branching patterns, and canopy shapes can be 
more important to differentiate certain vegetation species or communities than the overall reflectance properties 
of the plant canopy. This finding is also supported by previous studies that have demonstrated the potential of 
close-range RGB imagery (e.g., as derived from smartphones) for plant species identification12,21. Synergies of 

Figure 4.  Mapping of the tree species Pinus radiata in central Chile. Left: The input RGB imagery used for the 
CNN-based segmentation. Right: The reference data (white polygons) and the segmentation results (purple) 
Centre coordinates: 208876, 6082517, EPSG 32719.

Figure 3.  Mapping the shrub species Ulex europaeus in central Chile. Left: The input RGB imagery used for the 
CNN-based segmentation. Right: The reference data (white polygons) and the segmentation results (purple). 
Centre coordinates: 587385.4, 5363396, EPSG 32718.
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high spatial resolution RGB information and accurate pattern recognition by deep learning algorithms may hence 
develop as a key technology for operational remote sensing applications. This is particularly likely since remote 
sensing platforms collecting RGB data are comparatively cheap and easy to operate, and the obtained data do not 
require sophisticated pre-processing.

The spatial resolution of the orthoimagery available in this study ranged from 3 to 5 cm (ground sampling 
distance), which proved to be sufficient for an accurate segmentation of the species and communities considered 
here. Yet, it seems plausible that increasing the spatial resolution can further enhance accuracy as thereby more 
relevant contextual features can be extracted. For some species or communities, a higher spatial resolution might 
be even strictly necessary to reveal the decisive plant traits (e.g., leaf forms or branching characteristics), as sug-
gested by earlier experiences from close-range remote sensing16,21,33.

The spatial resolution of the remote sensing imagery also determines if a classification can reveal the spatial 
patterns of the target class34. If pixel size extensively exceeds the dimensions of plant organs or canopy compo-
nents, a binary segmentation into absences and presences may not be appropriate. In that case, the pixel cannot 
be explicitly assigned to one class. This issue may be especially critical in the presence of heterogeneous, over-
lapping canopies33,35. Likewise, the results of the current study suggested that for some areas, a classification may 
be limited in representing the actual vegetation patterns. This particularly applies to smooth transitions among 
vegetation classes as found for the herbaceous plant communities (see RGB imagery, Fig. 2) as well as for rather 
sparse canopies of Ulex euopaeus (Fig. 3). The applicability of binary segmentation can thus be improved by 
increasing the spatial resolution of the imagery. However, increasing the spatial resolution comes at the cost of 
decreased area coverage and may hence critically constrain the overall efficiency of a remote sensing application. 
In such a case, the mapping of continuous cover values [%] instead of discrete classes might be more appropriate. 
In a previous study (manuscript in preparation), it was shown that CNN also allow predictingt the cover [%] of 
plant species and communities for regular image tiles of the UAV orthoimagery. Yet, this regression approach is 
limited in terms of the spatial detail of the mapping product, as the cover values can only be well predicted for a 
tile size that includes sufficient contextual features. Given recent and rapid technological advances in remote sens-
ing sensor and platform technologies, very high-resolution data will likely be easy to acquire in the near future, 
increasing the applicability of segmentation approaches5.

One drawback of these very high-resolution data is their typically limited area coverage36, which constrains 
the immediate value of resulting map products for ecology, conservation, or resource assessments. Yet, the value 
of such high-resolution map products can be expanded through a combination with large-scale earth observation 
data. Local high-resolution map products can be used to train machine learning algorithms that use spatially 
coarser earth observation imagery as predictors allowing to generate predictions for large-scale assessments6,37.

The current study highlights the potential of CNN towards applied remote sensing tasks, such as mapping 
invasive species and assessment of vegetation succession in a conservation area. Yet, our results also reveal limita-
tions of the presented approach. We found that small-sized canopies were more likely to be segmented incorrectly. 
Furthermore, and in accordance with previous studies25,38, we found that the chance of false negatives increases in 
very dark cast shadows. This may impair the identification of small-sized individuals in canopy gaps. Both factors 
may constrain the accuracy of identifying small-sized individuals in multi-layered canopies, such as for mapping 
very early plant invasions. It is recommended to acquire imagery around solar noon to minimize the effects of cast 
shadows on classification tasks25. Cast shadows can be reduced further by acquiring data under cloud cover and 
diffuse light conditions, respectively. However, diffuse light conditions are also likely to reduce the decisive signal 
in image textures emerging from leaf, branch, and canopy traits that contribute to a separation of the target class.

Ample reference data is known to be a prerequisite for deep learning-based plant identification12,13,21. In this 
study, we trained the CNN models using reference data acquired by visual interpretation. The visual delineation 
was not only efficient, but also advantageous in contrast to conventional field-based ‘ground truth’ sampling as it 
(1) is not affected by spatial inaccuracies, (2) it is less affected by site-accessibility and sampling bias, (3) unlike 
plot data it is spatially explicit enabling the direct use with the orthoimagery and (4) it features a higher corre-
spondence with the remote sensing-based predictors, facilitating statistical links in the model training6,22–24,39,40. 
Although the visually delineated canopies have been cross-checked by at least one other interpreter, inaccuracies 
are expected. Such inaccuracies may affect the training of the models as well as their validation. Yet, as found in a 
previous study6, it can be expected that empirical models can compensate certain degrees of erroneous reference 
data. It is essential to consider that the reference data acquisition using visual delineation is only applicable if the 
target species or community is clearly identifiable in the imagery. This will not only depend on the quality of the 
imagery (e.g., spatial resolution) but also the uniqueness of the morphological traits of the vegetation of interest. 
Yet, in any case, a CNN-based identification of plant species is only applicable if such morphological traits are 
present in the plant canopy.

For the present study, we tested the semantic segmentation with a CNN architecture resembling  the original 
U-net implementation19. We choose the U-net architecture since it is computationally very efficient and delivers 
good results with small amounts of reference data. Despite high accuracies demonstrated here, it is important 
to consider available options that can potentially improve the segmentation performance. This includes the use 
of pre-trained networks41, additional architecture components42,43, or post-processing44,45. Depending on the 
input data, other semantic segmentation algorithms than the U-net might be advantageous, such as DenseNets46, 
LinkNet47, or RefineNet48. In the context of photogrammetric data as derived from structure from motion pro-
cessing pipelines, a promising avenue may be semantic segmentation algorithms that support point clouds, 
such as the PointNet algorithm49,50. An alternative to pure semantic segmentation is instance segmentation (e.g., 
Mask_R-CNN or COB), which enables to delineate single entities of a class (e.g., an individual tree)51–53. Given this 
wide variety of options, careful consideration of the available data, the processing time, the desired complexity, 
and thus transferability should be made before choosing an appropriate CNN-based segmentation strategy and 
algorithm.
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Conclusion and Outlook
We demonstrated that CNN can accurately map plant species and vegetation communities from high-resolution 
RGB data. Our mapping results suggest that plant identification at very high spatial resolutions is facilitated 
through spatial patterns rather than spectral information. This is opposed to remote sensing applications at 
coarser spatial scales, where spectral resolution is an important criterion for plant identification. Combining high 
spectral and spatial resolution may even lead to superior results than achieved here. As the presented approach 
differentiated vegetation very accurately in RGB imagery, it is compatible with low-cost UAV systems that are 
easy to operate, and hence, applicable to a wide range of users. It can be assumed that CNN-based mapping of 
plant species and communities will pave new avenues for various vegetation-related remote sensing applications, 
including mapping of invasive or endangered species, habitat mapping, or resource assessments in forestry and 
agriculture.

Methods
The applied work-flow is centered on very high-resolution orthoimagery, and digital elevation models (DEM) 
derived by photogrammetric processing of UAV-based RGB aerial imagery (Fig. 5). Based on the orthoimagery, 
we created spatially explicit reference data for each target class by visual interpretation. We then used reference 
data together with the orthoimagery and DEMs to train the CNN-based segmentation of each target class (plant 
species or community) using the U-net architecture (Fig. 1). In the mapping phase, the trained CNN models are 
applied to the photogrammetric data using image tiles extracted by a regular grid. The resulting segmentation 
output is merged to produce a spatially continuous map of the target class.

Acquisition of high-resolution imagery and visual delineation of reference data.  High-resolution 
imagery was acquired using copter-type UAVs equipped with RGB cameras. UAVs were operated autonomously 
in parallel flight stripes with a minimum forward overlap of 75% and a minimum side overlap of 50%. The data-
sets for Ulex europaeus and Pinus radiata were acquired within the project SaMovar, which aimed to assess inva-
sion patterns of these exotic species in Central Chile. Flights were carried out in areas with early invasions. The 
flight campaigns were performed using an Okto-XL (HiSystems GmbH, Germany) UAV equipped with a Canon 
100D with an 18 mm lens. The flight campaigns took place in Chilean spring (March 2015) for Pinus radiata and 
summer (November 2016) for Ulex europaeus. The autonomous flights were performed at an average height of 
150 m resulting in a spatial resolution of about 3 cm. For the present study, four flights per species were selected to 
test the CNN-based segmentation approach. The area covered per flight ranged from 21 to 37 hectares. For more 
details on the data acquisition for these two species see Kattenborn et al.6.

The data for the herbaceous plant communities were acquired in the Mueller glacier foreland, located in 
Mount Cook National Park (New Zealand). The Mueller glacier foreland has a size of approximately 450 ha and 
is shaped by a sequence of lateral and latero-frontal moraines formed between 125 y BP and 3,370 ± 290 y BP54. 
Previous studies on vegetation succession in the adjacent East Hooker Valley found distinct plant communities 
on differently aged terrain with pioneer and early successional stages characterized by the herb Epilobium mela-
nocaulon and the moss Racomitrium lanuginosum, intermediate successional stages with Festuca and Chionochloa 
grassland and later successional shrubland with woody Dracophyllum spp.55. In order to cover the entire glacier 
foreland, seven individual but partly overlapping image flights were performed with a DJI Phantom 4 Pro+. The 
area covered in each flight ranged from 20 ha to 50 hectares. We set the operating altitude to 100 m above ground 
to ensure an image resolution of at least 3 cm.

For all datasets, we derived the orthoimagery using the Structure from Motion (SfM)-based photogrammet-
ric processing chain in Agisoft Photoscan (Agisoft, Russia, vers. 1.4.2). The processing included the filtering of 
blurry images, image matching, and the creation of dense point clouds. The dense point cloud was then used to 
derive DEM on which the single image frames were projected to obtain a georectified orthomosaic. Automatic 
georeferencing was performed based on the GPS trajectories logged during image flights. Both the orthoimagery 
and the DEM were exported using the same spatial resolution (cm). Overviews of all orthoimagery are given in 
Supplementary Information 1.

Figure 5.  Overview of the work-flow used for CNN training and its application to UAV imagery.
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For Pinus radiata and Ulex europaeus we acquired reference data in form of absences and presences of the 
respective species canopies. For the dataset on herbaceous plant communities, a prior classification into floristic 
classes was performed based on vegetation survey data. Plant species cover was recorded in 55 plots (2 × 2 m), 
which were randomly distributed in five strata representing successional stages generated from a Normalized 
Difference Vegetation Index product derived from a Sentinel-2 scene. The species cover data was classified into 
five floristically classes defined using Isopam (available as R-package, distance Bray-Curtis)56. For this study, we 
focused on one pioneer and one intermediate successional plant community. Results of all vegetation classes are 
presented in the Supplementary Information 2.

We generated the reference data for training the CNN models using GIS-based visual interpretation of the 
orthoimagery and the DEM. The reference data was created using polygons defining the boundaries of the target 
canopies. Geotagged photographs acquired during the field work were used to aid the visual interpretation. The 
plant species and communities of interest were usually clearly identifiable in the imagery. Only in very few areas, 
characterized by very dark cast shadows or blurry SfM-reconstructions, the visual interpretation was challenging. 
All delineated areas were cross-checked by at least one other interpreter to ensure the robustness of the reference 
data. For the datasets of Ulex europaeus and Pinus radiata, the target species were delineated for the entire extent 
of the orthoimagery. Given the large spatial extent of the Mueller glacier forefield, reference data acquisition for 
the herbaceous plant communities was restricted to 7 plots of 150 × 150 m (see Supplementary Information 1).

CNN-based mapping of target classes.  For the CNN-based segmentation, we implemented the U-net 
architecture19 (Fig. 1). The CNN was trained using tiles with a dimension of 128 times 128 pixels. 4000 tiles were 
randomly sampled from the orthoimages using a regular grid with a 5 m spacing to avoid overlap. The extracted 
tiles included the RGB bands, the DEM (explaining variables), and the delineated polygons in form of a binary 
mask (dependent variable). The absolute height values of the DEM were normalized to relative values (0–255) 
to circumvent terrain effects. 66.6% of the tiles were used for training the model, whereas 33.3% were used for 
validation.

The U-net was implemented using an R interface (version 2.2.4, R Core Team 2018) and the Keras API with 
the TensorFlow backend57. The models were trained on a workstation with a CUDA-compatible NVIDIA GPU 
(GeForce GTX 980 Ti). The U-net architecture featured 5 layers in which 3 × 3 convolutions were applied to 
derive the feature maps (Fig. 1). A max pooling operation was implemented between each convolution, reducing 
the spatial dimensions of the feature map by a factor of 2. The depth of the feature maps derived from the con-
volutions was doubled with each pooling operation. The derived feature maps, comprising the extracted spatial 
features at each spatial scale, are combined by upsampling operations (up-convolution) to eventually predict a 
segmentation output at the original dimensions of the input tiles (128 × 128 pixels). Given the binary classifica-
tion problem (absence = 0, presence = 1), the final layer was activated using a sigmoid function. As optimizer, we 
choose the RMSprop with a learning rate of 0.0001. In view of the 2-dimensional classification task (masks vs. 
segmentation output), the dice-coefficient was chosen as loss function58. To increase the robustness and transfer-
ability of the segmentation, the tiles were subjected to a data augmentation prior to training. The data augmen-
tation included the random shearing (0–0.2 radians), rotation (20-degree steps), shifting (0–15%), or horizontal 
and vertical flipping of image tiles. Besides inflating the training data quantity, this procedure inter alia allows to 
avoid that the CNN considers spatial features that solely depend on the data acquisition settings, e.g., the direc-
tion of the sun and shadows.

We trained the CNN models in 20 epochs with 50,000 steps and a batch size of 16. The model weights of an 
epoch were only considered if the accuracy surpassed the accuracy derived in the previous epoch. For testing the 
model accuracy of each epoch, a 20% hold-off of the training tiles was used. We assessed the accuracy of the final 
model using the validation data, i.e., those tiles that were not used for training the CNN model. The accuracy was 
quantified by calculating the number of pixels that were accurately predicted. In order to avoid bias due to class 
distributions, we stratified the validation data into three classes before calculating the accuracy, i.e., tiles including 
0–33%, 33–66% and 66% to 100% cover of the target class.

For visual comparison of the predicted segmentation, and the visually delineated reference data, we applied 
the trained CNN to independent extracts of the orthoimagery (not used for training) of 120 × 120 m. Therefore, 
the 120 × 120 m extracts were tiled using a regular grid with each grid cell having a 128 × 128 pixel size (corre-
sponding to the tile size used for training the CNN). We applied the CNN to each tile and merged the resulting 
segmentations of all tiles to a new raster layer, i.e. a segmentation map having equal dimensions as the extract of 
the orthoimagery (120 × 120 m, 3 cm pixel size).

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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