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estimation of the apnea-hypopnea 
index in a heterogeneous sleep-
disordered population using 
optimised cardiovascular features
Gabriele B. papini  1,2,3*, Pedro fonseca  1,2, Merel M. van Gilst1,3, Johannes P. van Dijk1,3, 
Dirk A. A. pevernagie3, Jan W. M. Bergmans1,2, Rik Vullings1 & Sebastiaan overeem1,3

Obstructive sleep apnea (OSA) is a highly prevalent sleep disorder, which results in daytime symptoms, 
a reduced quality of life as well as long-term negative health consequences. OSA diagnosis and severity 
rating is typically based on the apnea-hypopnea index (AHi) retrieved from overnight poly(somno)
graphy. However, polysomnography is costly, obtrusive and not suitable for long-term recordings. 
Here, we present a method for unobtrusive estimation of the AHI using ECG-based features to detect 
OSA-related events. Moreover, adding ECG-based sleep/wake scoring yields a fully automatic method 
for AHI-estimation. Importantly, our algorithm was developed and validated on a combination of 
clinical datasets, including datasets selectively including OSA-pathology but also a heterogeneous, 
“real-world” clinical sleep disordered population (262 participants in the validation set). The algorithm 
provides a good representation of the current gold standard AHI (0.72 correlation, estimation error of 
0.56 ± 14.74 events/h), and can also be employed as a screening tool for a large range of OSA severities 
(Roc AUc ≥ 0.86, Cohen’s kappa ≥ 0.53 and precision ≥70%). The method compares favourably to 
other OSA monitoring strategies, showing the feasibility of cardiovascular-based surrogates for sleep 
monitoring to evolve into clinically usable tools.

Obstructive sleep apnea (OSA) is the most common form of sleep-disordered breathing. OSA is characterised by 
repetitive respiratory events during sleep, i.e. obstructions of the upper airway resulting in increased respiratory 
effort causing several physiological effects, such as sleep disruption and intermittent hypoxia. OSA negatively 
affects the quality of life and may have long-term health consequences in the untreated patient. Daytime sleepi-
ness, fatigue, depression, metabolic dysregulation and cardiovascular complications are just a few examples of the 
impact on a person’s health1. Furthermore, the economic and healthcare relevance of sleep disordered breathing 
is boosted by its high prevalence1,2. It is estimated that 5–15% of the general population has OSA with moderate 
severity, meaning that respiratory events are occurring on average more than fifteen times per hour of sleep1. 
The prevalence of all sleep-related breathing disorders has increased during the last decades, driven in part by 
an increase in obesity3. Regrettably, an important part of patients with OSA remains undiagnosed, aggravating 
the health impact on the population. This diagnostic deficiency is caused principally by the difficulty to recog-
nise subjects with few or subtle symptoms, by lack of awareness of the symptoms by patients and caregivers, and 
because suitable screening methods do not exist as of yet4,5.

The gold standard diagnostic procedure for OSA is a sleep-focused clinical interview accompanied by a pol-
ysomnographic recording. Polysomnography (PSG) is an overnight measurement of several physiological signals, 
including electroencephalography to measure sleep and a comprehensive recording of respiratory parameters. 
The recording is annotated by a sleep technician and evaluated, together with symptomatology, to diagnose the 
presence of sleep-related disorders1,6. The number of annotated respiratory events divided by the sleep time yields 
the apnea-hypopnea index (AHI). Although fraught with problems7,8, the canonical way of categorising OSA 
severity is still based on AHI thresholds of 5, 15, 30 events/h corresponding to mild, moderate and severe OSA 
respectively.
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PSG is recorded in a clinic but polygraphy solutions for home monitoring are often used. These 
home-sleep-test diagnostic tools (HST) typically have a smaller amount of recorded signals, but still suffer from 
two main drawbacks: they are expensive (in the U.S., HST is only 10% cheaper than PSG for the provider9) 
and obtrusive10. These limitations preclude the possibility to use these techniques for screening purposes or for 
long-term monitoring of a patient. Therefore, PSG and HST may not be able to prevent the rise of undiagnosed 
sleep-related breathing disorders, nor can it help to improve the characterisation of the disorder due to its high 
night-to-night variability11,12. To counteract the costs and obtrusiveness of PSG and HST, several questionnaires 
have been developed as screening tools. Most of these questionnaires comprise questions regarding symptoms 
and anthropometric characteristics, such as the presence of snoring and body mass index. However, they are not 
responsive in all OSA patients since they are based on subjective questions and therefore cannot tackle cases with 
non-standard symptomatology13,14. In fact, questionnaires have shown an unbalanced sensitivity-specificity ratio 
or unsatisfactory results (e.g. the Berlin questionnaire only has 37–43% sensitivity with 84–80% specificity to 
screen for mild and moderate OSA respectively15).

In the last two decades, several tools have been proposed to enable objective OSA monitoring without incur-
ring the costs and obtrusiveness of PSG and similar methods. These new tools combine the recording of a single 
physiological signal with algorithmic approaches to assess the presence of respiratory events. A large part of these 
unobtrusive tools employ electrocardiography (ECG) and photoplethysmography (PPG) to derive cardiovascular 
signals10,16. The features extracted from the cardiovascular signals, such as heart rate variability (HRV), can be 
indirectly related to the presence of sleep events. Moreover, cardiovascular information can potentially be used 
to assess sleep itself including sleep staging, creating a valuable and more complete picture of sleep for the clini-
cian17. The interest in these methods has also increased with the rise of consumer devices monitoring cardiovas-
cular parameters, e.g. smart-watches and fitness trackers. These consumer devices have been massively adopted 
by the public therefore, after proper validation, these devices could constitute a basis to mitigate the drawbacks of 
the standard sleep monitoring techniques18–21. In addition, wearable devices could be used to monitor a patient 
also during the day, adding a new dimension to clinical follow-up and potentially offering guidance with respect 
to other factors influencing OSA and sleep in general, such as weight-management programs20.

A sharp increase in academic publications proposing algorithms using solely cardiovascular information 
for OSA monitoring can be noticed from the year 2000 when the Apnea-ECG dataset of the Computing in 
Cardiology challenge was released online on Physionet22–24. The majority of these studies employ this dataset to 
propose new cardiovascular features or new technical approaches to monitor OSA10. However, the Apnea-ECG 
may not represent the complexity of healthy as well as disordered sleep because of the pre-selection of clean 
signals, the absence of sleep disorders other than sleep disordered breathing and the limited amount of record-
ings10,22,25,26. Monitoring solutions based on this dataset need to be more extensively validated and, in some case, 
re-developed on larger, and more complex datasets in order to unearth the potential value of unobtrusive cardio-
vascular monitoring as a complement to diagnostic arsenal for sleep disordered breathings.

Here, we report a novel algorithm for AHI estimation based on ECG-derived features that fully automatically 
provides a good representation of the gold standard AHI even in a heterogeneous sleep disordered population. 
The algorithm employs features that are commonly used for unobtrusive sleep analysis and are easily transferable 
to other wearable solutions, such as PPG17. The algorithm performs AHI estimation starting from the detection 
of 30-second epochs surrounding respiratory events (RE-epochs). The ECG-derived features are optimised with 
automatically selected transformations, such as different types of filters and normalisation techniques, all with the 
aim of increasing the detectability of RE-epochs. The best RE-epochs classifier was chosen among several models 
based on their performance. The AHI was calculated from the ratio between the number of detected RE-epochs 
and the total number of epochs analysed (i.e. epochs scored as sleep).

Importantly, we trained and validated the algorithm using a five-fold cross-validation scheme on a hetero-
geneous sleep-disordered population consisting of five different datasets including recordings obtained from a 
“real-world” clinical sleep population, not specifically selected for development of OSA monitoring algorithms. 
The heterogeneity of the datasets allowed us to evaluate our OSA monitoring method on several aspects: accuracy 
of the AHI estimation, characteristics influencing the estimation quality, the performance as an OSA screening 
tool as well as a severity estimation tool. Finally, we investigated the performance of AHI estimation when sleep/
wake classification of epochs was done using the ECG signal as well resulting in a fully automated solution for 
OSA monitoring.

Results
Datasets and data preparation overview. We used five datasets that are considerably different from 
each other, generating a pooled validation set of 262 recordings (after excluding some of them due to, for instance, 
low signal quality as described in Recording exclusion). The St. Vincent’s University Hospital/University College 
of Dublin Sleep Apnea (UCD) and the Apnea-ECG datasets are available online and focus on participants with 
OSA23,27. The HealthBed dataset consists of healthy participants without sleep related complaints. The validation 
dataset for automated PSG scoring polysomnograms (Auto-PSG) includes participants that are representative of a 
clinical sleep laboratory focusing on OSA cases28. The Sleep and OSA Measuring with Non-Invasive Applications 
(SOMNIA) dataset consists of patients with a wide range of sleep disorders, among which insomnia, sleep related 
movement disorders, parasomnias and OSA22. The SOMNIA dataset is representative of the population seen 
in a tertiary sleep clinic, and increased the heterogeneity of the data as it includes several sleep disorders other 
than OSA. The main characteristics of the datasets can be found in Table 1 and more information regarding the 
data used in this study can be found in methods subsection Datasets. The Auto-PSG, HealthBed and SOMNIA 
datasets were used as training and independent validation set of each cross-validation fold, with each training 
and validation set balanced in terms of sleep disorders and OSA severity. The UCD and the Apnea-ECG datasets 
were used only as validation data in order to strengthen the performance evaluation of our methods without 
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the risk of influencing the training with different type of annotations, i.e. the distinction between obstructive 
and central hypopnea in the UCD and the 60-second epochs in the Apnea-ECG dataset (more info in datasets). 
Our AHI estimation was based on the detection of respiratory event (RE)-epochs defined as 30-second epochs 
containing at least 10 seconds of a respiratory event or starting closer than 5 seconds to its ending. This definition 
was used to ensure that the RE-epochs closely represent the physiological response to respiratory events (more 
details in Respiratory event (RE)-epoch labelling). Respiratory events were labelled obstructive apnea, hypopnea 
(using the 4% oxygen desaturation threshold or arousal criteria29), central apnea and mixed apnea. As wake peri-
ods acted as confounders, AHI estimation was done by excluding the 30-second epochs annotated as wake by a 
human scorer or by a sleep staging algorithm.

Epoch-by-epoch classification. RE-epoch detection. RE-epoch detection was performed by means of 
a logistic regression classifier, chosen with a nested cross-validation (see Model selection and hyper-parameter 
tuning for detailed description). The output of a logistic regression classifier is the probability of belonging to 
the positive class30, i.e. RE-epoch in our case. The classifier had as input a set of optimised ECG-based features 
(HRV features + ECG-derived activity counts, described in Feature extraction) and produced the probability of 
each epoch being related to a respiratory event (RE-epoch probability). In order to get a epoch-by-epoch binary 
class prediction (RE-epoch/non-RE-epoch), the RE-epoch probability was thresholded with the aim to maximise 
separation of OSA severity classes (see Model selection and hyper-parameter tuning). The RE-epoch detection 
performance (per-subjects, average ± standard deviation) on the pooled validation sets with the human-scored 
wake epochs excluded was 41.31 ± 33.69% sensitivity, 91.86 ± 9.82% specificity, 52.54 ± 37.76% precision, 
82.66 ± 15.66% accuracy and 0.32 ± 0.26 agreement (Cohen’s kappa31).

Influence of respiratory events and other types of events on the RE-epoch detection. We investigated the influence 
of the type of respiratory event within an epoch on the RE-epoch probability obtained from the chosen classifier. 
Figure 1 illustrates the RE-epoch probability for the epoch characterised by the most common respiratory events, 
i.e. hypopneas and obstructive apneas. An epoch was considered to be characterised by an obstructive apnea or 
hypopnea depending on the longest event in the 30-second epoch; in case the epoch was closer than 5 seconds 
to the end of one such event the “after event” label was assigned (see Respiratory event (RE)-epoch labelling for 
more information). Figure 1 shows that most of the false negative RE-epochs were epochs containing a hypo-
pnea; instead, most of the RE-epochs characterised by an obstructive event or by the “after event” were correctly 
detected. In addition, it can be noticed that the probability of correctly predicting a RE-epoch tends to increase 
with the portion of the epoch containing an obstructive apnea, while this trend was not visible for hypopneas. 
Epoch labelled as RE-epochs because of the “after event” can contain also contain respiratory event. Figure 1c 
illustrates that RE-epochs characterised by the combined presence of an “after event” and a respiratory event 
(labelled “after”) tend to have a higher RE-epoch probability in respect of RE-epochs characterised by the exclu-
sive presence of a respiratory event (labelled “no after”) or of an “after event” (labelled “pure after”).

We found that also other types of sleep events influenced RE-epoch detection performance. In the datasets 
having detailed sleep event annotations (i.e. Auto-PSG, HealthBed and SOMNIA datasets), 16.09% of the epochs 
that were wrongly detected as RE-epochs contained limb movements with a duration ≥3 seconds rather than one 
of the positive class labelling events, therefore contributing to the false positive detection.

AHi estimation. The AHI was calculated for each participant from the ratio between the number of detected 
RE-epochs and the total number of epochs analysed (i.e. sleep epochs). Since there was not a one-to-one rela-
tionship between RE-epochs and respiratory events (e.g. one respiratory event can cover two 30-second epochs), 
the number of detected RE-epochs was corrected by a multiplicative coefficient obtained by linearly regressing 
the reference AHI with the RE-epoch ratios obtained in the training data (more details in AHI and OSA sever-
ity estimation). The AHI predicted with our method (AHIpred) significantly correlated with the AHI (Fig. 2a, 
Spearman’s rank correlation coefficient: 0.73). The average AHI estimation error for participants without OSA 
and those with mild, moderate and severe OSA was respectively −2.68 events/h, −2.43 events/h, 2.55 events/h 
and 11.22 events/h. Analysing the Bland-Altman plot, we found that the bias between AHI and AHIpred was min-
imal, but the limits of agreement were relatively wide (Fig. 2b). There were a few participants detrimentally influ-
encing the correlation and the limits of agreements. Eight of the 262 participants of the pooled validation set were 

Apnea-ECG UCD Auto-PSG HealthBed SOMNIA

Participants [#] (male) 68 (57) 23 (19) 50 (X) 36 (15) 85 (44)

Age [year] 45 ± 11 [27–63] 50 ± 10 [28–68] X 34 ± 15 [18–63] 51 ± 16 [18–80]

BMI [kg/m2] 28 ± 6 [19–45] 31 ± 3 [25–42] X 24 ± 3 [18–33] 27 ± 5 [17–44]

AHI [events/h] 29 ± 27[0–93] 16 ± 13 [4–50] 25 ± 18 [3–75] 3 ± 6[0–24] 12 ± 12[0–54]

Epochs [#] 984 ± 62 [802−1156] 620 ± 123 [379−776] 694 ± 125 [282−893] 879 ± 70 [728−1015] 799 ± 165 [184−1050]

Obstructive apnea epochs [%] X 6 ± 10[0–34] 28 ± 27[0–94] 3 ± 10[0–39] 8 ± 13[0–64]

Hypopnea epochs [%] X 83 ± 14 [53–100] 61 ± 31 [1–100] 82 ± 26 [0–100] 85 ± 19 [1–100]

After event epochs [%] X 10 ± 8 [1–31] 17 ± 12[0–51] 2 ± 5[0–39] 8 ± 13[0–45]

Table 1. Characteristics of the pooled validation sets divided per datasets. Epoch statistics are reported after 
removal of (manually scored) wake epochs. “X” indicates this information could not be retrieved. Data area 
shown as mean ± standard deviation [range]; maximum mean values are reported in bold.
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considerably underestimated (based on the limits of agreement, difference AHI-AHIpred > 30 events/h) belonging 
to the Auto-PSG (2), UCD (1) and Apnea-ECG (5) datasets. All these participants had an AHI ≥ 50 events/h 
and, on average, more than 70% of the epochs labelled as RE-epochs. Conversely, five participants were consid-
erably overestimated (based on the limits of agreement, difference AHI-AHIpred <−30 events/h), all belonging 
to the SOMNIA dataset. Of these five, two had a sleep movement disorders diagnosis (one comorbid with OSA, 
AHI = 8.53), one had an insomnia diagnosis (comorbid with severe OSA, AHI = 33.05) and two had a pure OSA 
diagnosis (AHI = 9.61 and 16.84 events/h). The two participants with pure OSA were characterised by a high 
number of hypopneas with a desaturation between 3% and 4%, i.e. not included in the events determining the 
RE-epochs (their AHIs with 3% desaturation threshold criteria would have been respectively 16.17 and 26.16 
events/h).

Five AHI estimations for the Apnea-ECG and the UCD datasets were initially obtained because the two data-
sets were forced in the validation sets. These estimations were averaged to have a single AHI value per participant. 
We found that the performance differences between the five validation sets were negligible. For instance, the 

Figure 1. Respiratory event (RE) characteristics influencing the RE-epoch probability obtained with the epoch-
by-epoch logistic regression classifier. (a,b) duration of hypopneas and obstructive apneas contained in a RE-
epoch versus the RE-epoch probability of the classifier. The red lines (five lines of which two overlap to the other 
three) represent the RE-epoch probability threshold for the RE-epoch detection in the five cross-validation 
folds. (c) RE-epoch probability for the RE-epochs characterised by either the combined presence of an “after 
event” and another labelling event (shown in blue); by the exclusive presence of a hypopnea or an obstructive 
apnea event (orange); and by the exclusive presence of an “after event” (green). The Apnea-ECG dataset was 
excluded from this analysis as it does not provide event characteristics.

Figure 2. Analysis of the AHIpred performance. (a) correlation between reference AHI versus AHIpred; r 
indicates the Spearman’s correlation coefficient, dashed lines delimit the canonical OSA severity classes and 
the dash-dotted line is the identity line. (b) Bland-Altman plot of the reference AHI and AHIpred. The bias and 
the limits of agreement (i.e. 1.96 times the standard deviation of the difference) are shown as events/h. Arrows 
indicate participants with considerably underestimated (blue) and overestimated (red) AHI (respectively AHI-
AHIpred >30 events/h and AHI-AHIpred <−30 events/h).
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standard deviation between the validations sets was 0.019 for the Spearman’s correlation, 0.069 events/h for the 
bias and 0.261 events/h for the limits of agreement.

AHi estimation for oSA screening and severity estimation. The AHIpred was tested as an OSA 
screening tool for the three canonical OSA severity thresholds, i.e. AHI above 5, 15 and 30 events/h. The AHIpred 
had a good agreement (Cohen’s kappa31 from 0.53 to 0.62) for all three OSA severities with the minimum agree-
ment reached for the OSA cases with moderate severity. The precision (positive predictive value) and the sensi-
tivity of our screening method decreased with an increase in severity, while the specificity followed an opposite 
trend (Table 2). Using the ROCs related to the three canonical OSA severities and choosing the points with the 
lowest Euclidean distance to a sensitivity and specificity of one, we obtained the thresholds for the AHIpred at 
5.32, 9.77, and 19.46 events/h, which gave the best screening performance for the three canonical OSA severities. 
While the optimal screening threshold for mild OSA was close to the canonical threshold, the other two severity 
classes had optimal thresholds approximately 30% lower than the canonical thresholds. These lower thresholds 
led to an increase in sensitivity, albeit at the expense of specificity and precision.

Using the AHIpred to label each participant with an OSA severity class, our method was able in most of the 
cases to assign the correct class to participants without OSA (Normal label, Fig. 3b). There was a tendency to 
underestimate mild and moderate cases, mostly by one level of severity. The moderate and severe cases were rarely 
underestimated as normal.

For the screening performance, the variations between validation sets generated by the the Apnea-ECG and 
the UCD datasets were found to be negligible. For instance, the standard deviation between the validations 
sets was maximum 0.005 for the ROC AUC and maximum 0.018 for the Cohen’s kappa for the canonical AHI 
thresholds.

OSA monitoring with automatic sleep/wake detection. Results so far were obtained with sleep/wake 
classification by a human scorer. The fully automatic version of our method was obtained by detecting and sub-
sequently excluding the wake epochs using the ECG-based sleep staging algorithm proposed by Fonseca et al.32. 
This sleep staging algorithm uses a subset of the features used in our OSA monitoring solution with the addition 

Minimum Severity
Cohen’s 
kappa

Sensitivity 
[%]

Specificity 
[%]

Accuracy 
[%]

Positive predictive 
value [%]

Using the canonical AHI 
thresholds

mild (AHI > 5) 0.62 84 79 82 88

moderate (AHI > 15) 0.53 70 82 77 75

severe (AHI > 30) 0.58 66 91 85 68

Using the optimal thresholds 
for AHIpred

mild (AHI > 5) 0.62 83 80 82 89

moderate (AHI > 15) 0.57 83 74 78 72

severe (AHI > 30) 0.55 83 81 82 56

Table 2. Performance of the proposed ECG-based method (with manual sleep/wake scoring) for screening the 
three OSA severity classes, using the canonical as well as the optimal AHI thresholds.

Figure 3. Receiver operating characteristics and confusion matrix of the AHIpred for the three canonical AHI 
thresholds. (a) AUC area under each curve; square markers indicate the points in the curve where the AHIpred 
threshold for severity classification is equal to the canonical 5, 15 and 30 events/h. (b) OSA severity classes 
obtained from the AHI (Reference Severity) and AHIpred (Predicted Severity) using the canonical thresholds. In 
each cell, the percentage per severity is shown (also visually indicated by the colour scale) as well as the number 
of participants.
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of a feature describing the time, going linearly from 0 (start of the recording) to 1 (end of the recording). A condi-
tional random field classifier is used to estimate the probability of each sleep stage (wake, REM, nREM1, nREM2, 
nREM3) and we grouped the stages to have a two class output, i.e. wake vs sleep. The algorithm was been trained 
and validated on different datasets. For the datasets used in this research work, the sleep/wake algorithm had an 
average accuracy per subject of 84%± 13% paired with a 40%± 22% sensitivity and a 88%± 13% precision for the 
wake periods and an agreement with the human scorer annotations (Cohen’s kappa31) of 0.44 ± 0.22.

Using the automatic sleep/wake scoring only led to a small decrease in performance. The AHI-AHIpred correla-
tions obtained using sleep/wake scored manually and automatically were found not statistically different (p > 0.1 
for equal correlation null hypothesis using Fisher’s z transformation33). The fully automatic method had a lower 
correlation coefficient and higher limits of agreement but lower bias than the case where human scoring was used. 
The average AHI estimation error was similar to the one obtained with the manual scoring: respectively −2.80 
events/h, −3.26 events/h, −0.30 events/h and 7.92 events/h for participants without OSA and those with mild, 
moderate and severe OSA. With automated annotation, seven participants showed a considerably overestimated 
AHI and seven a considerably underestimated AHI. Most of these participants are the same as those misdiag-
nosed with human sleep/wake scoring. In the considerably overestimated cases, one SOMNIA participant with 
insomnia comorbid with OSA (AHI = 15.97 events/h) replaced the pure moderate OSA. In addition, two more 
participants, belonging to the Apnea-ECG and the Auto-PSG datasets with OSA, had a considerably overesti-
mated AHI (34.00 and 23.9 events/h respectively). For the considerable underestimation automatic sleep scoring 
yielded comparable results, with all the participants having severe OSA and six had an AHI ≥ 50 events/h.

Compared to human sleep/wake scoring, the fully automatic method showed an increase in sensitivity, a 
decrease in precision, and a mostly unchanged specificity, with a maximum decrease from 79% to 73% for screen-
ing mild OSA (Table 3). For comparison with the literature reported by Mendonça et al.10 using a non-canonical 
AHI threshold, the screening performance for AHI ≥ 10 was accuracy 81%, sensitivity 73% and specificity 83%.

The OSA severity estimation performance obtained with the automatic method compared well with the man-
ual sleep/wake scoring, with a moderate increase in the overestimation of OSA severity, especially for the partic-
ipants without OSA (AHI < 5, Fig. 4d).

Discussion
Here, we present an AHI estimation method based on optimised ECG-derived features with cross-validation in a 
heterogeneous sleep-disordered population.

We showed that the AHI predicted with this method is a good representation of the gold standard AHI, 
even in the complex ensemble of the included datasets. Moreover, our algorithm not only provided an adequate 
estimation of the AHI when epochs were manually scored as sleep or wake, but even when using an automatic 
ECG-based surrogate sleep/wake classification method. Only 3% of the epochs scored as wake, both in case of the 
human and automatic scoring, were related to a respiratory event, therefore the AHI underestimation caused by 
their exclusion can be considered negligible.

In a small number of participants the AHI was considerably over- or underestimated. Considerable AHI over-
estimation mainly occurred in participants with comorbid sleep disorders that have an impact on cardiovascular 
features, such as insomnia and sleep-related movement disorders34–36. The effect of these sleep disorders on the 
features is also confirmed by the relatively large amount of epochs with movements that are misdetected by our 
method as RE-epochs. This misclassification can be explained by the similarity of the autonomic nervous system 
response between respiratory events and limb movements and their occasional co-occurrence37. Especially the 
latter weakens the link between cardiovascular features and respiratory events, even in the presence of movement 
related features, such as ECG-derived activity counts in our case. In the fully automatic method, AHI overesti-
mation occurred a little more often (seven participants instead of five), probably due to misdetection of wake 
periods, leading to an increased amount of non-RE-epochs with a higher autonomic nervous system activity. 
The reference AHI of the overestimated participant was heavily dependent on the oxygen desaturation threshold 
chosen to score the hypopneas: the AHI obtained with a 3% desaturation threshold was almost double than the 
AHI obtained with the 4% desaturation threshold. This is in line with the literature and rekindles the discus-
sion regarding what would be the best definition for this type of respiratory events, also from a cardiovascular 
response perspective29. The overestimation of AHI in certain cases does not necessarily diminish the potential of 
our method: a high AHIpred could trigger a clinician to the presence of abnormal sleep and lead to a more thor-
ough sleep investigation.

The cases in which our method considerably underestimated the AHI may be explained by the datasets used to 
train our method, i.e. the SOMNIA, the HealthBed and the Auto-PSG datasets. These datasets have a lower num-
ber of extremely severe OSA cases compared to for example the Apnea-ECG dataset. This might have biased the 
epoch-by-epoch classifier, the RE-epoch probability thresholds choice and the feature optimisation towards lower 
AHI participants. Especially feature optimisation could have been affected by this: the per-subject normalisation 
selection can disregard the flattening of the features generated by some normalisation (e.g. Z-score) occurring 

Minimum Severity Cohen’s kappa Sensitivity [%] Specificity [%] Accuracy [%]
Positive predictive 
value [%]

Automatic 
sleep/wake 
scoring

mild (AHI > 5) 0.57 85 73 80 84

moderate (AHI > 15) 0.53 73 81 77 72

severe (AHI > 30) 0.60 70 90 86 70

Table 3. Performance of the fully automatic method for screening the three OSA severity classes.
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when most of the recording is characterised by respiratory events (such as those with an AHI > 50 events/h). We 
hypothesise that the cases with an underestimated AHI reflect a limitation of the datasets avaible rather than of 
the method per se. If so, this may be ameliorated by including more extreme OSA cases in the algorithm training.

The significant correlation between the AHI and its estimation, for both versions of our method, is supported 
by the average AHI estimation error for the different OSA severity thresholds. Leaving the severe OSA aside for 
the reason previously mentioned, the average estimation error for participant without OSA and those with mild 
and moderate OSA was small and the sign was mostly in agreement, with only the moderate OSA having a negli-
gible change to AHI underestimation from the minor overestimation of participants without and with mild OSA.

When our AHIpred was employed as screening tool, its performance was superior to three of the most used 
questionnaires, independently from the sleep/wake scoring technique applied. As an illustrative comparison, the 
STOP-Bang questionnaire, the Berlin questionnaire and the Multivariable Apnea Prediction score showed lower 
sensitivity and specificity for screening mild and moderate cases than our method when validated in large general 
population even less complex as ours15,38,39. Our method showed a tendency to under-screen severe OSA cases, 
but most of these were labelled as moderate OSA and therefore still tagged as participants that require further 
clinical investigation.

The screening performance of our method can be compared against other ECG-based screening methods 
as well. In a recent review on OSA monitoring approaches, two studies proposing ECG-based OSA screening 
methods were found to be tested on datasets with more than 100 participants10,40,41. Using an AHI screening 
threshold of 10 events/h, Roche et al. reported an accuracy of 91% with a 92% sensitivity and 90% specificity on 
147 participants while Gutierrez et al. showed 72% accuracy with 80% sensitivity and 59% specificity on 188 par-
ticipants. The performance of our method lies between these two studies. However, while our method is validated 

Figure 4. OSA monitoring performance employing the fully automated method including ECG-based sleep/
wake scoring. (a,b) correlation and Bland-Altmant plot. (c) receiver operating characteristics describing the 
OSA screening for the canonical thresholds (AUC: area under the curve, squares: sensitivity-specificity points 
for the canonical AHI thresholds). (d) confusion matrix of the OSA severity (percentage per reference label and 
number of participant in parenthesis).
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on a heterogeneous pool of datasets consisting of 262 participants, the population of these other studies consisted 
of participants specifically referred to the hospital for a suspicion of OSA. This could have biased results towards 
higher agreement, as Roche et al. suggested as well40.

The screening performance of our method varied for different severity classes: a lower sensitivity and positive 
predictive value were achieved when screening for moderate and severe OSA in comparison with mild OSA. The 
reason for this performance variation can be found in the choice of the RE-epoch probability thresholds for the 
RE-epoch detection combined with our dataset. Since the thresholds were chosen to maximise the OSA severity 
class separation, our method priorities a reduction of false positives at the cost of a decreased amount of true 
positives in order to correctly assign the OSA severity class to the most prevalent OSA cases, i.e. AHI < 5 events/h 
with and without other sleep disorders (Table 1). In addition, the lowest sensitivity and positive predictive value 
in screening the severe OSA cases are due to participant with a considerably underestimated AHI having a larger 
weight in the performance calculation.

The under-screening of moderate and severe OSA cases can be corrected by lowering the screening thresholds 
applied to the AHIpred. In fact, by choosing optimal thresholds for AHIpred, the moderate and severe OSA screen-
ing results are aligned with the mild cases (Table 2).

The screening improvement obtained with the optimised thresholds can be related to the presence of the 
Apnea-ECG dataset only in the validation set: with its underestimated severe OSA cases and moderate OSA cases 
without comorbidities, the Apnea-ECG dataset influenced the optimal AHI screening threshold to lower values. 
In fact, the optimal screening thresholds reduced the specificity of our system making it less resilient to partici-
pants with overestimated AHI, i.e. principally participants with sleep disorders.

Even though the differences in screening performance between the fully automatic and the manual sleep/wake 
scoring versions of our method were minimal, using an automatic sleep/wake scoring had the effect of decreasing 
specificity, while increasing sensitivity. This effect was clearer for mild OSA cases due to the higher impact of 
sleep/wake misclassifications, especially for participants with other sleep disorders. However, the false positive 
screening for mild OSA of participants with sleep disorders other than OSA is not alarming in a clinical scenario. 
On the contrary, it can help to prompt further investigation in patients with other clinically relevant sleep condi-
tions. Instead, the misclassification of wake as sleep had the advantage of increasing the screening sensitivity of 
our algorithm. The inclusion of wrongly labelled sleep epochs leads to an increased amount of epochs detected as 
RE-epochs and, therefore, to an increase of AHIpred. Using the automatic sleep/wake scoring algorithm practically 
creates a compromise between the confounding effect of wake epochs (increase false positive RE-epochs) and 
their representative value in case of disordered sleep. Even though this detection might not be related to respira-
tory events, this can be interpreted as a consequence of disturbed sleep and therefore easing the screening task of 
our method. The screening results obtained could probably be further improved by combining our method with 
questionnaires, similarly to the combination of the Multivariable Apnea Prediction score with HST presented by 
Gurubhagavatula et al.39.

The OSA severity estimation obtained by the AHIpred was in line with the reference, especially for participants 
without OSA. Importantly, only 8% of the participants with moderate or severe OSA were classified as normal, 
ensuring that the participants with the two highest severities are mostly recognised as having at least a certain 
degree of OSA.

HST currently are a widely accepted alternative for the PSG measurement and it is interesting to note that 
the AHI estimation performance of our method is comparable with typical HST automatic AHI estimation. As 
an example, in comparison with the Embletta and the ApneaLink HST tested by Aurora et al.42, our method had 
larger limits of agreement, but a lower bias. When the AHIpred was used for OSA severity estimation, our method 
gave a slightly better performance than the Embletta HST. The percentage of underestimated cases is lower in our 
research for all the three OSA severities, but we had a higher overestimation, probably influenced by the inclusion 
of sleep-disordered participants in our data.

The RE-epoch detection part of our method showed good outcomes for the population analysed (high accu-
racy with a fair agreement with the reference) even though it was not the main focus of our tool. In fact, specificity 
was favoured over sensitivity to account for the elevated presence of confounding factors due to disordered sleep 
and events associated with it. Furthermore, also the precision metric was affected by the presence of confound-
ing factors and their detrimental effect was magnified by the high imbalance between the classes (RE-epoch vs 
non-RE-epoch). For comparison with the literature on the Apnea-ECG dataset10, the performance obtained on 
this dataset (calculated on the entire amount of classified epochs) was 82.70 sensitivity, 80.30 specificity, 73.02 
precision, 81.24 accuracy and 0.61 agreement. The results of RE-epoch detection in the Apnea-ECG dataset were 
in line with these literature10,22, which is remarkable considering that our method was trained on a different pop-
ulation, using the entire Apnea-ECG dataset as a hold-out set, and that our focus was AHI estimation rather than 
RE-epochs detection. The variance of the results due to forcing the Apnea-ECG and UCD datasets in the vali-
dation sets was negligible, indicating that the method was minimally influenced by changes of the training data.

Having several datasets with extensive sleep annotations allowed us to investigate at the event level which 
factors played a key role in AHI estimation. We noticed that most of the RE-epochs characterised by obstructive 
apneas were correctly detected. In addition, their RE-epoch probability seems to be proportional to the duration 
of the event in the epoch (Fig. 1b). The relationship between event duration and RE-epoch probability can be 
explained with a proportionality between cardiovascular response duration and event duration: longer events 
influence a larger amount of the ECG signal and, therefore, stronger affect the features calculated on windows 
of this signal. In the case of the hypopnea-characterised epochs, we hypothesise that this relationship could be 
hidden by the milder cardiovascular response of the hypopneas as compared to the obstructive apneas.

Hypopnea-characterised RE-epochs were the most difficult to detect, with more than 50% of them having a 
probability lower than the detection thresholds (Fig. 1a). The more complex detection of hypopneas with respect 
to obstructive apneas is in line with the literature. For instance, Punjabi et al.28 showed that, even when the AHI 
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is estimated with a HST, the reference and estimated hypopnea indexes were less correlated when compared to 
the obstructive apnea indices. The hypopnea-epoch misclassification can be explained with the higher difficulty 
in discerning, from a cardiovascular perspective, hypopneas from other types of confounding events, such as 
respiratory-related arousals and limb movements35,43. In fact, rather than having a low RE-epoch probability 
for hypopnea-characterised RE-epochs (median ≥ 0.6 with 25th percentile ≈0.4), our method had an elevated 
RE-epoch probability thresholds (minimum 0.65). This indicates that, in order to better estimate the severity class 
of the participants in the training set, our method had to sacrifice the hypopnea detections in favour of increased 
resilience to other factors. However, it was able to compensate for these false negatives and deliver an AHIpred in 
line with the reference AHI, especially considering the predominant presence of hypopnea-characterised epochs 
in our pool of datasets (Table 1).

The RE-epochs characterised by the “after event” in combination with an obstructive apnea or hypopnea were 
generally correctly classified by our method (Fig. 1c) probably because the end of a respiratory event is usually 
characterised several events (e.g. the resumption of normal breathing, arousal and a bradycardia-tachycardia 
behaviour) that are easier to recognise respect to, for instance, the first 10 seconds of a respiratory event1,16.

The advantages of having a heterogeneous sleep-disordered population are accompanied with some disad-
vantages. The sleep disorder heterogeneity of the data limited us to cross-validate our method rather than vali-
dating it on a separate hold-out set. Future validations of the algorithm will also aim to characterise in detail the 
behaviour of our algorithm, for instance by evaluating the performance for different sleep stages obtained from 
manual annotation and sleep staging algorithms. The epoch misclassification concomitants with the presence 
of limb movements indicates that our approach could be less suited for patients with sleep movement disorders. 
Therefore, future research should focus on reducing this misclassification, for instance by using activity counts 
obtained from an accelerometer rather than an ECG movement surrogate. Even though it is currently the clinical 
standard metric to monitor OSA, the AHI is just one representation of the disorder. Consequently it is intrinsi-
cally limited to describe a complex, and yet to be fully understood, disorder such as OSA7,8. However, the AHI is 
valuable information that contributes to the overall clinical picture of a patient. Therefore, we decided to focus 
on the current clinical standard, leaving to future studies the possible investigation of using our method to derive 
metrics to monitor OSA other than AHI. The exclusion criteria related to technical and physiological aspects of 
the ECG signal (described in Recording exclusion) represent another limitation. Low coverage and sensor mal-
functioning can be overcome by the possibility to measure multiple nights with an unobtrusive implementation 
of our method, but our method cannot handle participants with a high presence of irregular beats because it is 
largely based on HRV features. However, the cardiovascular signal, such as ECG and PPG, can inform the clini-
cian on the presence of such irregular beats and, therefore, direct those patients to more standard sleep analysis.

We selected our epoch-by-epoch classifier among classifiers that are simpler than the latest developments in 
the machine learning field for sleep44,45. While this allowed to minimise hyper-parameter tuning and computa-
tional power required for training, nevertheless it limits the information that can be inferred from our features. 
More complex classifiers combining both feature optimisation and classification will be part of future research. 
Future research will also aim to translate this method for other type of sensors, like it has been done for sleep stag-
ing with wrist-worn PPG17. This is likely to be possible because the features chosen are device agnostic, i.e. they 
can be derived from all the devices able to extract inter-beat intervals and movement information. The implemen-
tation of our method on devices like smartwatches or ECG patches will enable a fully automatic, unobtrusive and 
long-term OSA monitoring.

conclusion
Here, we propose a method providing an AHI estimation in a heterogeneous sleep-disordered population using a 
cardiovascular signal that is collectable in an unobtrusive manner. The method shows good correspondence with 
AHI values obtained with conventional, obtrusive methods. We validated our method in a challenging scenario, 
using data from multiple sleep disorders, with a high prevalence of hypopnea events, and recordings annotated 
in different sleep centres over a wide period of time. Results showed that the estimated AHI can be used both 
for OSA screening and for OSA severity estimation. Thanks to the increased availability of sleep-related datasets 
and the rapid evolution of machine learning techniques, we believe that in the future OSA monitoring by means 
of unobtrusive cardiovascular signals has the potential to evolve from a challenging research topic to a clinically 
accepted tool.

Methods
Datasets. This research work employed five datasets collected by different teams and sleep centres, using 
various set-ups.

The UCD dataset27 contains 25 overnight PSG recordings of adults with suspected sleep-related breathing 
disorders collected at the Sleep Disorders Clinic of the St Vincent’s University Hospital (Dublin, Ireland). For 
our analysis, we used the signals collected from the ECG modified lead V2 (sampling frequency 128 Hz) and the 
respiratory event annotations (obstructive apnea and hypopnea, central apnea and hypopnea, and mixed apnea). 
The obstructive hypopnea and central hypopnea were grouped together in a single hypopnea class since the dif-
ferentiation of these two events still lacks clinical consensus46.

The Apnea-ECG dataset23 contains 70 overnight recordings that were assembled together for the Computing 
in Cardiology challenge of 2000. The goal of the challenge was to detect 60-second epochs containing respiratory 
events and to categorise the recordings as normal or apneic (based on an AHI threshold of 10 events/h). For our 
analysis, we used the 60-second annotation (i.e. apneic/normal epoch) and the ECG signal (sampling frequency 
200 Hz) provided. The events determining the 60-second annotations were scored according to the AASM 1999 
guidelines. As our algorithm predicts RE-epochs with a 30-second epoch resolution. We split each epoch of the 
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Apnea-ECG dataset into two epochs with the same label as the original one. We used the Apnea-ECG dataset as a 
whole without the train and test set separation adopted in the Computing in Cardiology challenge.

The Auto-PSG dataset28 consists of 97 overnight PSG recordings of adults acquired in four sleep centres in the 
United States. The data collection protocol was approved by the institutional review board of each clinical site, as 
described in the paper of Punjabi et al.28. The dataset can be sub-dived in three types of PSG recordings: 31 diag-
nostic PSG, 35 CPAP titration nights, and 31 split-nights (half night diagnostic, half night titration). This dataset 
was annotated manually by four different certified scorers and by the automated Philips Somnolyzer system28 
according to the 2007 AASM criteria. We used the modified lead II ECG signal (sampling frequency 200 Hz) and, 
as reference, the annotation done by the Somnolyzer system after this was reviewed by one of the human scorers. 
Detailed information regarding this dataset can be found in the paper published by Punjabi et al.28.

The HealthBed dataset consists of 40 recordings collected at the Sleep Medicine Centre Kempenhaeghe 
(Heeze, The Netherlands). The participants were healthy adults without sleep complaints or disorders or other 
medical or psychiatric comorbidity. Each recording consists of a full PSG with clinical annotations (hypnogram 
and sleep events AASM 2012 guidelines29 with 3% desaturation criteria for hypopneas) scored by an expert sleep 
technician. We used the modified lead II ECG signal (sampling frequency 512 Hz) as well as the annotations. The 
HealthBed study was reviewed by the medical ethical committee of the Maxima Medical Center (Eindhoven, the 
Netherlands. File no: W17.128), all participants gave written informed consent.

The SOMNIA dataset used is part of an ongoing data collection done in the Sleep Medicine Centre 
Kempenhaeghe (Heeze, The Netherlands), including unselected patients scheduled for a routine diagnostic PSG. 
A total of 103 recordings were selected targeting a study population of at least 50% of patients having an OSA 
diagnosis (with an approximately uniform severity distribution). Exclusion criteria were predominant central 
sleep apnea and Cheyne-Stokes breathing conditions and recordings while using CPAP or CPAP titration. The 
dataset comprised of the following participants: 48 patients with OSA (of which 32 without any comorbidity, 10 
with insomnia disorders and 4 with sleep movement disorders and 2 with other comorbid sleep disorders), 27 
with an insomnia diagnosis (of which 13 without sleep comorbidity), 10 with a sleep movement disorder diagno-
sis (of which 4 without sleep comorbidity), 7 with parasomnia diagnosis (of which 4 without any comorbidity), 8 
with other sleep disorders (of which two with circadian sleep disorder, three with behaviourally induces insuffi-
cient sleep syndrome and three with chronic fatigue syndrome) and one without any sleep disorder. For this study, 
only the ECG modified lead II (sampling frequency 512 Hz), the annotations done by expert sleep technicians 
from the Sleep Medicine Centre Kempenhaeghe, and the patient diagnosis were used. Also for this dataset, the 
AASM 2012 annotation guidelines were followed. The SOMNIA study was reviewed by the medical ethical com-
mittee of the Maxima Medical Center (Eindhoven, the Netherlands. File no: N16.074), and all participants gave 
written informed consent.

All the studies met the ethical principles of the Declaration of Helsinki, the guidelines of Good Clinical 
Practice and the current legal requirements. The protocol for data analysis was approved by the Medical Ethical 
Committee of the Kempenhaeghe hospital (number 06.17) and by the Philips Institutional Review Board 
(Internal Committee on Biomedical Experiments, identification numbers ICBE-2-14791 and ICBE-2-18859).

The UCD, the HealthBed and the SOMNIA datasets applied the 3% oxygen desaturation rule for the scoring 
of hypopneas in absence of arousals. In our research, the hypopneas that were not followed by an arousal and had 
a desaturation smaller than 4% were ignored. This was done to harmonise the hypopnea scoring rule between the 
datasets and to favour the hypopnea desaturation threshold with a higher impact on the cardiovascular system47.

Recording exclusion. We removed some recordings from the datasets based on three criteria: technical 
faults, too low coverage and presence of irregular heartbeats.

A total of 15 recordings were excluded for technical faults, such as missing signals or annotations. Of these, 
seven belonged to the Auto-PSG dataset, one to the HealthBed and seven to the SOMNIA dataset.

Four recordings were excluded because 70% of the features could not be calculated for more than 30% of the 
duration of the recordings. The reasons could have been a low quality of the ECG signal or errors detecting heart-
beats. Of these, two belonged to the HealthBed dataset and two to SOMNIA dataset.

For this study, we considered an inter-beat interval (IBI) and its precedent IBI related to an irregular beat, 
i.e. ectopic, when the relative duration of the first with respect to the second was lower than a certain threshold 
(see subsection Features extraction for more details). These IBIs were excluded, and in some case interpolated, 
to perform the HRV analysis48. However for short term HRV estimation, the presence of 5% of removed IBIs 
over the total amount of IBIs, whether related to artefacts or irregular heart-beats, can already cause a significant 
deviation from the actual HRV values49. Since our method is strongly dependent on heart rate dynamics, we 
decided to exclude recordings with a number of IBIs related to ectopic beats higher than 3% of the total number 
of IBIs and to leave the task of extending our findings on participants with a higher amount of irregular beats for 
future research. As consequence, a total of 26 recordings were excluded due to a substantial presence of irregular 
heartbeats. Of these recordings, two belonged to the Apnea-ECG dataset, two to UCD, one to HealthBed, twelve 
to Auto-PSG and nine to SOMNIA.

cross-validation. We performed a nested cross-validation for algorithm development and evaluation. The 
outer cross-validation (outer CV) was used to obtain the AHI estimation results while the inner cross-validation 
(inner CV) to select the epoch-by-epoch classifier and parameters. Both the inner and the outer CV are done at 
the participant level in order to have each participant exclusively in the training or in the validation of each fold. 
The outer CV was a conditioned 5-fold cross-validation: depending on recording characteristics, some partici-
pants were forced in the training set and some others in the validation set of each fold. The participants of the 
Auto-PSG dataset undergoing titration were forced in the training set of each fold since they do not represent the 
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population on which an unobtrusive OSA monitoring method would be applied. However, the titration subset 
of the Auto-PSG dataset increases the variability of the data and therefore can help, for instance, improving the 
generalisation of trained algorithms.

The UCD and the Apnea-ECG datasets were forced in the validation set of each outer CV fold due to the 
different type of annotations, i.e. the distinction between obstructive and central hypopneas in the UCD and 
the 60-second epochs in the Apnea-ECG. This yielded the advantage of having the full Apnea-ECG dataset as 
a hold-out set, so results can be compared with the literature. Since each outer CV fold yield a different perfor-
mance for these two online datasets, the results presented in this study are averaged across the outer CV folds.

The recordings belonging to the SOMNIA, HealthBed and Auto-PSG datasets were divided into training and 
validation sets for each outer CV fold, keeping the same distribution of the prevalence of the main sleep disorders, 
i.e. patients with AHI below/above 15 and the presence of insomnia or sleep movement disorder. The HealthBed 
and the Auto-PSG (without titration subjects) datasets did not include subjects with insomnia or sleep movement 
disorders, therefore only the AHI value was taken into consideration for balancing training and validation sets 
for each fold.

The outer CV folds had an average of 161 recordings for training and of 129 for validation (varying in each 
fold depending on the balancing of the two sets). This results in a total amount of 262 unique validation record-
ings pooled from all the outer CV folds.

Respiratory event (Re)-epoch labelling. Most of the published studies regarding epoch based apnea 
monitoring using cardiovascular features employ a 60-second based segmentation of the recordings, probably 
due to the influence of the broadly used Apnea-ECG database22,23. However, a respiratory event can have a min-
imum duration of 10 second, which is far shorter. In addition, the 60-second epoch labelling is in dissonant with 
the 30-second epoch approach used for clinical sleep staging and annotation. 30-second epochs were considered 
related to a respiratory event if they contained at least 10 seconds of a respiratory event or if the previous epoch 
had a respiratory event closer than 5 seconds to its end (“after event” characterised RE-epochs). The first crite-
rion was chosen in order to guarantee enough influence of the respiratory event on the extracted features in the 
labelled epoch. The second criterion was chosen to compensate for the elongated influence of a respiratory event 
on the cardiovascular system. Most of the respiratory events are followed by arousals and/or oxygen desatura-
tions that are prone to drive cardiovascular behaviour after the respiratory event. According to the literature, 
most arousals and desaturations after respiratory events have a duration of, respectively, 10 seconds and 30 sec-
onds34,47,50–52. A 5 seconds threshold allows labelling the RE-epochs by ensuring that they contain the apex of the 
cardiovascular response (e.g. lowest desaturation or peak in heart rate), without including in the RE-epochs those 
characterised by the slow returning to normal sleep.

feature extraction. The prediction of RE-epochs was based on features extracted from the ECG signal which 
are commonly used in literature in the domain of sleep monitoring. A total of 123 features were extracted from the 
ECG signal of each recording; Table 4 gives an overview of the features together with a reference for their descrip-
tion. Each feature was calculated over a certain time window, dependent on the feature type, and assigned to the 
central 30-second epoch indicating the epoch class, i.e. RE- or non-RE-. All features, except the ECG-derived actig-
raphy, require the calculation of the IBIs from the ECG signal. The IBIs were computed as the time distance between 
each pair of consecutive R-peaks in the ECG signal. The R-peaks were detected by using an Hamilton-Tompkins 
detector in combination with an algorithm to refine the peak localisation53,54. IBIs with a value longer than 2 sec-
onds or shorter than 0.5 seconds were rejected because they were considered not physiologically normal for a sleep 
recording, even when respiratory events are present55,56. IBIs were also rejected in case they were related to ectopic 
beats. An IBI and its preceding were excluded if the ratio between the two was larger than 1.5. For example, this 
can be seen as a drop in heart rate from 60 bpm to 40 bpm in just 1.5 second. This criterion takes advantage of the 

Features type Number Described in Window size [sec]

Arousal probability 5 61 120

HRV frequency analysis 18 48,62,63 300

Adapted HRV frequency analysis 6 64 300

Detrended fluctuation analysis 5 56,65,66 360

Progressive detrended fluctuation analysis 1 67 60

Windowed detrended fluctuation analysis 1 68 360

High-frequency pole analysis 2 69 300

Multi-scale entropy 20 70–72 540

Local phase coordination 7 73–75 150 and 90

HRV time analysis and statistics 37 48 300

Sample entropy 1 76 300

Visibility graph analysis 13 77–80 210

Hilbert transformation analysis 6 81 300

ECG derived activity counts 1 82 30

Table 4. Overview of the extracted features. Each feature was calculated using the methods proposed in the 
respective original methodological paper(s).
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combination of having a shorter IBI before the ectopic beat and a longer IBI after the ectopic beat. In our research, 
two conditions had to be met to calculate a feature for a certain epoch: the IBIs have to cover at least half of the time 
window (feature specific) and at least 1/6 of the central 30 seconds of the window, i.e. the epoch to which the feature 
is assigned.

Feature optimisation framework. For each training set of the outer CV folds, the 123 features extracted 
from the ECG signal were optimised with respect to their discriminative power between RE- and non-RE-epochs. 
The optimisation framework consisted of a greedy search of the best sets of feature transformations, applied per 
recording, following a graph defining the connection rules between each transformation. An exhaustive list of all 
the transformations and their connection can be found in Table 5. The graph was created to avoid unnecessary 
computation or possible errors. For instance, it is not logical to clip the outliers before changing the overall feature 
distribution, therefore, the graph does not connect these two transformations in this specific order. The selection 
criteria to determine the best set of transformations for each feature was based on absolute mean distance (AMSD):

AMSD
(1)

RE epochs non RE epochs

RE non RE epochs

μ μ

σ
= |

−
|.− − −

−+ − −

here μRE−epochs and μnon−RE−epochs indicate the average of the transformed feature values, across all the recordings, 
corresponding to RE- and non-RE-epochs and σRE− + non−RE− epochs indicates the standard deviation of the feature. 
Starting from the original feature, the optimisation algorithm applied all the transformations and selected the best 
transformation. Then, the algorithm iteratively applied another set of transformations, following the rules defined 
by the graph, and selected the best one of each iteration. The optimisation algorithm stopped iterating when addi-
tional transformations did not improve the AMSD or when a series of five transformations was reached. Different 
feature selection techniques have been evaluated, for instance, techniques based on the correlation between fea-
tures and RE-epochs or on the cross-validated calculation of the AMSD. However, none of the evaluated methods 
was able to outperform the direct usage of optimised features.

Transformation Group Description Parameters Input groups

None 0 no transformation — raw feature

Winsor 1 percentile based clipping [1–99] and [5–95] 
percentiles 0, 4, 6, 7, 8, 9

Median 2 removal of the median value — 0, 1

Z-score 3 removal of the mean value and standard deviation scaling — 0, 1, 4

Percentile 3 normalisation of the percentiles to the [0, 1] range — 0, 1, 4

Amplitude 3 amplitude scaling — 0, 1, 4

Box-Cox 4 Box-Cox transformation with  + post Z-score normalisation — 0, 1, 6, 7, 8, 9

Histogram 4 equalisation of the feature based on a 10-bins histogram — 0, 1, 6, 7, 8, 9

Quantile 4 quantile normalisation with a reference distributions normal, exponential and 
uniform 0, 1, 6, 7, 8, 9

Tukey-Ladder 4 Tukey-Ladder transformation — 0, 1, 6, 7, 8, 9

Time-shift 5 features shifting in time −1 and +1 epoch 0

MAD 6 windowed mean absolute deviation windows of 7, 15, 23 and 31 
epochs* 0, 5

SD 6 windowed standard deviation windows of 7, 15, 23 and 31 
epochs* 0, 5

Abs 6 absolute value calculation — 0, 5

Diff 6 derivative calculation first derivative 0, 5

Int 6 cumulative summation after mean removal — 0, 5

Average 7 running mean filtering windows of 7, 15, 23 and 31 
epochs* 0, 5, 6

Median 7 running median filtering windows of 7, 15, 23 and 31 
epochs* 0, 5, 6

LPF 7 filtering with a second order
low pass Butterworth filter

0.25, 0.5 and 0.75
normalised frequency 0, 5, 6

Subtract Median 8 windowed median subtraction windows of 7, 15, 23 and 31 
epochs* 0, 5, 6, 7

HPF 8 filtering with a second order
high pass Butterworth filter

0.25, 0.5 and 0.75
normalised frequency 0, 5, 6, 7

Exponential 9 exponentiation of the feature square and square root 0, 5, 6, 7, 8

Log 9 logarithmisation of the feature natural logarithm 0, 5, 6, 7, 8

Table 5. List of transformations applied to optimise the ECG-derived features. Each transformation belongs 
to a group and the connection between groups, i.e. the graph, are described by the “Input groups” column. *the 
windows were applied with respect to each epoch in a backward, forward and centred manner.
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Model selection and hyper-parameter tuning. Five inner CVs, one for each outer CV fold, were used to 
select a final model and its hyper-parameters. Each inner CV consisted of a 4-fold cross-validation on the training 
data of the corresponding outer CV fold. The models that were investigated consisted of linear classifiers based 
on log loss (i.e. logistic regression), Huber loss, and linear and quadratic discriminant analysis. In each outer CV 
fold, the models’ performances were graded based on the average area under the curve of the precision-recall 
plot obtained with the inner CV. The model with the highest average inner CV performance among each outer 
CV folds was selected as the final model. The final selected model was a logistic regression classifier with both 
an l1 and l2 regularisation. This model was trained with a stochastic gradient descent approach on the training 
set of each outer CV fold. The number of RE- and non-RE-epochs was unbalanced and, specifically, was leaning 
towards the latter. Therefore, before training the models, the training data were over-sampled for the minority 
class (RE-epochs) using a synthetic minority over-sampling technique57 and cleaned using an edited nearest 
neighbours method in order to remove noisy synthetic samples introduced by the oversampling of outlier popu-
lated areas of the feature space58.

The trained model predicted the probability of each epoch to be a RE-epoch. This probability, ranging from 
zero to one, was thresholded in order to assign a class to each epoch. The choice of the probability thresholds was 
done by maximising the Cohen’s kappa coefficient calculated between the estimated and the reference OSA sever-
ity class (after the AHI was estimated) on the training data of each outer CV fold. The following equations were 
applied both to compute the RE-epoch probability threshold and, once this was obtained, to predict the AHI:

j j outer CV fold, (2)th=
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The AHIder
train is the AHI derived by using the ground-truth epoch labelling, while AHIpred

train is the AHI obtained 
by using epoch class predicted by the trained models. The Theil-Sen regression59 was chosen because it is more 
resilient to outliers due to, for instance, participants with long respiratory events and consequently a larger num-
ber of RE-epochs than the number of respiratory events. All these steps were accomplished on the training set of 
each outer CV fold, blindly from the validation set, in order to guarantee unbiased results.

While the training of each model was done by including all the epochs, the choice of the RE-epoch probability 
thresholds and the estimation of βtrain were done after the removal of the wake epochs.

AHi and oSA severity estimation. The transformed features, the models with their hyper-parameters and 
RE-epoch probability thresholds were used to classify the 30-second epochs of the validation set of each outer CV 
fold. The classification output was then filtered to remove wake epoch and remaining epochs were used to calcu-
late the AHIpred for each participant with the same strategy as applied in Model selection and hyper-parameter 
tuning. Finally, the OSA severity class was assigned to each participant based on the AHIpred and the canonical 
clinical thresholds.

performance analysis. Independently by the sleep/wake score used, our method was evaluated with 
regards to the AHI estimation, the screening capability and the OSA severity estimation. The AHI estimation 
was evaluated via Spearman correlation coefficient and Bland-Altman plot between the reference AHI and the 
AHIpred. The Spearman correlation coefficient was used because the reference AHI and AHIpred were hetero-
scedastically related, i.e. the variability of AHIpred was unequal across the range of values of AHI (p < 0.01 for 
the Breusch-Pagan test60). In addition, the average AHI estimation error for the different OSA severities was 
also reported to complement the correlation analysis. Participants with a difference between the reference AHI 
and the AHIpred >30 events/h or <−30 events/h were defined as, respectively, considerably underestimated and 
considerably overestimated. The 30 events/h threshold was determined based on the limits of agreement of our 
AHI estimation in addition to 30 events/h being the minimum difference to misclassify a person without any 
respiratory event as a severe OSA (and vice versa). The screening capability of the AHIpred was quantified using 
standard statistical measures of the performance for binary classification, such as specificity and sensitivity, and 
receiver operating characteristic curves for each OSA severity. Confusion matrices were employed to evaluate the 
OSA severity estimation performance.

Data availability
The UCD and the Apnea-ECG datasets are well known datasets in the OSA research field and available 
respectively at https://physionet.org/physiobank/database/ucddb/ and at https://physionet.org/physiobank/
database/apnea-ecg/.
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The SOMNIA and the HealthBed datasets are built to facilitate future research in sleep medicine. The data are 
available from the Sleep Medicine Centre Kempenhaeghe upon request, by providing a research protocol to be 
approved by the institutional research board. Specific restrictions apply to the availability of the data collected 
with sensors not comprised in the standard PSG set-up, since these sensors are used under license and are not 
publicly available. These data are however available from the authors upon reasonable request and with permis-
sion of the licensors.

The Auto-PSG dataset was created through an unrestricted grant by Philips Electronics North America to 
test an automatic sleep scoring software. The dataset can be used for research purposes within Philips Research. 
Philips Electronics holds the ownership of the dataset and it can be shared only if a loan and license agreement 
with Philips Electronics North America is in place.
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