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Methodological aspects of testing 
vestibular evoked myogenic 
potentials in infants at universal 
hearing screening program
Luca Verrecchia   1,2*, Niki Karpeta1,2, Magnus Westin1, Ann Johansson1, Sonny Aldenklint1, 
Krister Brantberg1,3 & Maoli Duan1,2

Motor development in infants is dependent upon the function of the inner ear balance organ (vestibular 
organ). Vestibular failure causes motor delays in early infancy and suboptimal motor skills later on. A 
vestibular test for newborns and infants that is applicable on a large scale, safe and cost effective is 
in demand in various contexts: in the differential diagnosis of early onset hearing loss to determine 
forms associated with vestibular failure; in early hearing habilitation with cochlear implant, indicating 
the vestibular predominant side; and in the habilitation of children affected by motor skill disorders, 
revealing the contribution of a vestibular failure. This work explored the feasibility of cervical vestibular 
evoked myogenic potentials (VEMP) in conjunction with newborn universal hearing screening program. 
VEMP was measured after the hearing tests and was evoked by bone-conducted stimuli. Moreover, 
stimulus delivery was regulated by neck muscle activity, with infants rested unconstrained in their 
parents´ arms and with the head supported by the operator´s hand. This VEMP protocol showed a high 
level of feasibility in terms of test viability and result reproducibility. VEMP integrated into the newborn 
hearing screening program may represent a practical method for large-scale assessment of balance 
function in infants.

The inner ear balance organ (i.e., the vestibular organ) plays a fundamental role in motor development in new-
borns and infants. An early vestibular assessment is currently in demand in various clinical contexts and could be 
made possible by advancements in the clinical testing of vestibular function in children. Children with sensori-
neural hearing loss (SNHL) are more often affected by vestibular dysfunction (VD)1. VD in newborns and infants, 
particularly in the form of bilateral vestibular failure, is an independent factor for delayed and suboptimal motor 
proficiency2,3. Moreover, VD affects reading acuity in school age children4 and it is associated with unprotected 
falls with head trauma5.

An early vestibular assessment may contribute to the prognostic stratification of motor disabilities in children, 
specifically in those affected by syndromic SNHL or those affected by SNHL due to congenital viroses (citomeg-
alovirus, rubella, etc.). These children may show early onset SNHL, vestibular impairment and neurological dis-
orders. Vestibular assessment may reveal motor disorders related to vestibular failure and, in this way, could have 
positive prognostic relevance: vestibular-related motor delays are expected to reach acceptable functional levels 
by school age6 and they may be enhanced by specific vestibular habilitation programmes7.

Testing vestibular function in infants may contribute to the early diagnosis of congenital or early onset SNHL. 
In a clinical context in which up to 35% of congenital SNHL patients receive no specific diagnosis8, a documented 
vestibular failure may drive the diagnosis towards SNHL associated with vestibular failure especially preva-
lent in inner ear malformations9, Usher´s syndrome10, congenital citomegalovirus infection (cCMV)11,12 and 
neuropathies13.

An early vestibular assessment has also become mandatory in terms of cochlear implantation (CI). CI is the 
best solution for hearing and speech habilitation in severe childhood SNHL. However, this procedure is thought 
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to alter the vestibular function14–18. In a target population, SNHL infants, in which pre-existing vestibular dys-
function is probable, the CI would represent an added risk of developing vestibular failure19.

Given these premises, a vestibular test for newborns and infants that is applicable on a large scale, safe and cost 
effective is worth consideration.

We studied the feasibility of a vestibular test, vestibular evoked myogenic potentials (VEMP) integrated into 
the universal newborn hearing screening program. VEMP has already been applied in newborns and infants, 
but in limited cohorts20,21. This study focused on the methodological aspects of large-scale VEMP testing with a 
specific protocol based on bone-conducted stimulation and on recordings under controlled neck muscle activity 
levels.

Material
The target population was composed of children included in the regional newborn hearing screening program22. 
Hearing screening was conducted at 8 different birth centres, covering 98,7% of newborns (data from 2016, 
30036 newborns). According to the programme, newborns failing two consecutive transient-evoked otoacous-
tic emission tests (TE-OAE) are referred at four weeks of life for a second step that consists of a third TE-OAE, 
and if there is no response, automatic auditory brainstem responses (aABR) are measured. In 2016, 3,2% of the 
total population of newborns were referred for second step hearing screening at our tertiary university hospital 
audiological service. Failed responses in both procedures indicated hearing loss worse than 30 dB HL. Infants 
failing the second step were further referred for a diagnostic evaluation, consisting of a clinical ABR and medical 
examination. Newborns affected by conditions at high risk of developing congenital or early onset SNHL (severe 
prematurity, bacterial/viral meningitis, severe newborn jaundice, severe hypoxic ischaemic encephalopathy, 
congenital virus infections, family history of SNHL, foetal alcoholic syndrome, intraventricular haemorrhages, 
periventricular leukomalacia, genetic syndromes associated with SNHL) were included in the universal hearing 
screening program as at-risk group and were referred directly to the second step.

VEMP testing was planned in children who were referred to the second step or clinical evaluation, both for 
logistical reasons (it was hard to introduce an experimental method on a large scale at birth centres) and also to 
address VEMP in a smaller cohort of children with a higher SNHL prevalence and, consequently, a higher inci-
dence of VD.

A retrospective analysis of the hearing screening program in the Stockholm region resulted in an SNHL preva-
lence of 0.3% of newborns. Assuming that half of these newborns had vestibular loss1, a representative sample size 
would be no fewer than 45 children (power analysis based on alpha of 0.05 and a beta of 0,80).

We enrolled 50 infants in a period of 14 months. The study was performed in accordance with the Declaration 
of Helsinki guidelines and was approved by the Stockholm regional ethics committee (protocol number 
2015/1296-31/2). Recruitment was conducted after obtaining informed written consent from the parents. We 
excluded critically ill infants. The collected sample represented 60% of the eligible candidates for VEMP testing, 
as 40% of the parents declined to participate in the study. VEMP was recorded on both sides, except in one case. 
A total of 99 ears were tested in 50 children.

Method
Test specifications.  Recording VEMP at the second step hearing screening or clinical evaluation permitted 
us to measure VEMP in continuity with hearing testing. In fact, it was relatively easy to convert a commercially 
available ABR device for VEMP testing. We used the signal averager Eclipse EP 25 with the VEMP module 
(Interacoustic A/S, Middelfart, Denmark). This device has software modules dedicated to ABR and a panel of 
VEMP test protocols.

The VEMP measured in this study was cervical VEMP (cVEMP), and the method to measure this VEMP is 
currently regulated in adults by expert guidelines23. cVEMP is a myogenic potential induced by vestibular stim-
ulation that is easily evoked by loud sound impulses to the ear. These potentials are recorded at the ipsilateral 
sternocleidomastoideus muscle (SMC) with surface electromyography (EMG), and they appear as short-latency 
positive-negative deflections of the basal EMG recording. Collecting and averaging 100-250 sweeps is enough to 
obtain stable responses. cVEMP is generally studied in terms of amplitude analysis, considering that most periph-
eral vestibular disorders do not affect the response latency. VEMP amplitude is dependent upon four parameters: 
the vestibular function, the muscle activity, the stimulus intensity and the stimulus configuration. Given the 
inhibitory nature of the sacculo-collic myogenic reflex at the basis of the cVEMP, the test requires sustained SMC 
muscle tone, obtained in adults by voluntary head elevation in supine position or by protracted head turns in 
sitting position24. Variability in muscle activation levels is common and can affect cVEMP reproducibility. In fact, 
a threshold effect is observed at EMG levels under 50 µVolts, and a linear amplitude increase up to 400 µVolts. 
Upon these EMG values it is expected an amplitude saturation effect. Hence, it is crucial to maintain muscular 
activity within the range of the linear amplitude/EMG to obtain reproducible results. By scaling the response 
amplitude over the prestimulus EMG level and by using standardized stimulus configuration and intensity, the 
cVEMP amplitude can be used for the study of the peripheral vestibular function. In children, the execution of the 
test is complicated by poor compliance. Sustained neck muscle activation cannot be demanded of infants, and the 
frequent presence of vernix in the external canal or effusion in the middle ear may affect the acoustic admittance 
to air-conducted stimuli. To compensate for these drawbacks, we applied a stimulation protocol based on:

•	 EMG-driven stimulus delivery algorithm: the device permitted the monitoring of the EMG at the recording 
site and permitted also to control the stimulus delivery by this EMG level. According to the factory specifi-
cations, the EMG level at recording point was sampled repetitively over intervals of 100 ms and averaged as 
the root mean square (RMS) of rectified EMG. For this study, we maintained the factory settings of stimulus 
delivery within an EMG reference level of 50–150 µVolts. Once EMG resulted within this reference interval, 
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the device operated a new RMS averaging of rectified EMG over an interval of 100 ms (prestimulus EMG 
sample) followed by stimulus delivery. The EMG recording was continued up to 80 ms after stimulus and the 
EMG values within the interval −20 ms, +80 ms were processed as VEMP recording window. This opera-
tional algorithm was repeated for each sweep collected in the recording session (trial).

•	 Bone-conducted stimuli instead of sound stimuli: the stimuli were applied on the mastoid bone and consisted 
of a tone burst vibration delivered by a Radioear B71 bone vibrator device (Radioear Corp, New Eagle, PA, 
USA) at 500 Hz and 50 dB nHL (119 dB FL) with a 2 ms rise-plateau-fall configuration and a stimulation rate 
of 5.1/sec.

Recordings were performed unilaterally. Two inverting electrodes were added to the belly of the two SCMs: 
the non-inverting electrode was on the manubrium sterni, and the ground electrode was on the forehead. The 
skin was prepared with gentle abrasion to maintain an electrode impedance under 10 kΩ. The signal was pro-
cessed by amplification (gain: 2000) and was bandpass filtered (10–750 Hz) within the recording window from 
−20 to 80 ms. At least 120 sweeps were collected, with a maximum of 200, for each trial.

Conduction of the test.  VEMP was recorded by four audiologists trained in paediatric audiological tests 
after the scheduled aABR at the second step or diagnostic ABR. During VEMP testing, the child was supine in the 
parent’s arms with the head supported on the examiner’s hand and was awake enough to generate neck muscle 
activity. The bone transducer was maintained in contact with the skin of the mastoid region by the operator with 
lateromedial digital pressure and was placed above an imaginary antero-posterior line crossing the ear canal. 
SMC activity could be monitored on a screen as EMG levels at the recording site. The examiner, modulating the 
child´s head support, could change the SCM activity and the corresponding EMG level on screen, probably by 
acting on the neck muscles myotatic reflex. In older infants, muscle tonus could have been influenced by volun-
tary activity, especially in cases of agitation. The examiner was instructed to maintain the SMC activity level as 
stable as possible within an EMG window of 50 to 150 μVolts, adjusting the head support in response to the EMG 
values on screen (Fig. 1 in Supplementary Information shows a schematic representation of the VEMP record-
ing settings). The duration of the trials was as long as the child could allow, with a primary goal of 120 collected 
responses and a secondary goal of 200 collected responses. In cases of insufficient sweep collection or scarce wave 
reproducibility, VEMP recording was repeated in further trials, as long as the child permitted test prolongation. 
Testing was generally completed within 90–120 seconds per side. Protracted crying, scarce wakefulness or agita-
tion were common reasons for the interruption of the test before the collection of 120 responses.

Data collection and statistical analysis.  For each subject, we collected demographic data (age in months 
and gender), data on diagnosis and comorbidity and data regarding whether the subject was referred to the 
second step because he or she failed the newborn hearing screening or because he or she belonged to the at-risk 
group.

Moreover, for each tested ear, the following data were collected:

	 1.	 Hearing loss (HL): the presence/absence of HL was defined by a pathological response at AABR or ABR, 
corresponding to an HL of ≥35 dB HL for air-conducted stimuli.

	 2.	 VEMP response: VEMP was defined as positive-negative EMG deflection with a latency of 12–17 ms for 
the first peak (p1) and 20–25 ms for the second peak (n1) after stimulus. The response had to resemble the 
typical response obtained in adults by AC stimulation, which is highly indicative of ipsilateral vestibular 
function25. VEMP identification was based on morphological analysis, as commonly conducted in adults. 
The analysis was accomplished by the senior author (KB), who was blinded to the test parameters and 
clinical conditions.

	 3.	 Muscle activity: the device could calculate the mean (SD) in µVolts of the prestimulus EMG samples col-
lected in the trial. This mean value was named prestimulus EMG and used as a marker of muscle activation 
during testing.

	 4.	 VEMP amplitude: measured as the N1-P1 interpeak EMG difference in µVolts. A scaled amplitude over 
the prestimulus EMG was also given. The amplitude was furthermore expressed in terms of the asymmetry 
ratio (AR), and the equivalent was calculated also for the corrected amplitude (corrAR). AR was defined 
as the absolute value of the ratio of the amplitude difference between the sides over the sum. For record-
ings with no apparent response, an n1-p1 interval was calculated arbitrarily with EMG values measured at 
13 ms and 23 ms after stimulus.

	 5.	 VEMP latency: the latency of the first peak, n1, and the second peak, p1, were given in milliseconds (ms).
	 6.	 Completion grade: measured as the number of collected responses (sweeps) for each trial. A cut-off of 120 

sweeps defined test completion.

When there were two or more recording trials, the trial with higher completion grade and the best VEMP 
waveforms was considered.

Summary statistics were provided for both demographic and test variables. These parameters were used as 
control variables for the analysis of two feasibility indicators, the completion rate (CR) and the response rate (RR).

CR was the proportion of tested ears with at least 120 collected sweeps; it was a marker of test completion in 
the sample and, consequently, an index of test viability on a large scale in infants. CR was analysed with respect 
to diagnosis, hearing loss and the prestimulus EMG cut-offs. Non-parametric tests (χ2 test) were applied to study 
the association between CR and those determinants, whereas parametric tests (Mann-Whitney U-test) were 
applied to study the relation between CR and the number of collected sweeps, prestimulus EMG, and response 
amplitude.
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The second outcome, RR, was computed as the proportion of the tests in which it was possible to identify a 
characteristic VEMP response. RR represented an index of test reproducibility. RR was studied with respect to 
diagnosis, HL, CR, prestimulus EMG cut-offs with non-parametric analysis. Receiver operating curve (ROC) 
analysis was performed to define the amplitude cut-off for the response identification.

Statistical significance was stated at p < 0.05.

Results
Descriptive statistics.  The children showed an equal distribution across genders (M: 52%; F: 48%) and were 
tested at a mean age of 2.3 ± 1.9 months (median: 2; range: 1–6; mode: 1).

Hearing loss and diagnosis.  HL was diagnosed in 18 (36%) subjects. HL was diagnosed in 10 of 26 infants 
(38.4%) who failed the newborn hearing screening and in 8 of 24 infants (33%) included in the at-risk group. It 
was possible to establish the aetiology of hearing loss in four infants in the first group (Table 1). HL in the at-risk 
group was directly related to the background diagnosis or to an associated middle ear effusion, for example, in the 
case of Down syndrome or cleft palate.

Amplitude and latency.  Amplitudes and latencies were analysed in the identifiable responses. The abso-
lute amplitude was characterized by a skewed distribution with a median value of 44,1 µVolts (IQR: 30,0–77,2; 
min: 11,3; max: 285,1). The corrected amplitude distribution was also skewed, with a median value of 0,46 (IQR: 
0,30–0,79; min: 0,11; max: 3,7). Amplitude and corrected amplitude did not correlate with age, gender, latency, 
prestimulus EMG, or grade of completion and did not differ significantly based on diagnosis or HL. The two 
amplitude parameters correlated strongly with themselves (Pearson’s r = 0,90, p < 0,001). Moreover, by stratifying 
the scaled amplitudes over the prestimulus EMG, it was possible to identify an EMG cut-off level of approxi-
mately 150 µVolts upon which the VEMP response systematically subsided (Fig. 1). The AR had a median value of 
0,25 (IQR = 0,13–0,46; min = 0; max = 1); additionally, the corrAR had a mean = 0,32 (±0,24; min = 0; max = 1). 
Restricting the AR analysis to the 34 subjects with clearly identifiable VEMP responses on both sides, the AR was 
0,25 (±0,16; min: 0,1; max: 0,58), and the corrAR was 0,26 (±0,19; min: 0; max: 0,68).

The peak latencies had a mean P1 value = 14,1 ms (±1,3; min: 11,3, max: 18,3) and a mean N1 value = 22,3 ms 
(±2,1; min: 18,3, max: 26,7). Latencies did not correlate with any of the other clinical parameters, except the P1 
latency, which correlated weakly with age (Spearman’s ρ = −0,349, p = 0,008). We also modelled this relation as a 
linear regression, P1(ms) = −0,296 * (months) +14,8 (R2 = 0,31, p = 0,021).

VEMP Completion rate (CR).  In 86 of the 99 tested ears (86,8%), it was possible to complete VEMP testing 
by collecting at least 120 sweeps. In nearly half of the tested ears (49/99), sampling reached the default maximum 
of 200 sweeps. In seven subjects, we could only complete the test on one side. In four subjects, VEMP testing was 
not completed on either side. Figure 2 shows the case distribution for CR classes.

Looking at the factors affecting the CR, the prestimulus EMG was the only statistically significant factor. 
As shown in Fig. 3, incomplete VEMP recordings were associated with significantly higher prestimulus EMG. 
Despite the application of a recording protocol limited by the detection of EMG at recording point within the 
reference interval of 50–150 µVolts, several VEMP responses were recorded at prestimulus EMG outside that 
interval. Limiting the analysis to the recordings with the prestimulus EMG within the detection interval, 2/65 
incomplete tests resulted (3%, CR = 97%); the proportion of incomplete tests was significantly higher outside the 
interval: 25% were under the cut-off of 50 µVolts (1/4 tests) and 37% were over 150 µVolts (11/30).

Group Diagnosis Unil HL Bil HL No HL

Refer

cCMV 1

Connexin 26 mutation 1

SOM 1 4

VIII Nerve hypoplasia 1

Not defined 5 1 12

Total (%) 26 (52) 6 (23) 4 (15,4) 16 (61,6)

Risk group

Down Syndrome 1 1 2

Leber´s Amaurosis 1

Syndromic n.s. 1 2

Preterm 1 3

HIE 1 6

Sepsis/meningitis 2

Cleft palat 2 1

Total (%) 24 (48) 5 (20,8) 3 (12,5) 16 (66,7)

Table 1.  Case distribution in diagnostic groups and type of hearing loss. Uni/BIl/No HL: unilateral/bilateral/
absent hearing loss. Acronyms: cCMV: congenital cytomegalovirus infection; SOM: serous otitis media; 
syndromic n.s.: syndromic phenotype, not specified; HIE: hypoxic ischemic encephalopathy. Within brackets the 
proportion in percentage referred to the whole group (column diagnosis) or diagnostic subgroup (columns HL).
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VEMP response rate.  A VEMP response was identified in 72 (73%) of the tested ears. The best ampli-
tude cut-off for VEMP identification was 24.7 μVolts (sensitivity of 87% and specificity of 89%). The correspond-
ing cut-off value of 0.18 obtained on the scaled amplitudes was able to separate the identifiable responses from 
non-identifiable responses with a sensitivity of 94% and a specificity of 96% (Fig. 4).

Figure 1.  Effect of the prestimulus EMG on the VEMP scaled amplitude: at EMG over 150 µVolts the amplitude 
is generally depressed and closer to the detection threshold (horizontal line: 0,18 value scaled amplitude).

Figure 2.  Histogram showing the sample distribution (ears) related to the number of completed recordings. 
Vertical line points out the target level for test completion (120). Nearly half of the subjects reached the 
maximum default of 200 collected sweeps.

Figure 3.  Box plot indicating the difference in prestimulus EMG between the completed and not completed 
tests. o: outlier; *extremes. Difference statistically significant at p < 0,01.
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Three parameters could significantly affect the RR: CR, HL and the prestimulus EMG.
A higher RR was present in completed tests than uncompleted tests (78,8% vs 35,7%, χ2 test: 11,2. p = 0,02), 

in ears with normal hearing than in those showing HL (78,4% vs 56%, χ2 test: 4,72. p = 0,03) and in tests 
with prestimulus EMG within the reference interval than in those outside this range (86,1% vs 47%, χ2 test: 
17,1. p < 0,001). Finally, correcting for all three determinants (no HL, CR ≥ 120 and prestimulus EMG within 
50–150 µVolts; ideal conditions were fulfilled in 48 ears), the response rate increased from 73% to 91.5%.

RR, diagnosis and HL.  The relationship between HL, HL diagnosis and RR is summarized in Table 2. To reduce 
the effects of confounding factors, this analysis was conducted including only the cases with ideal testing condi-
tions (prestimulus EMG within 50–150 µVolts and CR ≥ 120; 63 ears). VEMP responses were absent in cCMV11 
and nerve hypoplasia cases13,26, whereas they were present in cases of connexin 26 gene mutation27. Interestingly, 
in the at-risk group, VEMP was present in all cases of hypoxic encephalopathy and in severe prematurity, in which 
the hearing was also unaffected. VEMP was also found, with hearing, in cases of meningitis/sepsis, indicating 
that these illnesses had spared the inner ear structures9. A few examples of VEMP recordings are given in the 
Supplementary Information. VEMP tended to have a concordant pattern with hearing result at screening: 43/54 
identifiable VEMPs were found in ears with normal hearing, and no identifiable VEMPs were found in six of the 
nine ears with HL. The odds ratio of a VEMP/hearing concordance was 2,56: it was two and half-fold more prob-
able to find concordant VEMP and hearing response than the opposite.

Figure 4.  Distribution of identifiable vs not identifiable VEMP for subject (x axis) and amplitude (y-axis left) 
or scaled amplitude (y-axis right). The majority of the non-identifiable VEMP had an amplitude less than 
24,7 µVolts or scaled amplitudes less than 0,18. The diagnostic precision of these two cut offs is provided.

Group Diagnosis VEMP+ HL VEMP− HL
Test 
agreement

Refer

CMV 0 0 2 2 100%

Connexin 26 mutation 2 2 0 0 0%

SOM 5 1 0 0 80%

Nerve Hypoplasia + IP 0 0 2 2 100%

Not defined 15 4 2 1 70,5%

Total (%) 28 (44%) 22 5 6 5

Risk group

Down Syndrome 4 0 1 0 80%

Leber´s Amaurosis 1 0 0 0 100%

Syndromic n.s. 5 1 0 0 80%

Preterm birth 5 1 0 0 80%

Hypoxic Encephalopaty 11 2 0 0 82%

Sepsis/meningitis 3 0 0 0 100%

Palatoschisis 3 2 2 1 40%

Total (%) 35 (56%) 32 6 3 1

Table 2.  Sample distribution (ears) according to VEMP, hearing loss and test agreement between VEMP and 
hearing screening. VEMP+: ears with identifiable VEMP; VEMP−: ears with no identifiable VEMP; HL: 
ears with hearing loss; test agreement: proportion of ears with concordant VEMP/hearing level, intended 
as ears showing identifiable VEMP and normal hearing or absent VEMP and HL. Refer to Table 1 for other 
abbreviations.
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Discussion
This study confirmed the high feasibility of VEMP integrated in the newborn hearing screening program. VEMP 
measurement, introduced in the second step of hearing screening or after the clinical ABR, could be completed in 
most of the tested ears (86%) and in up to 97% of recordings with prestimulus EMG within reference. Further, more 
than three quarters of the tests resulted in an easily identifiable VEMP response, up to 91.5% when the test was 
conducted under ideal clinical conditions. However, the study showed also that VEMP reproducibility was prone 
to procedural bias, mainly the regulation of EMG levels during recording. Other tests have been proposed for the 
screening of vestibular function in children. A valid alternative to VEMP is the video head impulse test (vHIT), 
which is based on computerized eye tracking systems. It studies the efficacy of the vestibular ocular reflex in gaze 
holding during passive head turns28. In our experience, the vHIT may be difficult to conduct in infants younger 
than 4–5 months old, given the difficulty they have in sustaining visual fixation on a target, especially during head 
movements. Moreover, the VOR gain in the first months of life is naturally depressed. These two factors can reduce 
the value of the vHIT for vestibular testing in infants. Conversely, VEMP recording can be easily integrated with 
hearing screening programmes, allowing VEMP measurement to be performed in continuity with the ABR testing.

In healthy adults, the corrected amplitude of cVEMP evoked by submaximal AC stimuli (133 dB SPL) has 
shown a wide variability (mean: 1,2; range: 0–4,5)29; in this cohort, the median corrected amplitude was lower at 
0,46 (min: 0,1-max: 3,7), anyway obtained with less intensive BC stimuli (119 dB FL). Looking at the distribution 
of the parameter corrAR, a value over 0,64 (corresponding to a corrected amplitude 4,6-fold larger on one side 
than the other) could be considered outside a normal variability range. VEMP latencies were like those expected 
in adults, with a possible trend of P1 shortening with age at a rate of −0,35 ms/month.

A screening test, in addition to its diagnostic properties, has to fulfil specific methodological requirements: 
it should be inexpensive, easy to administer, not harmful, and cover a population in which the target disease 
occurs with high incidence30. VEMP conducted at newborn hearing screening accomplished these criteria: con-
verting a commercially available ABR device used for hearing screening to measure VEMP maximized the cost 
containment and viability of a large-scale vestibular test in infants. Moreover, VEMP could be measured in the 
most tested ears with a CR of up to 97% under optimized conditions. Finally, VEMP was added at the second 
step hearing screening or at the clinical ABR, in which a high prevalence of the target condition, VD, is expected 
(estimated to occur in 1/20 children).

VEMP has been recently introduced in a large multicentre national study as a second-level vestibular assess-
ment for all SNHL newborns detected during the hearing screening program31. Dealing with the same idea, the 
present study aimed, instead, to integrate VEMP into the hearing screening program for all children tested after 
the first step of hearing testing. In this way, it was possible to enlarge the study to normal hearing infants (the refer 
ones at the first step and dismissed during the following steps). This approach permitted to show the negative 
effect of HL on the RR, most likely due to a higher prevalence of vestibular failure in the HL group. Moreover, 
integrating VEMP in hearing screening permitted the study of vestibular function in specific cohorts of infants 
regardless of hearing loss. For example, it was possible to demonstrate that conditions such as preterm birth and 
hypoxic encephalopathy, as well as syndromes such as Down syndrome, had a limited effect on vestibular func-
tion (Table 2).

VEMP response and its determinants.  This study confirmed, in part, the literature trends regarding the 
aetiology of vestibular failure in children: we obtained, for example, poor VEMP responses in individuals with 
cCMV11 and nerve hypoplasia13,26. However, we have also obtained unexpected results, such as VEMP and hear-
ing maintenance in meningitis/sepsis9.

VEMP was not retrieved in 9 of the 63 recordings conducted under ideal test conditions (CR ≥120 and pres-
timulus EMG within 50–150 µVolts). Whereas 4 of these cases were associated with diagnoses in which it is highly 
probable to find vestibular failure (CMV and nerve hypoplasia), 5 could not be explained by the clinical back-
ground, and 3 were in ears with normal hearing levels. To our knowledge, the presence of isolated vestibular loss 
in the presence of normal hearing has never been reported in infants. Further investigation is needed to confirm 
the presence of isolated vestibular loss in children.

VEMP was not altered by middle ear disorders. In fact, VEMP responses could be retrieved in all cases diag-
nosed with SOM. Moreover, there was no significant difference in the RR between conditions at high risk of high 
acoustic impedance (Down syndrome and cleft palate; 21 ears) and the remaining cases (61,9% for the formers 
and 75,69% for the latter, Fisher’s exact test, p = 0,16). VEMP by BC, in other words, bypassed the elevated acous-
tic impedance often found in newborns´ ears.

According to a recent systematic review32, VEMP failure—at least on one side—has been demonstrated in 
13% to 84% (weighted prevalence: 32%) of paediatric SNHL cases. Comparing these data to those of our cohort 
(restricted to the 63 recordings under ideal conditions and excluding 4 cases at high risk of elevated acoustic 
impedance), a subgroup of 11 ears with SNHL was found, four of which were unable to reproduce VEMP. This 
result corresponded to VEMP failure coupled to SNHL at a rate of 36%, in line with the literature trends.

Preliminary considerations of VEMP validity as a vestibular screening test.  Determining the 
validity of VEMP, in terms diagnostic accuracy for vestibular impairment in infants, was beyond the scope of this 
study, which had the aim to explore the test feasibility. However, some preliminary considerations can be drawn. 
VEMP, as a screening procedure, must generate minimal false negative results and should be integrated into a 
multi-step diagnostic protocol for the control of the false positive rate.

Regarding false positive responses (unidentifiable VEMP responses in cases of normal vestibular function), 
some concerns were raised in this pilot study. The test results, both in terms of CR and RR, were significantly 
affected by the prestimulus EMG. The reproducibility of cervical VEMP is optimal in a specific EMG range. 
Outside of this range, the amplitude may become markedly depressed24. This finding has been demonstrated in 
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adults under voluntary neck muscle contraction. The same pattern was demonstrated in this cohort, with a clear 
amplitude depression occurring with prestimulus EMG outside the reference interval (Fig. 1). In addition, the 
recording protocol, based on EMG controlled stimulus delivery, appeared effective in filtering the recordings at 
insufficient prestimulus EMG, but the same cannot be said for those recorded at excessive prestimulus EMG (over 
150 µVolts and, in some cases, up to 350 µVolts). Further technical development in the EMG stimulus delivery 
protocol in infants is required to abate the false positive results due to excessive muscle activity during recording. 
Furthermore, in these children, we obtained sustained muscle tonus by modulating head support, most likely 
acting on the stretch reflex of the neck muscles. It is unclear whether the way a muscle contraction is obtained, 
i.e., voluntarily in adults or by reflex in infants, could differently influence the VEMP response pattern. Reflexive 
SMC activation has been used to measure VEMP in newborns, for example, stimulating the rooting reflex in head 
turned newborns21. This study has demonstrated that VEMP obtained with reflexive SMC activation could be 
achieved in a large sample of infants with high reproducibility.

Regarding the false negative responses, they are identifiable VEMP responses in the presence of a real vestib-
ular deficit. A weak to moderate correlation between different vestibular testing methods has been observed in 
children1. In adults, the combination of normal cVEMP and a pathologic caloric response is common in superior 
divisional vestibular paresis, usually documented in vestibular neuronitis33. VEMP is also spared in the majority 
of acquired progressive bilateral vestibulopathies34, in which other vestibular test results are commonly depressed. 
Thus, a discrepancy between VEMP and other vestibular tests is possible and evident in cases of partial or pro-
gressive vestibular loss; however, it seems less probable to elicit a VEMP response in cases of extensive vestibular 
damage/vestibular areflexia27. VEMP in this study was evaluated on a qualitative level (presence/absence) with a 
potential underestimation of clinical conditions characterized by vestibular weakness without failure. However, a 
motor proficiency delay has been shown in children with extensive vestibular loss or vestibular areflexia9. Thus, a 
VEMP failure could represent a marker of vestibular-related motor delays.

Study limitations.  A major drawback of this study was the high refusal rate (40%), which may affect the 
inference of the results. Hearing screening can be a distressing moment for the parents, who struggle between 
hoping for screening dismissal and anxiety anticipating hearing loss confirmation. Such a distressed state, in our 
opinion, was the most plausible justification for the observed refusal rate. However, the collected sample retains 
a certain degree of population representativeness, considering the equal proportion of subjects from the referral 
group and from the at-risk group (48% vs 52%, respectively): in other words, the high refusal rate did not shift the 
sample distribution towards less severe clinical conditions (refer), returning a weighted spectrum of newborns´ 
clinical conditions similar to that commonly observed in newborn hearing screening programmes.

Conclusions
VEMP has shown a high level of feasibility when used alongside the regional newborn hearing screening pro-
gram. This result supports the use of VEMP as a vestibular screening tool in infants. Further studies are needed 
to confirm the diagnostic accuracy of VEMP as a form of vestibular screening in children. However, this pilot 
study has shown that it is possible to adapt a commercially available VEMP device for the large-scale assessment 
of vestibular function in infants.

Data availability
Data treated in this study are available in digital format.
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