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Social defeat stress-specific 
increase in c-Fos expression in 
the extended amygdala in mice: 
Involvement of dopamine D1 
receptor in the medial prefrontal 
cortex
Chisato Numa 1,2, Hirotaka Nagai 1,2, Masayuki Taniguchi1,2, Midori Nagai1,2, 
Ryota Shinohara   1,3 & Tomoyuki Furuyashiki1,2*

We recently reported that dopamine D1 receptor in the medial prefrontal cortex (mPFC) is activated 
by subthreshold social defeat stress and suppresses the induction of depressive-like behavior in 
mice. However, which mPFC projection(s) mediates this antidepressant-like effect remains poorly 
understood. Here we show that social defeat stress specifically increased c-Fos expression, a marker for 
neuronal activity, in distinct brain regions involved in emotional regulation, relative to novelty-induced 
exploration. Among these brain areas, D1 knockdown in the mPFC decreased social defeat stress-
induced c-Fos expression in the interstitial nucleus of the posterior limb of the anterior commissure 
(IPAC), a subregion of the extended amygdala. Using retrograde adeno-associated virus vectors and 
transgenic mice expressing Cre recombinase under the D1 promoter, we also found that D1-expressing 
deep-layer pyramidal neurons in the mPFC send direct projections to the IPAC. These findings indicate 
that social defeat stress specifically activates neurons in distinct brain areas, among which the IPAC is 
regulated by dopamine D1 receptor in the mPFC perhaps through direct projections. Thus, this study 
provides hints toward identifying neural circuits that underlie antidepressant-like effects of stress-
induced dopamine D1 receptor signaling in the mPFC.

Stress caused by aversive and demanding conditions induces different biological responses, depending on the 
stress conditions. It is thought that brief and moderate stress evokes adaptive responses, such as “fight-or-flight 
response”, and promotes habituation and resilience to stress. By contrast, prolonged or excessive stress may induce 
cognitive and affective dysfunctions, and predisposes to mental disorders1,2. Previous studies using rodent stress 
models including restraint stress, chronic unpredictable stress and social defeat stress have revealed that stress 
alters structures and activities of neurons in several brain areas including the medial prefrontal cortex (mPFC), 
hippocampus, and nucleus accumbens (NAc)3–7.

It has been shown that repeated social defeat stress decreases firing rates of dopamine neurons in the ventral 
tegmental area (VTA) projecting to the mPFC8 and stress-induced dopaminergic response in the mPFC9. These 
dopaminergic deficits have been shown to be crucial for repeated social defeat stress-induced social avoidance. 
On the other hand, we recently reported that subthreshold stress induced by single exposure to social defeat stress 
induces dopamine D1 receptor signaling in the mPFC10. Knockdown of dopamine D1 receptor in excitatory neu-
rons in the mPFC facilitated the induction of social avoidance after single or repeated exposure to social defeat 
stress. Consistently, it was reported that dopamine D1 receptor in the mPFC is crucial for antidepressant-like 
effects of ketamine, and that infusion of a D1-like receptor agonist induces antidepressant-like effects11. These 
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findings indicate that dopamine D1 receptor signaling induced by single exposure to social defeat stress exerts 
antidepressant-like effects.

Previous studies using optogenetic manipulations have revealed roles of mPFC projections to several brain 
areas, such as NAc, basolateral amygdala (BLA), lateral habenula, and dorsal raphe nucleus (DRN), in regulating 
depressive-like and anxiety-like behaviors12. Stimulation of these projections, except that to the lateral habe-
nula, appears to reduce depressive-like and/or anxiety-like behaviors. Besides these projections, mPFC pyramidal 
neurons send direct and indirect projections to various other brain areas, many of which have been suggested 
to be involved in stress responses13. However, previous studies have not systematically examined which mPFC 
projections are regulated by dopamine D1 receptor signaling. Thus, which mPFC projection(s) mediates the 
antidepressant-like effects of stress-induced dopamine D1 receptor signaling remains poorly understood.

In the present study, using c-Fos expression, a marker for neuronal activity, we found that single expo-
sure to social defeat stress specifically activates distinct brain areas including the extended amygdala, relative 
to novelty-induced exploration. Among these brain areas, knockdown of dopamine D1 receptor in the mPFC 
decreased social defeat stress-induced c-Fos expression in the interstitial nucleus of the posterior limb of the 
anterior commissure (IPAC), a subregion of the extended amygdala.

Results
Social defeat stress specifically induces c-Fos expression in distinct brain areas.  To examine 
brain regions that are activated by single exposure to social defeat stress, we exposed adult male C57BL/6 N 
mice to social defeat stress for 10 min (defeat stress group), and subjected these mice to immunohistochemistry 
for c-Fos as a marker for neuronal activity in several brain areas associated with emotional regulation at 90 min 
after the stress (Fig. 1a,b). In this experiment, we set two different control groups, the naïve group, in which 
mice were left undisturbed in their home cages, and the exploration group, in which mice were placed in a novel 
cage and engaged in novelty-induced exploration for 10 min (Fig. 1a). These two control groups allowed us to 
identify brain areas which were selectively activated by social defeat stress relative to novelty-induced explo-
ration. In most brain regions tested, one-way ANOVA revealed significant difference among the naïve group, 
the exploration group and the defeat stress group: prelimbic cortex (PL; P < 0.0001, F(2, 31) = 47.74), infral-
imbic cortex (IL; P < 0.0001, F(2, 31) = 35.08), NAc (P < 0.0001, F(2, 31) = 24.95), anterior cingulate cortex 
(ACC; P < 0.0001, F(2, 31) = 24.95), lateral septal nucleus ventral part (LSv; P < 0.0001, F(2, 30) = 25.68), bed 
nucleus of the stria terminalis (BNST; P < 0.0001, F(2, 30) = 39.17), substantia innominata (SI; P = 0.0052, F(2, 
30) = 6.288), IPAC (P < 0.0006, F(2, 30) = 9.497), medial hypothalamus (MH; P = 0.0008, F(2, 31) = 9.038), 
arcuate nucleus of the hypothalamus (ARH; P = 0.0006, F(2, 31) = 9.412), central amygdala (CeA; P < 0.0001, 
F(2, 31) = 25.74), BLA (P = 0.0131, F(2, 31) = 5.002), cortical amygdala (CoA; P < 0.0001, F(2, 31) = 17.37), 
VTA (P = 0.0217, F(2, 31) = 4.344), supramammillary nucleus (SUM; P = 0.0038, F(2, 31) = 6.716), posterior 
amygdala (PA; P < 0.0001, F(2, 30) = 18.08), hippocampal CA1 region (P = 0.0027, F(2, 30) = 7.240), periaque-
ductal gray (PAG; P < 0.0001, F(2, 31) = 15.67), and DRN (P = 0.0096, F(2, 31) = 5.411) (Fig. 1c–h). No signif-
icant difference was found in the locus coeruleus (LC; P = 0.4786, F(2, 30) = 0.7552) and parabrachial nucleus 
(PBN; P = 0.4370, F(2, 31) = 0.8503) (Fig. 1i). In the brain areas with significant difference among the three 
groups, social defeat stress increased the numbers of c-Fos-positive cells, compared with the naïve group: PL 
(P < 0.0001, q(31) = 13.10), IL (P < 0.0001, q(31) = 11.28), NAc (P < 0.0001, q(31) = 9.930), ACC (P < 0.0001, 
q(31) = 9.144), LSv (P < 0.0001, q(31) = 10.10), BNST (P < 0.0001, q(30) = 12.22), SI (P = 0.0046, q(30) = 4.885), 
IPAC (P = 0.0005, q(30) = 6.076), MH (P = 0.0005, q(31) = 6.011), ARH (P = 0.0004, q(31) = 6.135), CeA 
(P < 0.0001, q(31) = 9.895), BLA (P = 0.0111, q(31) = 4.387), CoA (P < 0.0001, q(31) = 8.330), VTA (P = 0.0337, 
q(31) = 3.729), SUM (P = 0.0033, q(31) = 5.045), PA (P < 0.0001, q(30) = 8.041), hippocampal CA1 region 
(P = 0.0019, q(30) = 5.366), PAG (P < 0.0001, q(31) = 7.912) and DRN (P = 0.0072, q(31) = 4.629) (Fig. 1c–h). 
Among these brain areas, more c-Fos-positive cells in the defeat group relative to the exploration group were 
found in NAc (P = 0.0018, q(31) = 5.375), LSv (P = 0.0027, q(30) = 5.180), BNST (P < 0.0001, q(30) = 7.742), 
IPAC (P = 0.0443, q(30) = 3.564), CeA (P = 0.0002, q(31) = 6.397), CoA (P = 0.0238, q(31) = 3.941) and PA 
(P = 0.0006, q(30) = 5.977). In most of these brain areas, novelty-induced exploration increased the number of 
c-Fos-positive cells relative to the naïve group, albeit to the lesser extent than social defeat stress. These findings 
indicate that neurons in distinct brain regions including the extended amygdala, an anatomical continuity of 
GABAergic neurons in BNST, IPAC and CeA involved in emotional regulation14, were selectively activated by 
social defeat stress, whereas neurons in other brain regions including PL, IL, ACC, SI, VTA and SUM were simi-
larly activated by both the exploration and the stress.

Dopamine D1 receptor in the mPFC regulates social defeat stress-induced c-Fos expression 
in the IPAC.  Since we previously reported that dopamine D1 receptor signaling in the mPFC upon social 
defeat stress attenuates the induction of social avoidance10, we examined whether dopamine D1 receptor in the 
mPFC is involved in social defeat stress-induced c-Fos expression described above. For this purpose, we knocked 
down the dopamine D1 receptor specifically in the mPFC with AAV vectors expressing artificial microRNA 
targeting D1 mRNA with EmGFP (Fig. 2a,b). Specificity and efficacy of the D1 knockdown has been validated 
elsewhere10. We subjected mice with the D1 knockdown to social defeat stress and performed c-Fos immunohis-
tochemistry. Among the brain areas in which social defeat stress specifically induced c-Fos expression relative to 
novelty-induced exploration, the D1 knockdown significantly decreased the number of c-Fos-positive cells in the 
IPAC of the defeated mice (P = 0.0084, t(9) = 3.355; Fig. 2c,d). These findings indicate that dopamine D1 receptor 
in the mPFC regulates social defeat stress-induced neuronal activation positively in the IPAC.

To examine whether D1 activation is sufficient to induce c-Fos expression in the IPAC, we performed c-Fos 
immunohistochemistry in the IPAC as well as in the PL and the IL with or without mPFC infusion of SKF81297, 
a D1-like receptor agonist, at 400 mg/L (1.37 mM), a dose that is larger than the reported affinity (i.e. Ki~2.2 nM) 
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Figure 1.  Social defeat stress specifically increased c-Fos expression in distinct brain areas, relative to novelty-
induced exploration.(a) A behavioral schedule. Mice received social defeat stress for 10 min (the defeat stress 
group) or were allowed to explore a novel cage for 10 min (the exploration group), and were kept undisturbed 
in their homecages for 90 min before being sacrificed for immunohistochemistry. As the naïve group, mice 
were left undisturbed in their homecages until sacrifice. (b) Automatic detection and counting of c-Fos-positive 
cells (Fos + cells) visualized by immunohistochemistry (Fos IHC). For example, the prelimbic cortex (PL) 
and the infralimbic cortex (IL) adjacent to anterior forceps (fa) were defined in a fluorescent image of c-Fos 
immunoreactivity (magenta) and nuclear staining with Hoechst33342 (blue), based on corresponding brain areas 
in the Allen Mouse Brain Atlas, as shown in the left. A magnified image of c-Fos immunoreactivity (magenta) 
corresponding to the inset in the fluorescent image and binarized signals of automatically designated Fos + cells 
(yellow) are shown in the right. Note that c-Fos signals are well overlapped by the binarized Fos + cells. Scale 
bars: 500 μm (left) and 50 μm (right). (c–i) Quantification of the numbers of Fos + cells in the naïve group, the 
exploration group and the defeat stress group. The number of data points for each group is shown below each 
bar. Schematics were drawn based on the Allen Mouse Brain Atlas. PL; prelimbic cortex, IL; infralimbic cortex, 
NAc; nucleus accumbens, ACC; anterior cingulate cortex, LSv; lateral septal nucleus ventral part, BNST; bed 
nucleus of the stria terminalis, SI; substantia innominata, IPAC; interstitial nucleus of the posterior limb of the 
anterior commissure, MH; medial hypothalamus, ARH; arcuate nucleus, CeA; central amygdala, BLA; basolateral 
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(Fig. 3a,b). This stimulation of D1-like receptors in the mPFC did not alter the number of c-Fos-positive cells in 
the IPAC (Fig. 3c), suggesting that activation of D1-like receptors in the mPFC is not sufficient for social defeat 
stress-induced c-Fos expression in the IPAC. It should be noted, however, that this treatment did not increase the 
number of c-Fos-positive neurons in the PL or IL either (Fig. 3c), suggesting that this treatment did not increase 
the excitation of mPFC neurons.

D1-expressing mPFC pyramidal neurons send direct projections to the IPAC.  To examine 
whether the IPAC receives direct projections from D1-expressing neurons in the mPFC, we injected retrograde 
AAV vectors (rAAV2retro) expressing EYFP only in the presence of Cre recombinase into the IPAC of transgenic 
mice expressing Cre recombinase under the promoter of dopamine D1 receptor (D1-cre) or wild-type mice with-
out Cre expression (Fig. 4a). These AAV vectors would be retrogradely infected into and consequently induce 
EYFP expression in D1-expressing neurons in the mPFC, if these neurons would send direct projections to the 
IPAC. Neither the mPFC nor the IPAC showed EYFP expression in the wild-type mice (Fig. 4b,c), confirming the 
lack of leaky expression of EYFP in the absence of Cre recombinase. By contrast, in D1-cre mice, EYFP expres-
sion was predominantly detected in deep-layer pyramidal neurons in the mPFC ipsilateral to the IPAC with AAV 
infusion. The IL tended to show higher intensity of EYFP signals than the PL (P = 0.0738, t(5) = 2.255), suggest-
ing that mPFC neurons projecting to the IPAC are more frequently distributed in the IL (Fig. 4d). EYFP-positive 
neurons were also detected in the agranular insular cortex (AI; Fig. 4c), though the number was much fewer. Note 
that EYFP-positive axonal processes were strongly detected in the IPAC, indicating that the infected neurons send 
projections to the IPAC (Fig. 4b). These findings indicate that D1-expressing deep-layer pyramidal neurons in the 
mPFC send direct projections to the IPAC.

Discussion
In the present study, we found that single exposure to social defeat stress induced c-Fos expression in multiple 
brain areas. Among these brain areas, in the NAc, LSv, BNST, IPAC, CeA, CoA and PA, social defeat stress spe-
cifically induced c-Fos expression relative to novelty-induced exploration. Furthermore, knockdown of dopa-
mine D1 receptor in the mPFC decreased c-Fos expression in the IPAC. Using retrograde AAV vectors and 
transgenic mice expressing Cre recombinase under the D1 promoter, we found that D1-expressing neurons in 
the mPFC send direct projections to the IPAC. Thus, these findings identified distinct brain areas that are specif-
ically activated by social defeat stress, and indicate that dopamine D1 receptor signaling in the mPFC regulates 
stress-induced activation of the IPAC, perhaps through direct projections.

Our findings revealed two types of brain areas with different stimulus selectivity: brain areas activated spe-
cifically by social defeat stress (stress-specific brain areas) and those activated by both social defeat stress and 
novelty-induced exploration (stress/exploration-responsive brain areas). The stress-specific brain areas include 
the extended amygdala composed of BNST, IPAC and CeA. The extended amygdala has been shown to be acti-
vated by aversive stimuli and involved in fear memory, anxiety-like behaviors and pain-induced aversion15. Given 
that social defeat stress is more aversive than novelty-induced exploration, the higher level of aversiveness could 
explain social defeat stress-specific activation of the extended amygdala.

The present study identified the IPAC as brain areas in which dopamine D1 receptor in the mPFC affects social 
defeat stress-induced c-Fos expression. Previous studies showed that systemic administration of antidepressants 
or antipsychotics induces Fos-like immunoreactivity in the IPAC16,17. Rodent studies using in vivo microdialysis 
have shown that conventional antidepressants which inhibit serotonin and/or noradrenaline reuptakes increase 
the extracellular level of dopamine in the mPFC18,19. Thus, dopamine D1 receptor in the mPFC could also be 
involved in antidepressant-induced Fos expression in the IPAC. However, pharmacological stimulation of D1-like 
receptors in the mPFC did not induce c-Fos expression in the IPAC. Since this stimulation did not induce c-Fos 
expression in the mPFC either, stimulation of D1 receptor alone may not be sufficient to increase the excitation of 
mPFC neurons. It has been reported that NMDA receptor is involved in dopamine-induced c-Fos expression in 
striatal neurons20. Thus, concurrent stimulation of dopamine receptors with NMDA receptor could be necessary 
to increase the excitation of mPFC neurons.

Using retrograde AAV vectors and D1-cre mice, we found that the IPAC receives direct projections from 
D1-expressing mPFC neurons. Given that mPFC neurons projecting to the IPAC are glutamatergic, these direct 
projections could facilitate social defeat stress-induced excitation of IPAC neurons. Whether direct projections 
from the mPFC to the IPAC are involved in antidepressant-like actions of dopamine D1 receptor in the mPFC 
warrants to be investigated. However, the possibility that some indirect projection mediates the effect of mPFC 
D1 receptor on the IPAC cannot be excluded, until the expression of dopamine D1 receptor would be manipu-
lated selectively in mPFC neurons directly projecting to the IPAC. Since D1-expressing neurons also exist in the 
IPAC, the dopaminergic system may also directly affect IPAC neurons21.

In conclusion, the present study identified the IPAC as a brain area in which social defeat stress-induced 
c-Fos expression is affected by dopamine D1 receptor in the mPFC. To examine the roles of this brain area in 
antidepressant-like effects of dopamine D1 receptor in the mPFC may provide hints toward identifying neuronal 
circuits that underlie adaptive stress responses.

amygdala, CoA; cortical amygdala, VTA; ventral tegmental area, SUM; supramammillary nucleus, PA; posterior 
amygdala, PAG; periaqueductal gray, DRN; dorsal raphe nucleus, LC; locus coeruleus, PBN; parabrachial nucleus. 
Values are expressed as means ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 for multiple comparison tests with 
Tukey-Kramer correction.
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Methods
Animals.  Male C57BL/6 N mice of 7 to 8-week old and male ICR mice retired from breeding were purchased 
from Japan SLC (Shizuoka, Japan) and used for behavioral and histological analyses. Drd1a-Cre mice (D1-cre 
mice, expressing Cre recombinase under the promoter of the dopamine D1 receptor) on a C57BL/6 background 
(B6.FVB(Cg)-Tg(Drd1a-cre)EY262Gsat/Mmucd) were provided by the Mutant Mouse Research and Rescue 
Center (MMRRC) at UC Davis (Davis, CA, USA) and used for histological analysis. All the mice were main-
tained on a 12 h light/12 h dark cycle with food and water available ad libitum. All procedures for animal care and 
use were in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals 
and were approved by the Animal Care and Use Committees of Kobe University Graduate School of Medicine.

Social defeat stress.  Male C57BL/6 N mice (9 to 10-week old in Fig. 1 and 14-week old in Fig. 2) were subjected 
to single exposure of social defeat stress, as previously described with minor modifications9,10,22,23. Prior to the stress, 
ICR mice were screened as aggressor mice based on their aggression against novel C57BL/6 N mice for 3 min daily for 3 
consecutive days. The aggression was evaluated by the latency to the first attack and the frequency of the attacks during 
the 3-min exposure. On the day of the social defeat stress, a male C57BL/6 N mouse was transferred to the home cage 
of one of the aggressor mice and was attacked for 10 min. The defeated mice were sacrificed at 90 min after the stress for 
histological analyses.
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Figure 2.  Knockdown of dopamine D1 receptor in the mPFC decreased social defeat stress-induced c-Fos expression 
in the IPAC. (a) An experimental schedule. Mice received bilateral infusions of an AAV vector expressing either 
artificial microRNA targeting dopamine D1 receptor (AAV-DIO-EmGFP-D1miRNA) or control sequence (AAV-
DIO-EmGFP-CtrlmiRNA) with EmGFP in the presence of Cre recombinase. Another AAV vector expressing Cre 
recombinase under the CMV promoter (AAV-Cre) was simultaneously infused to enable expression of D1 and 
control miRNA with EmGFP. Four weeks later, they received single exposure to social defeat stress and were sacrificed 
for immunohistochemistry at 90 min later. (b) A representative image (right) of EmGFP expression (green) derived 
from AAV vectors infused into the mPFC (left) and nuclear counterstaining with Hoechst33342 (magenta). Note 
that EmGFP expression is centered at the infralimbic cortex (IL), but spread to adjacent areas including the prelimbic 
cortex (PL). Scale bar: 200 μm. (c) Quantification of the numbers of Fos + cells in the defeat stress group with 
expression of control miRNA (Ctrl miRNA) and D1 miRNA in the mPFC. The number of data points for each group 
is shown below each bar. Values are expressed as means ± SEM. **P < 0.01 for unpaired t test. See the legend of Fig. 1 
for abbreviations of the names of brain areas. (d) Representative images of c-Fos immunoreactivity (magenta) and 
binarized Fos + cells (yellow) in the IPAC of the defeated mice with expression of control miRNA or D1 miRNA in 
the mPFC. Note that the D1 knockdown in the mPFC decreased the number of Fos + cells. Scale bar: 200 μm (upper 
image) and 50 μm (lower images). Schematics were drawn based on the Allen Mouse Brain Atlas.
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the mPFC. After 120 minutes, they were sacrificed for immunohistochemistry. (b) A representative image 
showing the locations of tips of cannulas in the mPFC with nuclear counterstaining by Hoechst33342. Scale 
bar: 200 μm. (c) Quantification of the numbers of Fos + cells induced by local infusion of saline or SKF81297 
to the mPFC. The number of data points for each group is shown below each bar. Values are expressed as 
means ± SEM. Stimulation of D1-like receptors did not increase the number of c-Fos-positive cells in IPAC, IL 
or PL. Schematics were drawn based on the Allen Mouse Brain Atlas. See the legend of Fig. 1 for abbreviations 
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Figure 4.  D1-expressing deep-layer pyramidal neurons in the mPFC send direct projections to the IPAC. 
(a) An experimental schedule. D1-cre mice, which express Cre recombinase in D1-expressing neurons, and 
wild-type mice received unilateral infusions of a retrograde AAV vector expressing EYFP in the presence 
of Cre recombinase (rAAV2retro-DIO-EYFP) to the IPAC. After 2 or 4 weeks, they were sacrificed for 
immunohistochemistry. (b) Representative images of EYFP expression derived from the AAV vector infused 
into the IPAC of D1-cre mice and wild-type mice (WT). Note that EYFP-positive projections, but not EYFP-
positive cell bodies, are selectively observed in the IPAC of D1-cre mice, confirming retrograde infection of 
the AAV vector. Scale bar: 200 μm. (c) Representative images at lower and higher magnifications (middle and 
right, respectively) of EYFP expression (yellow) and nuclear counterstaining by Hoechst33342 (blue) in the 
mPFC of D1-cre mice and wild-type mice which received unilateral infusion of rAAV2retro-DIO-EYFP in the 
IPAC. Note that cell bodies of pyramidal neurons expressing EYFP are observed in mPFC deep layers. Scale 
bar: 500 μm. (d) Quantification of EYFP intensities in PL and IL in D1-cre mice which received an infusion of 
the AAV vector in the IPAC. The number of data points for each group is shown below each bar. The density 
of EYFP-expressing neurons appears to be higher in the IL than in the PL. #P < 0.1 for paired t test. Schematics 
were drawn based on the Allen Mouse Brain Atlas. See below and the legend of Fig. 1 for abbreviations of the 
names of brain areas. MO; motor cortex, SS; somatosensory cortex, CLA; claustrum, GU; gustatory cortex, AI; 
agranular insular cortex, ORB; orbital cortex.
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Immunohistochemistry.  For c-Fos immunohistochemistry, we used 9 mice for the naïve group, 12 mice for 
the exploration group and 13 mice for the defeat stress group in Fig. 1, 5 mice for the control miRNA group and 
6 mice for the D1 miRNA group in Fig. 2 (see the definitions of respective groups in the Results section), and 4 
mice each for D1-like receptor agonist infusion and for saline infusion in Fig. 3. We did not exclude any of them 
from our analyses, unless a brain slice or its part was damaged during the immunohistochemistry procedure.

Immunohistochemistry was performed as previously described with minor modifications10,23. Briefly, mice 
were deeply anesthetized with intraperitoneal injection of sodium pentobarbital (100 mg/kg, Nacalai Tesque, 
Kyoto, Japan) and transcardially perfused with a flush of saline followed by 0.1 M sodium phosphate buffer con-
taining 4% paraformaldehyde. Brains were obtained from the mice and postfixed in the same fixative at 4 °C 
overnight. For c-Fos immunohistochemistry, frozen sections were used. After cryoprotection in Dulbecco’s mod-
ified phosphate-buffered saline (D-PBS) containing 30% sucrose two overnights, the brains were embedded and 
frozen in OCT compound (Sakura Finetek, Tokyo, Japan) and cut into 30- μm sections using a cryostat (CM1860, 
Leica Biosystems, Wetzlar, Germany). For immunohistochemistry for anatomical tracing, the brains were cut 
into 50- μm sections using a vibratome (NLS-AT, Dosaka EM, Kyoto, Japan). The tissue sections were kept in 
D-PBS containing 25% glycerol and 25% propylene glycol at −30 °C until use. For immunohistochemistry, the 
sections were incubated in blocking solution (D-PBS containing 1% normal donkey serum (017-000-121, Jackson 
ImmunoResearch Laboratories, Inc, West Grove, PA, USA) and 0.3% Triton X-100) for 1 h at room temperature 
(RT), followed by incubation in the blocking solution containing primary antibodies against c-Fos derived from 
rabbits (sc-52; Santa Cruz Biotechnology, Santa Cruz, CA, USA; 1:500) at 4 °C for 2 days. The sections were 
then incubated with Alexa Fluor 555-conjugated anti-rabbit IgG antibodies (A31572; Thermo Fisher Scientific, 
Waltham, MA, USA; 1:1000) at 4 °C for 1 day. The sections were rinsed with D-PBS containing 0.3% Triton X-100 
(PBS-T) at RT 3 times after both the primary antibody and secondary antibody reactions. After rinse in D-PBS, 
the sections were incubated with D-PBS containing Hoechst33342 (Thermo Fisher Scientific; 1:5000) at RT for 
15 min. After wash in D-PBS at RT twice, the sections were dried on APS-coated glass slides (Matsunami Glass, 
Kishiwada, Japan) and mounted in the ProLong Gold antifadant (ThermoFisher Scientific). For c-Fos immuno-
histochemistry, fluorescent images were acquired through a 10x Plan Apo λ objective lens (N.A. 0.45) attached 
with a fluorescent microscope (BZ-X710, Keyence, Osaka, Japan). For immunohistochemistry for anatomical 
tracing, fluorescent images were acquired through a 10x Plan Fluor objective lens (N.A. 0.30) attached with a 
fluorescent microscope (BZ-X710, Keyence) or through a 20x Plan-APOCHROMAT objective lens (N.A. 0.8) 
attached with a laser-scanning confocal microscope (LSM700, Carl Zeiss Microscopy, Goettingen, Germany).

To analyze c-Fos expression, we defined brain areas to be analyzed based on the Allen Mouse Brain Atlas and 
a mouse brain atlas24, as previously described25. We applied the Transfluor application module of the Metamorph 
software (Molecular Devices Corporation, PA, USA) to detect and count objects that are within the range of 
9–30 μm in diameter and brighter than a threshold determined by adjacent background signals in each brain 
area in each hemisphere. These objects were defined as c-Fos-positive nuclei. We averaged the numbers of 
c-Fos-positive cells from each hemisphere.

Brain infusion of adeno-associated virus vectors.  For knockdown of dopamine D1 receptor, 
adeno-associated virus (AAV) vectors expressing either artificial microRNA (miRNA) targeting dopamine D1 
receptor (D1 miRNA) or negative control miRNA were produced, as previously described10. Briefly, these AAV 
vectors encode artificial microRNA targeting either dopamine D1 receptor (D1 miRNA) or control sequence (Ctrl 
miRNA), and emerald green fluorescent protein (EmGFP), both of which were placed in double-floxed inverse 
open reading frames (DIOs), thereby allowing expression of microRNAs along with EmGFP only in the presence 
of Cre recombinase. These AAV vectors (AAV-DIO-EmGFP-D1miRNA or AAV-DIO-EmGFP-CtrlmiRNA) were 
used with another AAV vector constitutively expressing Cre recombinase under the CMV promoter (AAV-Cre). 
For retrograde tracing experiments, an rAAV2retro vector, a recently evolved variant of AAV that infects neu-
rons via a retrograde access, encoding enhanced yellow fluorescent protein (EYFP) inserted into a DIO cassette 
(rAAV2retro-DIO-EYFP) was produced, as previously described26.

For AAV infusion, stereotaxic surgeries were performed, as previously described with minor modifications10. For 
D1 knockdown experiments, after mice were anesthetized with isoflurane, their skulls were fixed on a stereotaxic appa-
ratus (Stoelting, Wood Dale, IL, U.S.A). Then we vertically injected 500 nL of artificial cerebrospinal fluid (124 mM 
NaCl, 3 mM KCl, 26 mM NaHCO3, 2 mM CaCl2, 1 mM MgSO4, 1.25 mM KH2PO4, 10 mM D-Glucose) containing 
5.0 × 108 copies of each AAV vector into the mPFC (1.8 mm anterior, 0.4 mm lateral and 2.8 mm ventral from the 
bregma) of both hemispheres. Stereotaxic coordinates were determined based on a mouse brain atlas24. Social defeat 
stress was applied after 4-week recovery. For retrograde tracing experiments, after mice were anesthetized with isoflu-
rane, their skulls were fixed on a stereotaxic apparatus. Then we vertically injected the same volume and concentration 
of rAAV2-retro-EYFP unilaterally into the IPAC (0.0 mm anterior, 2.2 mm lateral and 4.9 mm ventral from the bregma) 
of D1-cre mice or wild-type mice. Immunohistochemistry was performed after 2- or 4-week recovery.

Infusion of a D1-like receptor agonist to the mPFC.  Infusion of SKF81297, a D1-like receptor agonist, 
to the mPFC was performed, as described previously with minor modifications11. Briefly, after mice were anesthe-
tized with isoflurane, their skulls were fixed on a stereotaxic apparatus. Then guide cannulas of 0.5-mm thickness 
were vertically implanted into the mPFC (1.8 mm anterior, 0.4 mm lateral and 2.8 mm ventral from the bregma) 
of both hemispheres and fixed with cement on the skull. The stereotaxic coordinate was determined based on 
a mouse brain atlas24. After 1-week recovery, 500 nL of SKF81297 dissolved in saline at 400 mg/L, or saline as a 
vehicle control was infused bilaterally into the mPFC at 100 nL/min. After 2 h, mice were deeply anesthetized 
with intraperitoneal injection of sodium pentobarbital and transcardially perfused with 0.1 M sodium phosphate 
buffer containing 4% paraformaldehyde for c-Fos immunohistochemistry.
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Statistical analyses.  Data are expressed as means ± SEM. For comparisons between two groups, unpaired t 
test was used, except for Fig. 4d, in which paired t test was used. For comparisons between more than two groups, 
one-way ANOVA followed by multiple comparison tests with Tukey-Kramer correction was used. All statistical 
analyses were performed with Prism 8 (GraphPad Software, San Diego, CA, USA). P values less than 0.05 were 
considered to be statistically significant.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Received: 26 March 2019; Accepted: 22 October 2019;
Published: xx xx xxxx

References
	 1.	 Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and 

cognition. Nat Rev Neurosci 10, 434–445, https://doi.org/10.1038/nrn2639 (2009).
	 2.	 Popoli, M., Yan, Z., McEwen, B. S. & Sanacora, G. The stressed synapse: the impact of stress and glucocorticoids on glutamate 

transmission. Nat Rev Neurosci 13, 22–37, https://doi.org/10.1038/nrn3138 (2011).
	 3.	 Willner, P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. 

Psychopharmacology (Berl) 134, 319–329, https://doi.org/10.1007/s002130050456 (1997).
	 4.	 Krishnan, V. & Nestler, E. J. The molecular neurobiology of depression. Nature 455, 894–902, https://doi.org/10.1038/nature07455 

(2008).
	 5.	 Russo, S. J., Murrough, J. W., Han, M. H., Charney, D. S. & Nestler, E. J. Neurobiology of resilience. Nat Neurosci 15, 1475–1484, 

https://doi.org/10.1038/nn.3234 (2012).
	 6.	 Duman, R. S. & Aghajanian, G. K. Synaptic dysfunction in depression: potential therapeutic targets. Science 338, 68–72, https://doi.

org/10.1126/science.1222939 (2012).
	 7.	 Nie, X. et al. The Innate Immune Receptors TLR2/4 Mediate Repeated Social Defeat Stress-Induced Social Avoidance through 

Prefrontal Microglial Activation. Neuron 99, 464–479.e467, https://doi.org/10.1016/j.neuron.2018.06.035 (2018).
	 8.	 Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 

532–536, https://doi.org/10.1038/nature11713 (2013).
	 9.	 Tanaka, K. et al. Prostaglandin E2-mediated attenuation of mesocortical dopaminergic pathway is critical for susceptibility to 

repeated social defeat stress in mice. J Neurosci 32, 4319–4329, https://doi.org/10.1523/JNEUROSCI.5952-11.2012 (2012).
	10.	 Shinohara, R. et al. Dopamine D1 receptor subtype mediates acute stress-induced dendritic growth in excitatory neurons of the 

medial prefrontal cortex and contributes to suppression of stress susceptibility in mice. Mol Psychiatry 23, 1717–1730, https://doi.
org/10.1038/mp.2017.177 (2018).

	11.	 Hare, B. D. et al. Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant 
effects. Nat Commun 10, 223, https://doi.org/10.1038/s41467-018-08168-9 (2019).

	12.	 Vialou, V. et al. Prefrontal cortical circuit for depression- and anxiety-related behaviors mediated by cholecystokinin: role of ΔFosB. 
J Neurosci 34, 3878–3887, https://doi.org/10.1523/JNEUROSCI.1787-13.2014 (2014).

	13.	 Ongür, D. & Price, J. L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. 
Cereb Cortex 10, 206–219, https://doi.org/10.1093/cercor/10.3.206 (2000).

	14.	 de Olmos, J. S. & Heimer, L. The concepts of the ventral striatopallidal system and extended amygdala. Ann N Y Acad Sci 877, 1–32, 
https://doi.org/10.1111/j.1749-6632.1999.tb09258.x (1999).

	15.	 Shackman, A. J. & Fox, A. S. Contributions of the Central Extended Amygdala to Fear and Anxiety. J Neurosci 36, 8050–8063, 
https://doi.org/10.1523/JNEUROSCI.0982-16.2016 (2016).

	16.	 Morelli, M., Pinna, A., Ruiu, S. & Del Zompo, M. Induction of Fos-like-immunoreactivity in the central extended amygdala by 
antidepressant drugs. Synapse 31, 1-4, 10.1002/(SICI)1098-2396(199901)31:1<1::AID-SYN1>3.0.CO;2-S (1999).

	17.	 Pinna, A. & Morelli, M. Differential induction of Fos-like-immunoreactivity in the extended amygdala after haloperidol and 
clozapine. Neuropsychopharmacology 21, 93–100, https://doi.org/10.1016/S0893-133X(98)00136-5 (1999).

	18.	 Nakayama, K. Effect of paroxetine on extracellular serotonin and dopamine levels in the prefrontal cortex. Naunyn Schmiedebergs 
Arch Pharmacol 365, 102–105, https://doi.org/10.1007/s00210-001-0497-7 (2002).

	19.	 Gresch, P. J., Sved, A. F., Zigmond, M. J. & Finlay, J. M. Local influence of endogenous norepinephrine on extracellular dopamine in 
rat medial prefrontal cortex. J Neurochem 65, 111–116, https://doi.org/10.1046/j.1471-4159.1995.65010111.x (1995).

	20.	 Konradi, C., Leveque, J. C. & Hyman, S. E. Amphetamine and dopamine-induced immediate early gene expression in striatal 
neurons depends on postsynaptic NMDA receptors and calcium. J Neurosci 16, 4231–4239 (1996).

	21.	 Jacobsen, K. X., Höistad, M., Staines, W. A. & Fuxe, K. The distribution of dopamine D1 receptor and mu-opioid receptor 1 receptor 
immunoreactivities in the amygdala and interstitial nucleus of the posterior limb of the anterior commissure: relationships to 
tyrosine hydroxylase and opioid peptide terminal systems. Neuroscience 141, 2007–2018, https://doi.org/10.1016/j.
neuroscience.2006.05.054 (2006).

	22.	 Higashida, S. et al. Repeated social defeat stress impairs attentional set shifting irrespective of social avoidance and increases female 
preference associated with heightened anxiety. Sci Rep 8, 10454, https://doi.org/10.1038/s41598-018-28803-1 (2018).

	23.	 Okamura, S. et al. Social defeat stress induces phosphorylation of extracellular signal-regulated kinase in the leptomeninges in mice. 
Neuropsychopharmacol Rep, https://doi.org/10.1002/npr2.12051 (2019).

	24.	 Paxinos, G. & Franklin, K. B. J. (Academic Press, 2001).
	25.	 Nagai, H. et al. Sleep Consolidates Motor Learning of Complex Movement Sequences in Mice. Sleep 40, https://doi.org/10.1093/

sleep/zsw059 (2017).
	26.	 Tervo, D. G. et al. A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons. Neuron 92, 372–382, https://

doi.org/10.1016/j.neuron.2016.09.021 (2016).

Acknowledgements
We thank Misako Takizawa for secretarial help and Hiroko Iwamura for technical assistance. This study was 
supported in part by a CREST grant from AMED (JP18gm0910012 to T.F.), Grants-in-Aids for Scientific Research 
(16H05132 and 17K19457 to T.F.), Grants-in-Aids for Scientific Research from the Ministry of Education, 
Culture, Sports, Science and Technology in Japan (17H06057, 17H05572, 18H05429 to T.F. and 18K15028 to 
H.N.), Leading Initiative for Excellent Young Researchers (LEADER) of the Ministry of Education, Culture, 
Sports, Science and Technology, Japan (to H.N.), research grants from the Uehara Memorial Foundation (T.F.), 

https://doi.org/10.1038/s41598-019-52997-7
https://doi.org/10.1038/nrn2639
https://doi.org/10.1038/nrn3138
https://doi.org/10.1007/s002130050456
https://doi.org/10.1038/nature07455
https://doi.org/10.1038/nn.3234
https://doi.org/10.1126/science.1222939
https://doi.org/10.1126/science.1222939
https://doi.org/10.1016/j.neuron.2018.06.035
https://doi.org/10.1038/nature11713
https://doi.org/10.1523/JNEUROSCI.5952-11.2012
https://doi.org/10.1038/mp.2017.177
https://doi.org/10.1038/mp.2017.177
https://doi.org/10.1038/s41467-018-08168-9
https://doi.org/10.1523/JNEUROSCI.1787-13.2014
https://doi.org/10.1093/cercor/10.3.206
https://doi.org/10.1111/j.1749-6632.1999.tb09258.x
https://doi.org/10.1523/JNEUROSCI.0982-16.2016
https://doi.org/10.1016/S0893-133X(98)00136-5
https://doi.org/10.1007/s00210-001-0497-7
https://doi.org/10.1046/j.1471-4159.1995.65010111.x
https://doi.org/10.1016/j.neuroscience.2006.05.054
https://doi.org/10.1016/j.neuroscience.2006.05.054
https://doi.org/10.1038/s41598-018-28803-1
https://doi.org/10.1002/npr2.12051
https://doi.org/10.1093/sleep/zsw059
https://doi.org/10.1093/sleep/zsw059
https://doi.org/10.1016/j.neuron.2016.09.021
https://doi.org/10.1016/j.neuron.2016.09.021


9Scientific Reports |         (2019) 9:16670  | https://doi.org/10.1038/s41598-019-52997-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

the Sumitomo Foundation (T.F.), the Naito Foundation (T.F.), the Astellas Foundation for Research on Metabolic 
Disorders (T.F.), the Takeda Science Foundation (T.F.), the Ono Medical Research Foundation (T.F.), and the 
Suzuken Memorial Foundation (T.F.).

Author contributions
C.N., H.N., R.S. and T.F. designed the study; C.N., H.N., M.T., M.N. and R.S. performed experiments and 
analyzed the results; C.N., H.N. and T.F. wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to T.F.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-52997-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Social defeat stress-specific increase in c-Fos expression in the extended amygdala in mice: Involvement of dopamine D1 rec ...
	Results

	Social defeat stress specifically induces c-Fos expression in distinct brain areas. 
	Dopamine D1 receptor in the mPFC regulates social defeat stress-induced c-Fos expression in the IPAC. 
	D1-expressing mPFC pyramidal neurons send direct projections to the IPAC. 

	Discussion

	Methods

	Animals. 
	Social defeat stress. 
	Immunohistochemistry. 
	Brain infusion of adeno-associated virus vectors. 
	Infusion of a D1-like receptor agonist to the mPFC. 
	Statistical analyses. 

	Acknowledgements

	Figure 1 Social defeat stress specifically increased c-Fos expression in distinct brain areas, relative to novelty-induced exploration.
	Figure 2 Knockdown of dopamine D1 receptor in the mPFC decreased social defeat stress-induced c-Fos expression in the IPAC.
	﻿Figure 3 Local infusion of SKF81297, a D1-like receptor agonist, did not induce c-Fos expression in the IPAC.
	Figure 4 D1-expressing deep-layer pyramidal neurons in the mPFC send direct projections to the IPAC.




