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Unified Monogamy Relations of 
Multipartite Entanglement
Awais Khan 1, Junaid ur Rehman  1, Kehao Wang 2 & Hyundong Shin  1*

Unified-(q, s) entanglement ( )q s,  is a generalized bipartite entanglement measure, which encompasses 
Tsallis-q entanglement, Rényi-q entanglement, and entanglement of formation as its special cases. We 
first provide the extended (q; s) region of the generalized analytic formula of  q s, . Then, the monogamy 
relation based on the squared  q s,  for arbitrary multiqubit mixed states is proved. The monogamy 
relation proved in this paper enables us to construct an entanglement indicator that can be utilized to 
identify all genuine multiqubit entangled states even the cases where three tangle of concurrence loses 
its efficiency. It is shown that this monogamy relation also holds true for the generalized W-class state. 
The αth power q s,  based general monogamy and polygamy inequalities are established for tripartite 
qubit states.

Entanglement is a vital asset in quantum information sciences that can enhance quantum technologies such as 
communication, cryptography and computing beyond classical limitations1. Such quantum technologies mostly 
rely on the distribution of entanglement in multipartite settings. Quantification and characterization of entangle-
ment distribution for multipartite systems is well explained through monogamy relation. Briefly, the monogamy 
explains that if two parties are maximally entangled, then the rest of the parties cannot share any entanglement 
with them. This monogamy property, for example, plays a role in security analysis of quantum key distribution2 
and it can also be used to distinguish quantum channels3.

The concept of monogamy of entanglement was first introduced by Coffman, Kundu and Wootters4–known 
as CKW inequality. They established the monogamy property for tripartite (A, B, and C) system via an entangle-
ment measure called the concurrence5. Furthermore, the monogamy inequality asserts that the summation of 
individual entanglement content of subsystem A with subsystem B and with subsystem C is less than or equal 
to the entanglement of subsystem A with combined subsystem BC. This monogamy relation was then general-
ized to N-qubit systems6. Later on, monogamy relations for various entanglement measures have been proved, 
e.g., concurrence4,7–9, entanglement of formation6,10,11, negativity9,12–15, Tsallis-q entanglement16–18, and Rényi-q 
entanglement19,20. The dual of monogamy (polygamy) relation via the concurrence of assistance was proposed 
to quantify the limitation of distributing bipartite entanglement in multipartite systems21,22. Polygamy relations 
were established using various entanglement measures, e.g., convex-roof extended negativity13, and Tsallis-q 
entanglement9,16.

This paper proposes the idea to understand the entanglement distribution in multipartite system via the 
unified-(q, s) entanglement  ( )q s, .   q s,  encompasses several measures of entanglement such as concurrence, 
Tsallis-q entanglement (Tq -E), Rényi-q entanglement (Rq-E), and entanglement of formation (EOF), as its special 
cases. However, it does not satisfy the usual monogamy relations and violates monogamy for W-class state23. The 
monogamy relation of EOF has been not reported yet in a unified fashion. Three tangle based on the squared 
concurrence also has some flaws for entanglement detection24. This highly motivates us to introduce a general 
concept of monogamy relations in multiqubit systems, which can overcome these flaws. We propose new monog-
amy relations for q s, .  To this end, we first give the analytic formula of   q s,  for the region 

≥ − + − + −q s s s s( 9 24 28 (2 3 ))/(2(2 3 ))2 , 0 ≤ s ≤ 1, and ≤ +qs (5 13 )/2. Then, we establish the 
monogamy relation of multiqubit entangled system based on the squared q s,  (SU-(q,s)-E), which encompasses 
the monogamy relations of EOF, Tq-E, and Rq-E, as special cases. Therefore, the results in this paper provide a 
unifying framework for monogamy relations in multiqubit systems, covering several previous monogamy 
results6,16–20,23.
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Results
First, we revise the definition of q s,  and present the formula with its extended ranges. Then we investigate the 
monogamy relations for the squared and α ≥ 2 power of  q s, . Polygamy relation of q s,  for α ≤ 0 is also obtained. 
We further construct the multipartite entanglement indicator and present some numerical examples.

Unified-(q,s) entanglement. For any bipartite pure state ψ AB, q s,  is defined as23

 ψ ρ= − −−s q( ) ( (1 )) [(tr ) 1], (1)q s AB A
q s

,
1

for (q,s) ≥ 0|q≠1,s≠0, where the state of the subsystem A is obtained by tracing out the subsystem B, i.e., 
ρ ψ ψ= tr [ ]A B AB .

For any bipartite mixed state ρAB, q s,  and q s,  of assistance ˆ( )q s,  are defined as

 ∑ρ ψ= p( ) min ( ),
(2)q s AB

i
i q s i AB, ,

 ∑ρ ψ=ˆ p( ) max ( ),
(3)q s AB

i
i q s i AB, ,

where the minimization and maximization are obtained over all pure state decompositions ψ ψ∑ pi i i AB i  of ρAB.
The q s,  encompasses various entanglement measures depending on the parameters q and s. For example, it 

converges to Rq-E, Tq-E, and EOF when s → 0, s → 1, and q → 1, respectively.

Refining the analytical formula for q s, . For any two-qubit mixed state ρAB, concurrence  is given as5

ρ μ μ μ μ= − − −( ) max{0, }, (4)AB 1 2 3 4

where μi are the decreasing eigenvalues of ρ σ σ ρ σ σ⊗ ⊗⁎( ) ( )AB ABy y y y , and σy denotes the Pauli-y operator.
The analytic relationship between q s,  and concurrence of a bipartite state ρAB for 1 ≥ s ≥ 0 and 3/s ≥ q ≥ 1 has 

been unveiled as follows23:

ρ ρ= f( ) ( ( )), (5)q s AB q s AB, ,U C

where

η η
=

+ −

−
+ −f x
s q

( )
( ) 2

(1 )2 (6)q s

q q s qs

qs,

with η = ± −± x(1 1 )2 .
The analytic formula (5) holds until the fq,s(x) in (6) is monotonically increasing and convex for any q and s 

value23. The monotonicity and convexity follow from the fact that ∂fq,s(x)/∂x ≥ 0 for all q ≥ 0 and ∂2fq,s(x)/∂x2 ≥ 0 
for 1 ≥ s ≥ 0 and 3/s ≥ q ≥ 123.

In the Methods section, we prove that f ( )q s,   is a convex function of  for the region ≥ − + −q s s( 9 24 282

+ s(2 3 ))/(2(2 − 3s)), 0 ≤ s ≤ 1, and ≤ +qs (5 13 )/2. Therefore, we have an extended (q, s)-region with 
≥ − + − +q s s s( 9 24 28 (2 3 ))2 /(2(2 − 3s)), 0 ≤ s ≤ 1, and ≤ +qs (5 13 )/2, where the second-order deriv-

ative of fq,s(x) is nonnegative. Consequently, the analytic formula of unified-(q, s) entanglement (5) now holds for

= | − + − + − ≤ ≤ + ≤ ≤ .q s s s s s q s s{( , ) ( 9 24 28 (2 3 ))/(2(2 3 )) (5 13 )/2 ,0 1}2

Monogamy relation for SU-(q,s)-E in multiqubit systems. The main result of the paper is the general 
monogamy inequality of SU-(q,s) -E  q s,

2  for an arbitrary multipartite qubit mixed state (see Theorem 1), i.e.,

   ρ ρ ρ ρ− − − − ≥
− −





( ) ( ) ( ) ( ) 0, (7)q s AB B B q s AB q s AB q s AB,
2

,
2

,
2

,
2

N N1 2 1 1 2 1

where  ρ
−

( )q s AB B B,
2

N1 2 1
 quantifies entanglement in the partition A|B1B2 … BN−1, and ρ( )q s AB,

2
i

  quantifies the 
bipartite entanglement between A and Bi. Before approaching towards our main relations, we propose two prop-
ositions, whose proofs are given in Methods section. These propositions are used for establishing the monogamy 
relation of q s, .

We define

ψ ψ| = | =
+ − + − − −

−
.⟩ ⟩g

q s
( ) ( ( )) ((1 1 ) (1 1 ) ) 2

(1 ) 2 (8)q s AB q s AB

q q s qs

qs, ,
2

2 2
U C C C

Proposition 1. SU-(q,s)-E g ( )q s,
2 2  with ∈q s( , )  varies monotonically as a function of squared concurrence 2.

Proposition 2. SU-(q,s)-E g ( )q s,
2 2  with ∈q s( , )  is convex as a function of squared concurrence 2 .

In the succeeding theorem, we will establish the monogamy inequity of q s,
2  for N-qubit mixed state ρAB1B2 … BN−1.
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Theorem 1. SU-(q,s)-E holds the following monogamy inequality for an arbitrary multi-qubit mixed state ρAB1B2…BN−1:

ρ ρ ρ ρ≥ + + +
− −





( ) ( ) ( ) ( ), (9)q s AB B B q s AB q s AB q s AB,
2

,
2

,
2

,
2

N N1 2 1 1 2 1
   

with ∈q s( , ) .

Proof. The formula of q s,  (5) cannot be applied to  ρ
−

( )q s AB B B, N1 2 1
 since the subsystem B1B2 … BN−1 is not a logic 

qubit. However, We can apply the convex roof extension formula (2) of the pure state entanglement. Let 
ρ ψ ψ= ∑

− −



pAB B B k k k AB B B kN N1 2 1 1 2 1
 be the optimal decomposition that minimizes  ρ

−

( )q s AB B B, N1 2 1
. Then we 

have

∑

∑

∑

ρ ψ

ψ

ψ

ρ ρ

=












=












≥












≥ 





=

− −

−

−

− −









 

p

p f

f p

f g

( ) ( )

( ( ))

( ( ))

( ( )) ( ( )), (10)

q s AB B B
k

k q s k AB B B

k
k q s k AB B B

q s
k

k k AB B B

q s AB B B q s AB B B

,
2

,

2

(a)
,

2

(b)

,

2

(c)

,

2

,
2 2

N N

N

N

N N

1 2 1 1 2 1

1 2 1

1 2 1

1 2 1 1 2 1

U U

C

C

C C

where (a) follows from the pure state formula of the q s,  and takes the f ( )q s,  as a function of concurrence  for 
∈q s( , ) ; (b) is due to the fact that f ( )q s,   is a convex function of concurrence for ∈q s( , ) ; and (c) is due to 

the convexity of concurrence for mixed states.

U C

C C C

C C C

U U U

ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

≥

≥ + + +

≥ + + +

= + + +

−

− −

−

−







 

g

g

g g g

( ) ( ( ))

( ( ) ( ) ( ))

( ( )) ( ( )) ( ( ))

( ) ( ) ( )

q s AB B B q s AB B B

q s AB AB AB

q s AB q s AB q s AB

q s AB q s AB q s AB

,
2 (d)

,
2 2

(e)

,
2 2 2 2

1

(f)

,
2 2

,
2 2

,
2 2

,
2

,
2

,
2

N N

N

N

N

1 2 1 1 2 1

1 2

1 2 1

1 2 1

where (d) is from (10); (e) and (f) are due to Propositions 1 and 2, respectively.

Remark 1. SU-(q,s)-E provides us the broad class of monogamy inequalities and recovers the monogamy relations for 
squared EOF, Tq-E and Rq-E for different values of q and s. Specifically, (9) can be reduced to the following monog-
amy relations:

 i. Squared EOF6,10, for q → 1

   ρ ρ ρ ρ≥ + + +
− −





( ) ( ) ( ) ( ), (11)f AB B B f AB f AB f AB
2 2 2 2

N N1 2 1 1 2 1

 ii. Squared Rq-E19,20, for s → 0

ρ ρ ρ ρ≥ + + +
− −





( ) ( ) ( ) ( ), (12)q AB B B q AB q AB q AB
2 2 2 2

N N1 2 1 1 2 1
   

 iii. Squared Tq-E16–18, for s → 1

   ρ ρ ρ ρ≥ + + + .
− −





( ) ( ) ( ) ( ) (13)q AB B B q AB q AB q AB
2 2 2 2

N N1 2 1 1 2 1

The αth power q s,  monogamy relation. In this subsection, we establish the αth power q s,  based gen-
eral monogamy and polygamy inequalities.

Theorem 2. For an arbitrary tripartite qubit state ρA1A2A3, we have

  ρ ρ ρ≥ +α α α( ) ( ) ( ), (14)q s A A A q s A A q s A A, , ,1 2 3 1 2 1 3

with α ≥ 2 and ∈q s( , ) .
Proof. According to the monogamy relation given in (9)

  ρ ρ ρ≥ +( ) ( ) ( ),q s A A A q s A A q s A A,
2

,
2

,
2

1 2 3 1 2 1 3
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for an arbitrary tripartite state ρA1A2A3 with ≥ − + − + −q s s s s( 9 24 28 (2 3 ))/(2(2 3 ))2 , 0 ≤ s ≤ 1 and 
≤ +qs (5 13 )/2. If  ρ ρ =min{ ( ), ( )} 0q s A A q s A A,

2
,

2
1 2 1 3

, the inequality (14) obviously holds. Without any loss of 
generality, we assume that  ρ ρ≥( ) ( )q s A A q s A A,

2
,

2
1 2 1 3

. Then, we have

  






 

ρ ρ ρ

ρ
ρ

ρ

ρ ρ

≥ +

≥







+


















= +

α α

α

α

α α

( ) ( ( ) ( ))

( ) 1
( )

( )

( ) ( ),

q s A A A q s A A q s A A

q s A A
q s A A

q s A A

q s A A q s A A

, ,
2

,
2 2

(a)

,
,

2

,
2

2

, ,

1 2 3 1 2 1 3

1 2

1 3

1 2

1 2 1 3

where (a) comes from the algebraic inequality 1 + βγ ≤ (1 + β)γ for β ≤ 1, and γ ≥ 1.   

Theorem 3. The αth power q s,  satisfies the following polygamy relation for any tripartite state

ρ ρ ρ< +α α α( ) ( ) ( ), (15)q s A A A q s A A q s A A, , ,1 2 3 1 2 1 3
  

with α ≤ 0 and ∈q s( , ) .
Proof. For any tripartite state ρA1A2A3 with α ≤ 0, we have

  






 

ρ ρ ρ

ρ
ρ

ρ

ρ ρ

≤ +

<







+


















= +

α α

α

α

α α

( ) ( ( ) ( ))

( ) 1
( )

( )

( ) ( ),

q s A A A q s A A q s A A

q s A A
q s A A

q s A A

q s A A q s A A

, ,
2

,
2 2

(a)
,

,
2

,
2

2

, ,

1 2 3 1 2 1 3

1 2

1 3

1 2

1 2 1 3

where (a) follows from 1 + βγ > (1 + β)γ for β > 0, and γ ≤ 0.     

Remark 2. Theorem 2 and Theorem 3 have established the monogamy and dual monogamy inequalities for the αth 
power q s,  for α ≥ 2 and α ≤ 0, respectively in a tripartite scenario. These relations can be generalized for mul-
tiqubit systems by using induction and simple algebraic inequalities.

Multipartite entanglement indicators based on the SU-(q, s)-E. From monogamy relation (9) of 
SU-(q,s)-E, we build a multipartite entanglement indicator that can be utilized to detect entanglement in the 
N-qubit state ρA1A2 … AN. The indicator q s,  is defined as

 ∑ρ ψ= | |




⟩p( ) min ( ),
(16)q s A A A

i
i q s i A A A, ,N N1 2 1 2

where the minimization is performed over all pure state decompositions of ρA1A2 … AN. This indicator essentially origi-
nates from the convex-roof of the pure state indicator J U Uψ ψ ρ= − ∑| | = 

( ) ( ) ( )q s A A A q s A A A i
N

q s A A, ,
2

2 ,
2

N N i1 2 1 2 1
. 

Then it becomes

J U U∑ρ ρ ρ= −|
=

 

( ) ( ) ( ),
(17)q s A A A q s A A A

i

N

q s A A, ,
2

2
,

2
N N i1 2 1 2 1

which quantifies the residual entanglement in the system.
Following examples demonstrate the universal nature of q s,  as an effective entanglement indicator. In par-

ticular, we evaluate (17) for the W-state, and for the state which is in the superposition of 
Greenberger-Horne-Zeilinger (GHZ) and W states. The nonzero values of q s,  in these examples asserts its valid-
ity as a genuine entanglement indicator.

Example 1. An N-qubit W-state is defined as

= + + + .   W
N
1 ( 10 0 01 0 0 01 )

(18)N

The indicator for the N-qubit W-class state can be written as

J C Cρ ρ= − −| 

W g N g( ) ( ( )) ( 1) ( ( )), (19)q s N q s A A A q s A A, ,
2 2

,
2 2

N1 2 1 2

where ρ = −| 

N N( ) 4( 1)/A A A
2 2

N1 2
  and  ρ = N( ) 4/A A

2 2
1 2

. Via the established monogamy relation of the 
squared concurrence, the three tangle JC (genuine tripartite entanglement measure) is defined as4

https://doi.org/10.1038/s41598-019-52817-y
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ψ ρ ρ ρ= − − .|( ) ( ) ( ) ( ) (20)ABC A BC AB AC
2 2 2 2J C C CC

The three tangle cannot detect the tripartite entangled W-state4. However, the indicator q s,  efficiently detects 
the entanglement in this state. We plot the indicator as a function of (q,s) for the four and five qubit W-state in 
Fig. 1. The indicator has nonzero values when entanglement is present in the system.

Example 2. We consider a superposition state of GHZ state and the W-state

ψ = − −p GHZ p W1 , (21)ABC

where = +⊗ ⊗GHZ ( 0 1 )1
2

3 3  and = + + .W ( 001 010 100 )1
3

The three tangle of ψ ABC is JC ψ = − −p p p( ) (9 8 6 (1 ) )/9ABC
2 3  and is zero for p = 0, and p = 0.6276,24. 

This shows some flaw in the entanglement indicator. In this scenario, q s,  multipartite entanglement indicator 
shown in (17) is used. The value of ψ( )q s ABC,  is calculated through the analytic formula of the q s,  for bipartite 
states. There is no need for convex-roof for the pure state. In Fig. 2, we draw the comparison between the JC and 
q s, . We can see that q s,  is positive for all values of p.

Discussion
Unified-(q,s) entanglement is a two-parameter class of well defined bipartite entanglement measures. The generalized 
analytic formula of q s,  has been proved for the region ∈q s( , ) , which encompasses EOF5, Tsallis-q entangle-
ment16–18 and Renyi-q entanglement19,25 as its special cases. We have investigated the monogamy relation for SU-(q,s)-E, 
which classifies the entanglement distribution in multipartite systems. The monogamy relation of SU-(q,s)-E enables us 

Figure 1. The indicator q s,  results for W-state with (a) N = 4, and (b) N = 5. The solid black line shows the 
boundary qs = 4.302. Non zero values show the residual entanglement in the system.

Figure 2. The indicator q s,  for superposition of GHZ and W-state with q = 1.8, s = 0.8 (dotted green line), 
q = 1.4, s = 0.6 (dashed red line), and q = 1.1, s = 0.4 (solid blue line). The three tangle JC of ψ ABC is also shown 
with dashdotted black line. q s,  is positive for these value of q and s, but  q s,

2  is zero for p = 0, and p = 0.627.

https://doi.org/10.1038/s41598-019-52817-y
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to construct an indicator, which overcomes all known flaws and detects genuine multipartite entanglement better than 
previously known indicators. This superior performance in the detection of multiqubit states is exemplified on W-class 
states and compared with concurrence based entanglement indicator. The established monogamy relation gives the 
nontrivial and computable lower bound for the q s, . Furthermore, we also proved the αth power q s,  based general 
monogamy and polygamy relations. In summary, the results in this paper provide the unified monogamy relations of 
multipartite entanglement, covering several previous results as its special cases.

Methods
f ( )q s,

 is a convex function of the concurrence . We prove the convexity of fq,s(x) in the extended 

region ≥ − + − +q s s s( 9 24 28 (2 3 ))2 /(2(2 − 3s)), 0 ≤ s ≤ 1, and ≤ +qs (5 13 )/2, which was previously 
shown for the region 1 ≥ s ≥ 0 and 3/s ≥ q ≥ 1. We consider the second-order derivative of fq,s(x) for 1 > q > 0 and 
qs ∈ (3, 5), respectively.

For the region 0 < q < 1, we graphically analyze the solution of U C∂ ∂ =x( )/ 0q s
2

,
2 . It can be shown that for 

fixed s ∈ [0,1], the value of x to keep the second derivative nonnegative increases monotonically with q18,25. 
Therefore, the critical point exists under the limit x → 1. We apply limit x → 1 to obtain the critical point of q. 
After applying the limit and some simplification, we have

−
+ − − +

=
− q q s q s2 (3 (3 2) (3 2))

3
0, (22)

s qs 2

which gives the critical point is = − + − + −⁎q s s s s( 9 24 28 (2 3 ))/(2(2 3 ))2  with 0 ≤ s ≤ 1 for the region 
0 < q < 1. The second-order derivative is always nonnegative when > ⁎q q .

For qs ∈ (3, 5), we select qs ≤ 4.302 because when s → 1, fq,s(x) approaches to the Tsallis entropy for which the 
second derivative is known to be nonnegative for q ≤ 4.30218. For the analytical proof, we define a new range 
of s on the basis of this constraint, that is, 0 ≤ s ≤ min{4.302/q,1}. We enforce this constraint by substituting 
s = 4.302/q in the expression for the second derivative of fq,s(x). In the following, we prove that the second deriva-
tive is nonnegative for q ≥ 4.302. The second derivative of fq,s(x) after its simplification is

∂

∂
≥ − . − −

+ + − − − − +

− −

− − − −

f x

x
q x x B A

A B B A x x q A B

( )
( 4 302) 1 ( )

( )[( ) 1 ( 1)( )], (23)

q s q q

q q q q q q

2
,

2
2 2 1 1 2

1 1 2 2 2 2

where = − −A x(1 1 )2  and = + −B x(1 1 )2 . First, we apply the binomial expansion on Aq−1 and Bq−1 to 
write

− ≥ − − .− −B A q x( ) 2( 1) 1 (24)q q1 1 2

Substituting (24) into (23), we get

∂

∂
≥ − . − − −

+ − + − − + .− −

f x

x
q x x q x

x A B q x A B

( )
( 4 302) 1 (2( 1) 1 )

1 ( )( 1)[2 ( )] (25)

q s

q q q q

2
,

2
2 2 2 2

2 2 2 2

Using the inequality of arithmetic and geometric, i.e., + ≥x y xy2 , we obtain

+ ≥ =

+ ≥ =

− − − −A B AB Z

A B AB Z

2 ( ) 2 ,

2 ( ) 2 , (26)

q q q q

q q q q

2 2 2 2

where AB = Z2. Substituting (26) in (23) and after some manipulations, we finally obtain the inequality:

∂

∂
≥ − − − − . − + − .

f x

x
q x x x q q x x

( )
4( 1) 1 [ 1 ( 4 302)( 1) (1 )]

(27)
q s q q

2
,

2
2 2 2

Now we can see that if q ≥ 4.302 then (27) is positive and the upper constraint qs ≤ 4.302 is satisfied. The sec-
ond derivative is nonnegative for qs ≤ 4.302 when 0 ≤ s ≤ 1.

g ( )q s,
2 2  is an increasing monotonic function of the squared concurrence 2. Note that we can 

rewrite the Eq. (5) as

ψ ψ= g( ) ( ( )), (28)q s AB q s AB, ,
2U C

where

β β
=

+ −

−
+ −g x

q s
( )

( ) 2
(1 ) 2 (29)q s

q q s qs

qs,

https://doi.org/10.1038/s41598-019-52817-y
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where β = ± −± x(1 1 ). We investigate the monotonicity of g x( )q s,
2 , since the SU-(q,s)-E is a monotonically 

increasing function of 2  if dgq,s
2(x)/dx > 0 with =x 2. After some calculation, we have

∂

∂
= − + +









+ −
−









−
− − −g x

x
M F E qs F E F E

x

( )
2 ( 2 ( ) ) ( ( ) ) ( )

1
,

(30)

q s qs qs q q s
q q s q q

,
2

2
2 1 1 1

where M = 1/(q−1)2, = + −E x(1 1 ), = − −F x(1 1 ). The derivative (30) is non-negative for q ≥ 0 and 
0 ≤ x ≤ 1. Thus g ( )q s,

2 2  is a monotonically increasing function.

g ( )q s,
2 2  is a convex function of the squared concurrence 2 . The SU-(q,s)-E is convex in 2 when the 

second order derivative ∂ ∂x x( )/q s
2

,
2 2   ≥ 0 where =x 2. We define function,

=
∂

∂
Z x

g x

x
( )

( )
(31)q s

q s
,

2
,

2

2

on the domain = | ≤ ≤ ≤ ≤ − + − + − ≤ ≤ .D x s q x s s s s s q s{( , , ) 0 1,0 1,( 9 24 28 (2 3 ))/(2(2 3 )) 4 302/ }2 .
After some calculation, we have

Figure 3. Domain (a) D1, and (b) D2 are shown as shaded region. Solid black lines show the domain boundary 
and blue, green, and red lines indicate the roots of Zq,s(x) for different values of x.

Figure 4. The positivity of Zq,s(x) for x → 1 on the domain (a) D1, and (b) D2.

https://doi.org/10.1038/s41598-019-52817-y


8Scientific RepoRtS |         (2019) 9:16419  | https://doi.org/10.1038/s41598-019-52817-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

=







− − − − + + − − + −
−







− −

− + − +

Z x

qs MA

A A B q x F E B x q s q s A
x

( )

2

{ (2 )( ( 1) 1 ( ))} 1 { (1 )2 (2 1) }
2(1 ) (32)

q s

qs s

qs s q q qs s

,

2 2 2

2 2 2

3/2

where A = (Fq + Eq) and B = (Eq−1 − Fq−1).
The intermediate value theorem states that if a continuous function has values of opposite sign inside a 

domain, then it has a root in that domain. The function Zq,s(x) is continuous on the domain D. We divide D into 
two sub domains,

= | ≤ ≤ ≤ ≤ − + − + − ≤ ≤D x s q x s s s s s q{( , , ) 0 1, 0 1,( 9 24 28 (2 3 ))/(2(2 3 )) 1},1
2

and

= | ≤ ≤ ≤ ≤ ≤ ≤ . .D x s q x s q s{( , , ) 0 1, 0 1, 1 4 302/ }2

We plot the solution of Zq,s(x) = 0 for different values of x. As shown in Fig. 3, no root of Zq,s(x) exists inside the 
domain D. Thus, all values of Zq,s(x) on the domain D have the same sign. This means that if Zq,s is positive for any 
value of x in D, then it is positive on the entire domain D. We have plotted the function Zq,s(x) on the domain D in 
Fig. 4 for x → 1. The function Zq,s(x) is positive on the domain D. This means that the second derivative is positive, 
therefore g x( )q s,

2  is convex on the domain D. Therefore, g ( )q s,
2 2  is convex function of the squared concurrence 2 .
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