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fall Risk prediction in Multiple 
Sclerosis Using postural Sway 
Measures: A Machine Learning 
Approach
Ruopeng Sun  1,2*, Katherine L. Hsieh1 & Jacob J. Sosnoff1

numerous postural sway metrics have been shown to be sensitive to balance impairment and fall risk 
in individuals with MS. Yet, there are no guidelines concerning the most appropriate postural sway 
metrics to monitor impairment. This investigation implemented a machine learning approach to assess 
the accuracy and feature importance of various postural sway metrics to differentiate individuals 
with MS from healthy controls as a function of physiological fall risk. 153 participants (50 controls and 
103 individuals with MS) underwent a static posturography assessment and a physiological fall risk 
assessment. Participants were further classified into four subgroups based on fall risk: controls, low-
risk MS (n = 34), moderate-risk MS (n = 27), high-risk MS (n = 42). Twenty common sway metrics were 
derived following standard procedures and subsequently used to train a machine learning algorithm 
(random forest – RF, with 10-fold cross validation) to predict individuals’ fall risk grouping. The sway-
metric based RF classifier had high accuracy in discriminating controls from MS individuals (>86%). 
Sway sample entropy was identified as the strongest feature for classification of low-risk MS individuals 
from healthy controls. Whereas for all other comparisons, mediolateral sway amplitude was identified 
as the strongest predictor for fall risk groupings.

Multiple Sclerosis (MS) is a chronic, inflammatory-mediated neurological disorder affecting more than 2.3 mil-
lion people worldwide1. MS is characterized by inflammatory demyelination and axonal damage in the central 
nervous system2. The neuronal damage alters a wide range of cognitive, sensory and motor functions, which con-
tribute to impairment in balance2. Balance impairment affects over 75% of persons with MS (PwMS) during the 
disease course3, and it is associated with an elevated risk of falls and declines in quality of life4. Given its impor-
tance, identifying and treating balance impairment is often a focus of MS rehabilitation and research.

Traditionally, functional assessment and self-report questionnaires have been utilized to evaluate balance 
impairment in PwMS. Functional tests such as Berg Balance Scale (BBS)5 measures static and dynamic balance 
ability, whereas self-administered questionnaires such as Activity-Specific Balance Confidence Scale (ABC)6 and 
Falls Efficacy Scale - International (FES-I)7 measure individuals’ balance confidence and fear of falling during 
daily life. However, these measures rely on subjective scoring and have poor sensitivity due to ceiling or floor 
effects8. On the other hand, instrumented measures through posturography, which utilizes a force platform to 
quantify Center of Pressure (COP) movement (an indicator for the neuromuscular control of maintaining an 
upright stance9), provides objective and quantitative measures of postural stability and often is considered the 
gold standard for balance assessment10. An advantage of posturography is that it provides precise measurement of 
movement over fast time scales which affords measurement of subtle alterations in the control of balance.

A number of investigations have analyzed postural impairment in PwMS utilizing posturography. Different 
variables of postural sway are often utilized because they are thought to reflect different underlying physiological 
control mechanisms9,11. For example, sway velocity has been reported to be reflective on proprioception func-
tion12, whereas sample entropy, a nonlinear sway regularity/complexity measure, indirectly reflects the ability 
to adapt to the environment13, such as postural perturbations14. However, due to the large number of outcome 
variables, it is difficult to compare results across investigations. Indeed, a recent systematic review15 focusing on 
postural impairment in PwMS identified over 100 different variables as outcome measures of posturography. 
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Furthermore, the choices of measures selected is rarely rationalized and results in a lack of consensus in deter-
mine the appropriate measure. Consequently, when measuring balance impairment in PwMS, it is difficult to 
determine which measure to use in order to provide clinical meaningful insights for treatment planning15.

In a previous attempt to quantify the diagnostic accuracy of static posturography in fall incidence prediction 
among PwMS, Prosperini et al.10 utilized various time domain sway measures (i.e. sway velocity, sway path, and 
sway area) to identify PwMS at risk of falls. They achieved over 70% of classification accuracy using a stepwise 
logistic regression and identified COP sway path as the only significant predictor of the fall occurrence. However, 
they provided minimal rational for choice of COP sway metrics and suggested the need for consensus on which 
sway measures to use when evaluating balance impairment in PwMS.

One solution to identify appropriate measures to differentiate between PwMS from healthy individuals is 
through the use of machine learning techniques. Indeed, various machine learning approach have been recently 
utilized to classify individuals with clinical pathology from controls, such as support vector machine (SVM), 
random forest (RF), k-nearest neighbor (KNN) and neural network16–19. Among those approaches, the RF algo-
rithm20 has its unique advantage over others as it can not only construct a prediction rule to classify outcomes 
such as balance impairment, but it can also assess and rank variables with respect to their ability to predict the 
classification outcome21. The RF variable importance is determined by the Gini Importance, which is defined as 
the times a feature is used to split a node, normalized by the number of samples it splits21. The RF classification 
algorithm has also shown excellent accuracy in discriminating Parkinson’s disease participants based on gait and 
postural measures17 and has been used to identify important neuroimaging feature for Alzheimer’s disease diag-
nosis22. For more details on random forests approach, see20.

Therefore, the aims of this study were: (1) to identify which postural sway measures differentiate between 
PwMS and healthy controls, as a function of physiological fall risk; (2) to determine the discriminative ability of 
postural sway measures for fall risk classification (low, moderate, or high) in PwMS. To achieve these aims, we uti-
lized the random forest algorithm to classify individuals’ fall risk based on a comprehensive set of postural sway 
parameters that contain time-domain, frequency-domain, and non-linear dynamics measures, and calculated the 
diagnostic accuracy (sensitivity, specificity, and accuracy) and feature importance of the postural sway measures.

Methods
This study is secondary analysis of previously published and unpublished data focusing on mobility in MS23–28. All 
data were sampled from baseline assessments prior to any interventions.

Participants. Data from 153 participants (50 healthy controls and 103 individuals with MS) were included 
in the analysis. The inclusion criteria for MS participants included a previously neurologist-confirmed diagno-
sis of MS and the ability to stand upright for 30 s without aid. Self-reported disability was accessed with the 
self-reported expanded disability status scale (EDSSSR)29, with higher scores indicating higher functional impair-
ment. Inclusion criteria for healthy controls required no history of neurological or orthopedic pathology that 
might influence balance or mobility, and the ability to stand upright for 30 s without aid. The experimental proto-
col was approved by and performed in accordance with the relevant guidelines and regulations of the University 
of Illinois at Urbana-Champaign Institutional Review Board, and all participants provided written informed 
consent prior to participation.

Procedure. On a single visit, participants were instructed to stand upright for 30 s on a force platform 
(FP4060-05-PT-1000, Bertec Corp, Columbus, OH) with their feet shoulder-width apart and eyes open, fixat-
ing at a target 2 m away. Individual’s risk of falls was assessed using the short form of the Physiological Profile 
Assessment30 (PPA, Neuroscience Research Australia, Sydney), which consist of five validated measures of phys-
iological function (visual contrast sensitivity, proprioception, quadriceps strength, reaction time, and postural 
sway). The individual fall risk index score was derived from the PPA normative database (Z-scores adjusted) for 
comparison with population norms, and MS participants were further categorized as low risk (<1), moderate risk 
(1–2), and high risk (>2)30,31.

Participants also provided demographic information and completed questionnaires on balance confidence 
(ABC or FES-I). The ABC and FES are both validated measures for fear of falling, and have been shown to be 
highly correlated (r = 0.88)32. The FES-I contains 16 items scored on a four-point scale (1 = not at all concerned 
to 4 = very concerned), which assesses the degree of perceived self-efficacy at avoiding a fall during basic activities 
of daily living (ADL)7. The total score of FES-I ranged from 16–64, with lower score indicating higher perceived 
self-efficacy at avoiding a fall. The ABC balance scale (a 16-item scale) measures individual’s confidence in main-
taining balance while performing ADL6. The total score of ABC ranges from 0–100%, and higher score indicate 
higher confidence in maintaining balance. Due to differences in research procedure across multiple studies, 37 
participants only completed the ABC scale, 27 participants only completed the FES-I scale, and 89 participants 
completed both ABC and FES-I scale. In order to compare the self-reported balance confidence across multiple 
studies, the FES-I score was converted to a percentage score (0–100%, with higher score indicate higher confi-
dence) similar to the ABC score using the following formula: = ∗ − −FES abs FES100% ( 64)/(64 16)p .

The self-reported Balance Confidence was derived as the average of ABC and FESp. If only ABC or FES was 
available, then that available measure was used.

All participants also completed the Berg Balance Scale assessment5, which consists of 14 physical tasks, such 
as transfer from sitting to standing position, standing with eyes closed, and picking up an object from the floor, all 
of which are part of normal daily activities. Each task performance is assigned 0–4 points by a trained personnel 
to give a total score of 0–56.
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Data processing and feature extraction. COP data were sampled at 1000 Hz and low pass filtered (4th 
order Butterworth) at 10 Hz for further analysis. A comprehensive set of common postural sway measures that 
includes time and frequency domain measures and non-linear dynamics were derived from the COP sway data 
using established procedures9,33 and a customized MATLAB program (Mathworks, Inc., Natick, MA): Sway path 
length (Anterior-Posterior-AP, Medial-Lateral-ML, and Resultant Distance-RD); Mean sway velocity (AP, ML, 
and RD), 95% confidence ellipse sway area, Sway range (AP, ML direction), Root mean squared sway amplitude 
(AP, ML); total power, centroidal frequency, frequency dispersion, 95% power frequency; Sample Entropy (AP, 
ML), and Approximate Entropy (AP, ML). For both Sample Entropy and Approximate Entropy calculation, the 
input parameter were chosen as m = 3, r = 0.2, according to Rhea et al.33.

Model training and performance evaluation. To provide clinical meaningful output for MS fall risk 
diagnosis, Random Forest algorithms were employed to classify individuals’ fall risk categories (i.e. low, moderate, 
high) based on postural sway metrics. The RF algorithm is an ensemble of random decision trees (in our case, 
1000 trees, chosen by examining the convergence of classification accuracy as additional trees were added34), in 
which the final predicted class for a test example is obtained by combining the predictions of all individual trees. 
This classifier has been shown to improve the generalization performance of individual decision trees20.

Binary classification between healthy controls and MS groups (HC vs MSLow, HC vs MSMod, HC vs MSHigh, 
MSLow vs MSMod, MSLow vs MSHigh, MSMod vs MSHigh) were performed based on sway measures and on clinical 
balance measures (BBS and Balance Confidence) separately. All classification algorithms were implemented using 
the open-source machine learning library Scikit-learn in Python35.

All algorithms were trained and tested through a 10-fold cross validation (CV) scheme36, and the classification 
performance was evaluated using standard classification metrics (accuracy, sensitivity, and specificity) derived 
from the confusion matrix. Briefly, sensitivity was calculated as true-positive/(true-positive + false-negative),  
specificity as true-negative/(true-negative + false-positive), and accuracy as true-positive + true negative/
(true-positive + false-negative + true-negative + false-positive). Since no hyper-parameter tuning was performed 
in this work (as a proof-of-concept, all algorithms are used in their default settings) and with a limited sample 
size, data split into training and testing sets was not performed.

In order to identify the importance of each variable in detecting altered balance control in PwMS, a feature 
selection algorithm was subsequently performed based on the RF classification model. The RF classifier identifies 
the importance of each input features by calculating the Mean Decrease Impurity (MDI), defined as the number 
of times a feature is used to split a node, weighted by the number of sample it splits37. In other word, if a feature is 
used multiple times to split a large amount of data, it is identified as a substantial feature.

Ethical approval. All procedures were approved by the University of Illinois at Urbana-Champaign 
Institutional Review Board

Preprint. A pre-print of this publication has been deposited in bioRxiv: https://doi.org/10.1101/410704.

Results
Table 1 summarizes the characteristics of the 153 participants (108 Female, 45 Male) in this study. All 50 healthy 
controls had low fall risk (PPA < 1). Participants with MS were further categorized to low risk (n = 34, PPA < 1), 
moderate risk (n = 27, PPA 1–2), and high risk (n = 42, PPA > 2) of falls based on PPA. Overall, significant group 
difference (p < 0.05) in age, EDSS, BBS, PPA, and self-reported balance confidence scale were observed within 
the MS group. MS individuals with increased fall risk also exhibited higher disability (EDSSSR), lower balance 
confidence, and lower functional performance (BBS).

Table 2 provides a summary of the RF classification performance based on sway measures. Sway-based 
classifier can consistently differentiate healthy controls and MS individuals with high classification accuracy 
(86.3–92.3%), sensitivity (76.5–85.7%) and specificity (92.0–96.0%). However, sway-based classifier achieved rel-
atively low accuracy in differentiating MS subgroups (Accuracy: 49.5–71.2%, Sensitivity: 48.1–71.4%, Specificity: 
22.2–73.5%).

Table 3 provides a summary of the RF classification performance based on the BBS and self-reported balance 
confidence scale. Good classification performance for differentiating controls and MS individuals were observed 
(Accuracy: 73.5–95.6%, Sensitivity: 66.7–95.0%, Specificity: 78.0–96.0%). With moderate classification perfor-
mance observed in differentiating MS subgroups (Accuracy: 61.4–76.7%, Sensitivity: 51.9–87.5%, Specificity: 
59.3–72.7%). It is worth noting that this clinical measure-based classifier achieved lower accuracy (73.5%) 
than the sway-based classifier (86.3%) in differentiating healthy controls and low risk PwMS, but improved the 

Controls MSLow MSMod MSHigh

N (M/F) 50 (15/35) 34 (10/24) 27(7/20) 42 (13/29)

Age* 64.94 (4.91) 54.00 (13.12) 58.26 (8.28) 56.76 (9.71)

EDSS* (Median & IQR) NA 4.0 (3.0) 6.0 (2.0) 6.0 (0.5)

BBS* 55.12 (2.03) 50.68 (4.80) 45.22 (7.82) 40.05 (8.36)

PPA* −0.08 (0.62) 0.28 (0.51) 1.50 (0.31) 3.01 (0.91)

Balance Confidence* 93.12 (7.05) 74.67 (19.87) 58.90 (25.06) 55.92 (17.19)

Table 1. Participant characteristics. All values were presented with mean and standard deviation, unless 
otherwise listed. * Significant group difference was observed (p < 0.05).
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accuracy in differentiating MS subgroups (61.4–76.7%), especially in differentiating PwMS with high fall risk 
among other subgroups (75.9–76.7% in comparison to 49.5–71.2% using only sway measures).

The importance of sway measures for differentiating the fall risk categories in PwMS and controls were 
extracted using the weighted percentage (MDI) of each RF classifier. Figure 1A shows the top-five sway measures 
for differentiating Low-risk MS individuals from Controls, with Sample Entropy (AP), Sway Range (ML), and 
Sway Area identified as the top predictors from this model with similar weight (~15%). Figure 1B shows the top 

MSLow MSMod MSHigh

ACC SEN SPC ACC SEN SPC ACC SEN SPC

Controls 86.3 76.5 92.0 92.3 85.2 96.0 89.3 85.7 92.0

MSLow 50.0 48.1 52.9 71.2 71.4 73.5

MSMod 49.5 66.7 22.2

Table 2. Diagnostic performance of RF algorithm using posturography measures. ACC-accuracy, SEN - 
sensitivity, SPC – Specificity.

MSLow MSMod MSHigh

ACC SEN SPC ACC SEN SPC ACC SEN SPC

Controls 73.5 66.7 78.0 92.1 88.9 94.0 95.6 95.0 96.0

MSLow 61.4 51.9 69.7 75.9 80.0 72.7

MSMod 76.7 87.5 59.3

Table 3. Diagnostic performance of RF algorithm using BBS and balance confidence measures. ACC-accuracy, 
SEN - sensitivity, SPC – Specificity.

Figure 1. Sway metrics importance as measure by the Mean Decrease Impurity (MDI) of each RF classifier. (A) 
Controls vs MSLow; (B) Controls vs MSMod; (C) Controls vs MSHigh.
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sway measures for differentiating Mod-risk MS individuals from Controls. Sway Range (ML) was identified as the 
governing predictor from this model (62.3% of total importance measure). Figure 1C shows the top sway meas-
ures for differentiating High-risk MS individuals from Controls, in which Sway Range (ML), Sway Path Length 
(ML), and Mean Velocity (ML) were identified as the top predictors from the model (ML sway amplitude account 
for 71.1% of total importance).

Discussion
This work aimed to identify postural sway parameters that best differentiate between PwMS and healthy controls, 
as a function of physiological fall risk utilizing a machine learning approach. This work also investigated the 
discriminative ability of using postural sway measures for fall risk classification in PwMS. Utilizing a machine 
learning approach (random forest classifier), we demonstrated that postural sway measures can discriminate 
low-risk PwMS from healthy controls, with over 86% of classification accuracy. In contrast, clinical balance meas-
ures (BBS) and self-report balance confidence measures achieved equal to superior discriminative ability in sep-
arating MS individuals with moderate and high risk of falls. These findings suggest that posturography measures 
are sensitive to subtle change in the balance control among MS individuals with minimal fall risk, whereas the 
balance impairment in moderate and high-risk MS individuals can be assessed with traditional clinical measures 
with high accuracy.

Overall, the observations further confirm that individuals with MS across the disability spectrum have pos-
tural control deficits15. The novel contribution of this investigation is identifying distinct COP parameters that are 
sensitive to balance impairment in MS as a function of fall risk. Indeed, ML sway amplitude parameters including 
sway range, sway path length, mean sway velocity were the strongest predictors for discriminating moderate 
and high-risk PwMS from healthy controls. This observation is consistent with Morrison and colleagues38 who 
demonstrated that a sample of 22 persons with MS had greater fall risk which coincided with deficits in medi-
olateral postural control. On the other hand, Sample Entropy, a measure of movement complexity (lower value 
indicating reduced signal complexity) and potential reduced adaptability to small perturbations13,14, was further 
identified as a key predictor for discriminating low-risk PwMS from healthy controls. This finding is consistent 
with previous research by Roeing et al.26 and Huisinga et al.39 that proposed reduced complexity in postural con-
trol as a biomarker for balance impairment in individuals with MS.

Several previous reports have attempted to predict fall risk in PwMS using postural sway measures. For exam-
ple, Prosperini et al.10 used time-domain sway measures and logistic regression that achieved over 70% accuracy 
in discriminating faller from non-faller in PwMS. Furthermore, Kasser et al.40 utilized a logistic regression to 
achieve 81% accuracy in discriminating faller and non-faller with differences in the amount of body sway under 
different sensory conditions (i.e., eyes open to eyes closed). Hoang et al.31 also utilized logistic regression and 
achieved 71.2% accuracy (area under the Receiving Operating Characteristic curve) in discriminating faller from 
non-faller with sway range during eyes closed balance task. It is important to note that these previous reports 
predicted future falls while the current investigation is based on physiological fall risk. Consequently, direct com-
parisons between investigations may not be appropriate.

One limitation of the present study is that only a single postural control condition was included. Altered 
sensory test conditions which are common in balance assessments (i.e., eyes closed, standing on compliance 
surface) were not included in the data analysis. It has been reported that static posturography under altered 
sensory condition may yield better discriminative ability between PwMS and healthy controls41, and thus could 
further improve the classification performance. Another limitation of this work is the relative small sample size 
(n = 30–50 per group), which may limit generalization. It is also important to note that the current observations 
relate to postural assessment at one point in time. Further research is needed to determine which posturography 
metrics are most sensitive to rehabilitation. Lastly, the present work did not measure the fall occurrence, thus how 
the results relate to prediction of future falls is not clear. However, findings from this work may set the foundation 
for the development of guidelines for accurate reporting of balance impairment in PwMS.

conclusion
The current findings highlight the benefits of posturography for balance impairment and fall risk assessment 
among PwMS, and provide insights on the standardization of metrics. Specifically, static posturography is sen-
sitive for discriminating PwMS with minimal fall risk from healthy controls, with sample entropy measure 
identified as a core predictor. Whereas for quantification of balance impairment in high-risk MS individuals, 
medio-lateral sway amplitude is the strongest predictor. Furthermore, clinical balance measures also achieved 
high discriminative ability in separating MS individuals with moderate and high risk of falls. Therefore, the 
assessment technique and sway metrics should be based on the target populations, i.e. utilizing posturography 
(sway entropy) to identify individuals with subtle balance impairment and using clinical balance measures to 
assess individuals with high fall risk. These findings from this work may set the foundation for the development 
of guidelines for accurate reporting of balance impairment in PwMS.
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