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Neutrophil extracellular traps and 
monocyte subsets at the culprit 
lesion site of myocardial infarction 
patients
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Irene M. Lang*

Neutrophils release their chromatin into the extracellular space upon activation. These web-like 
structures are called neutrophil extracellular traps (NETs) and have potent prothrombotic and 
proinflammatory properties. In ST-elevation myocardial infarction (STEMI), NETs correlate with 
increased infarct size. The interplay of neutrophils and monocytes impacts cardiac remodeling. 
Monocyte subsets are classified as classical, intermediate and non-classical monocytes. In the present 
study, in vitro stimulation with NETs led to an increase of intermediate monocytes and reduced 
expression of CX3CR1 in all subsets. Intermediate monocytes have been associated with poor 
outcome, while non-classical CX3CR1-positive monocytes could have reparative function after STEMI. 
We characterized monocyte subsets and NET markers at the culprit lesion site of STEMI patients 
(n = 91). NET surrogate markers were increased and correlated with larger infarct size and with fewer 
non-classical monocytes. Intermediate and especially non-classical monocytes were increased at 
the culprit site compared to the femoral site. Low CX3CR1 expression of monocytes correlated with 
high NET markers and increased infarct size. In this translational system, causality cannot be proven. 
However, our data suggest that NETs interfere with monocytic differentiation and receptor expression, 
presumably promoting a subset shift at the culprit lesion site. Reduced monocyte CX3CR1 expression 
may compromise myocardial salvage.

Myocardial infarction (MI) and subsequent ischemic cardiomyopathy are a major disease burden worldwide1. 
The pathomechanism of coronary thrombosis, ischemia and myocardial scar formation is incompletely under-
stood. We have previously shown that neutrophils release neutrophil extracellular traps (NETs) at the culprit 
lesion site (culprit site), which might serve as scaffolds for platelets and erythrocytes and could initiate coronary 
thrombosis2, especially in the setting of superficial plaque erosion3. Coronary NET burden significantly correlated 
with reduced ST-segment resolution and increased infarct size in ST-elevation MI (STEMI) patients. Degradation 
of NETs by deoxyribonucleases in circulation is crucial for homeostasis4. High endogenous deoxyribonuclease 
activity was correlated with reduced infarct size2. Hence, increased NET burden due to impaired degradation 
appears to be detrimental downstream in the ischemic myocardium, causing microvascular obstruction, inflam-
mation and cardiomyocyte cell death5. NET-releasing neutrophils and monocytes cooperate in inflammation6, 
thrombus formation7 and cardiac remodeling8. Monocytes can differentiate into macrophages9, which release 
major proinflammatory mediators like Interleukin-1ß in response to NETs10. Macrophages in turn complement 
the clearance of NETs11 and are shifted towards an anti-inflammatory phenotype after phagocytosis of neutro-
philic proteins12. Monocyte subsets have specific functions in cardiac remodeling after MI13 and are grouped 
according to their CD14/CD16 expression into classical (CD14++ CD16−), intermediate (CD14++ CD16+) 
and non-classical (CD14+ CD16++) monocytes14. A recent study has shown that monocyte subsets evolve from 
classical to intermediate and non-classical monocytes15. Classical monocytes are proinflammatory and produce 
high levels of cytokines16. Intermediate monocytes are potent antigen-presenting cells, which is reflected by a high 
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HLA-DR expression17. They are proinflammatory18, exhibit a strong phagocytic activity and strongly contribute to 
oxidative burst. Non-classical monocytes display the highest CX3CR1 (fractalkine receptor) expression, which is 
an important receptor for adhesion and migration. They have a patrolling function and efficiently invade inflamed 
tissue. Via CX3CR1, they respond to apoptotic signals to remove cell debris and contribute to tissue repair, thus 
exerting anti-inflammatory properties19. Classical and intermediate monocytes are increased in the periphery 
in the course of MI and correlate with increased infarct size and poor cardiac function at follow up20,21, whereas 
non-classical monocytes were associated with improved recovery of dysfunctional myocardium22.

In the present study, we investigated the impact of NETs on monocyte subsets in vitro and evaluated NET 
surrogate markers and monocytes subsets in vivo at the culprit site of STEMI patients.

Methods
Patients.  STEMI patients (n = 91), who received thrombectomy in the course of primary percutaneous 
coronary intervention (pPCI) at the Department of Cardiology, General Hospital of Vienna, were consecu-
tively included in the study and monocyte subsets were quantified in femoral and culprit site blood samples. 
An additional characterization of monocyte expression markers was performed in the last 36 consecutive 
patients. Inclusion criteria were chest pain at the time of pPCI, ST-elevations of ≥2 mm on >1 chest lead or new 
ST-elevations of ≥1 mm on >1 limb lead within 20 minutes of pPCI. All patients received 250 mg of acetylsali-
cylic acid and unfractionated heparin to achieve an activated coagulation time of >300 seconds (4000–10000 IE). 
Criteria for thrombectomy were a vessel diameter of ≥3 mm, a large intraluminal contrast medium filling defect, 
suggestive of thrombus within 50 mm of the respective ostium without severe calcification, tortuosity, or difficult 
vascular access. A total volume of 10 to 20 mL culprit site blood were aspirated using a commercial thrombectomy 
catheter (Pronto [Vascular Solutions], Export [Medtronic], Diver [Invatec], and Thrombuster [Atrium Medical 
Corporation]). Femoral whole blood samples were obtained simultaneously from the femoral arterial sheath. All 
plasma measurements were normalized for femoral whole blood hematocrit as aspiration catheter flushing with 
2–4 ml 0.9% sodium chloride leads to dilution of the culprit site blood sample. Exclusion criteria were low culprit 
site sample volume, intake of immunosuppressants, cardiogenic shock, severe infection, active neoplasia, end 
stage kidney disease and glycoprotein IIb/IIIa-blocker treatment. Infarct size was estimated by measuring creatine 
phosphokinase isoform MB area under the curve (CK-MB AUC), which allows an adequate approximation of 
infarct size (Supplementary Fig. 1).

All study participants gave written informed consent prior to the inclusion under an approval of the Ethics 
Committee of the Medical University of Vienna, Austria (approval reference number 303/2005). All investiga-
tions conformed to the principles outlined in the Declaration of Helsinki.

Flow cytometry.  Blood samples were incubated with fluorochrome-labeled antibodies for 30 minutes in the 
dark. Cells were stained for human CD11a (PE, Biolegend), CD11b (PE, Biolegend), CD14 (FITC, Biolegend), 
CD16 (PE-Cy7, Biolegend), CD45 (APC-Cy7, Biolegend), CD56 (APC, Biolegend), CD66b (PerCP-Cy5.5, 
Biolegend), CD142 (PE, BD Pharmingen) CD192 (PE, Biolegend), toll-like receptor (TLR)2 (PE, Biolegend), 
TLR4 (PE, Biolegend), CX3CR1 (PE, Biolegend) and HLA-DR (PE, Biolegend). Erythrocyte lysis by BD FACS 
lysing solution (BD Biosciences) was followed by 3 washing steps with phosphate-buffered saline (PBS), then cells 
were resuspended for the measurements. Per panel, 50000 events were counted and the percentage of positive 
cells or mean fluorescence intensity (MFI) was measured.

Monocyte subsets were gated as depicted in Supplementary Fig. 2. Cells were separated from debris and dou-
blets; CD45+ CD66b− cells were divided from lymphocytes by forward and side scatter gating, then CD56− 
monocytes were divided into the subsets according to their CD14/CD16 expression profile. In preliminary 
experiments, viability of cells was assessed using annexin V / propidium iodide FC staining technique (Apoptosis 
detection kit, BD Biosciences); Viability of gated monocytes was >98% (data not shown).

Isotype-matched antibodies (mouse IgG1, IgG2a and IgM, Biolegend) were added to negative control samples. 
Cells were analyzed using a BD FACSCanto II and FACSDiva Software (BD Biosciences).

Total monocyte subset numbers were calculated via monocyte numbers measured in femoral and culprit site 
differential cell counts similar to a published approach23. Culprit site differential blood counts could be obtained 
from 69 patients.

NET surrogate markers.  Citrullinated histone H3 (citH3) was measured as described24, with minor mod-
ifications. Streptavidin-coated plates were incubated with anti-histone biotin (Roche) for 120 minutes. Plates 
were washed and incubated with plasma samples or standard (citH3, Cayman) for 90 minutes. After washing, 
anti-histone H3 (1:2000 in PBS + 1% bovine serum albumin [BSA], Abcam) was added for 60 minutes. Plates 
were washed and incubated with goat anti-rabbit HRP conjugate antibody (1:5000 in PBS + 1% BSA, BioRad) 
for 60 minutes, washed, and developed with BM Blue POD Substrate (Roche) for 20 minutes. The reaction was 
stopped by addition of 2 M H2SO4 and optical density was measured on a Promega GloMax Discover microplate 
reader (450 nm, reference 620 nm).

Double-stranded deoxyribonucleic acid (dsDNA) was quantified using the Quant-iT PicoGreen dsDNA 
Assay (Invitrogen) according to manufacturer´s instructions. Fluorescence was measured on a GloMax Discover 
microplate reader (Promega).

CX3CL1 measurements.  CX3CL1 was quantified using the Human CX3CL1/Fractalkine Quantikine 
ELISA Kit (R&D Systems) according to manufacturer’s instructions in the same subset of patients, from whom an 
expression marker analysis was performed by flow cytometry (FC) (n = 34). Optical density was measured on a 
Promega GloMax Discover microplate reader (450 nm, reference 620 nm).
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Isolation of neutrophil extracellular traps.  Neutrophils and NETs were isolated from healthy donors 
according to recently published protocols with minor modifications25,26. Purity of neutrophils was routinely above 
98%. Neutrophils were resuspended in RPMI 1640 (Gibco) + 3% fetal calf serum (FCS, Gibco) and stimulated 
with 500 nM phorbol-myristate acetate for 4 hours at 37 °C. Supernatant was discarded, and cells were incubated 
with RPMI containing 3% FCS and 10 U/ml Alu I (Roche) for 30 minutes at 37 °C. Supernatant was collected and 
centrifuged for 5 minutes, 300 g to remove remaining cellular debris. Concentration of NETs was assessed using 
PicoGreen as described above. A detailed analysis of NETs produced in vitro can be found in Supplementary 
Fig. 3.

Stimulation of monocytes with NETs in vitro in whole blood cultures.  50 µl of EDTA whole blood 
drawn from healthy volunteers were stimulated with 500 ng/ml isolated NETs or vehicle control in a polystyrene 
tube for 1 hour at 37 °C. Blood was washed with 2 ml PBS + 1% FCS. Supernatant was discarded, and the remain-
ing pellet was resuspended in 50 µl PBS. Cells were stained for CD66b (Pacific Blue), CD45 (Pacific Orange), 
CD142 (Brilliant Violet 711), CD14 (FITC), CX3CR1 (PE), HLA-DR; CD16 (PE-Cy7), CD56 (Alexa Fluor 
647), CD11b (Alexa Fluor 700), HLA-DR (APC-Cy7). Cells were lysed using BD FC Lysis Solution for 15 min-
utes. Samples were washed three times with PBS + 1% FCS and analyzed using an Attune NxT Flow Cytometer 
(ThermoFisher).

Statistics.  Distribution of data was assessed by histograms complemented by Kolmogorov-Smirnov test 
and Shapiro-Wilk test. Non-parametric data are given as median and interquartile range [IQR] and analyzed 
using Wilcoxon signed rank test and Spearman rank correlation (rs). Normally distributed data are given as 
mean ± standard deviation (SD) and tested using paired Students t-test. Bonferroni-Holm correction was applied 
in each set of experiments to correct for multiple testing. Boxplots display the 25th–75th percentile, the whiskers 
cover the 5th–95th percentile. Extreme outliers (<5th or >95th percentile) are not displayed in the figures. A 
published trapezoidal formula was used to calculate CK-MB AUC27, with at least 5 consecutive values over a 
period of 3 days after pPCI. A p-value below 0.05 was considered significant. Statistical testing was performed 
using IBM SPSS Statistics 22.0 for Windows.

Patient characteristics (n = 91)

Age, years 57.2 ± 13.0

Female sex, n (%) 18 (19.8)

Diabetes, n (%) 9 (9.9)

History of hypertension, n (%) 55 (60.4)

Ever smokers, n (%) 66 (72.5)

Family history of CAD, n (%) 34 (37.4)

BMI > 30 kg/m², n (%) 33 (36.3)

Culprit vessel, n (%) LAD 40 (44.0)

CX 15 (16.5)

RCA 36 (39.6)

Multiple culprit 
lesions 3 (2.7)

CAD, n (%) 1VD 56 (61.5)

2VD 18 (19.8)

3VD 17 (18.7)

CRP, nmol/l <48 45.7 [21.9–94.2]

CK-MB max, U/l <24 226 ± 239

TnT, µg/l <0.03 2.6 ± 2.8

Creatinine, µmol/l 50–100 97.2 ± 35.4

Cholesterol, mmol/l <5.2 5.15 ± 1.12

LDL, mmol/l <4.1 3.02 [2.16–3.87]

HDL, mmol/l >1.5 1.09 ± 0.22

Triglycerides, mmol/l <1.7 1.4 [1.0–2.61]

Final TIMI flow grade 2.7 ± 0.7

Symptom-to-balloon time, min 246 [160–372]

Table 1.  Patient characteristics. Data are presented as number (percent) of patients, mean ± SD or median 
[IQR]. Normal ranges are in the central column in italic. CAD, coronary artery disease; BMI, body mass index; 
LAD, left anterior descending artery; CX, left circumflex artery; RCA, right coronary artery; VD, vessel disease; 
CRP, C-reactive protein; CK-MB max, maximal creatine phosphokinase isoform MB; TnT, troponin T; LDL, low 
density lipoprotein cholesterol; HDL, high density lipoprotein cholesterol.
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Results
Patient characteristics.  We included 91 patients suffering from STEMI with a TIMI flow 0–1 who under-
went pPCI including thrombectomy at the Vienna General Hospital. Mean age was 57.2 ± 13.0 years, 19.8% were 
women. Detailed patient characteristics are provided in Table 1.

Stimulation of monocytes with NETs in vitro shifts classical towards intermediate monocytes 
and strongly influences receptor expression.  Whole blood samples from healthy donors (n = 5) were 
stimulated with isolated NETs in vitro and monocyte subsets were measured by FC. Stimulation with NETs led 
to a shift from classical to intermediate monocytes (Fig. 1A). Moreover, an increased expression of CD11b on 
classical and intermediate monocytes, an increased expression of CD142 only on intermediate monocytes, but a 
decreased expression of CX3CR1 on all three subsets was detected (Fig. 1B–D). Stimulation of monocytes from 
a single donor with isolated NETs from 5 different donors showed the same expression pattern (Supplementary 
Fig. 4).

NET surrogate markers are increased at the culprit lesion site and correlate with myocardial 
injury.  In line with previous data2,28, dsDNA was significantly increased at the culprit site compared to femoral 
plasma (Fig. 2A). Citrullinated histone 3 was also substantially increased in culprit site plasma compared to fem-
oral plasma (Fig. 2B). Furthermore, dsDNA (Fig. 2C) and citH3 (Fig. 2D) levels correlated with enzymatic infarct 
size measured as CK-MB AUC.

Monocyte subsets are shifted at the culprit lesion site of STEMI patients.  Monocytes subsets were 
determined in culprit site and femoral whole blood from STEMI patients (n = 91). Monocyte percentage of leu-
kocytes was significantly decreased in culprit site whole blood compared to the femoral site (femoral 3.7 [2.6–5.1] 
versus culprit site 3.1 [2.3–4.1] %, p < 0.0001), but total monocyte number in differential blood cell counts was 
not significantly different (femoral 600 [500–800] versus culprit site 600 [400–800] cells/l, p = not significant). 
Interestingly, classical monocyte percentage was decreased at the culprit site (Fig. 3A), whereas intermediate 
(Fig. 3B) and non-classical monocyte percentages were increased (Fig. 3C). High culprit site dsDNA correlated 
with low non-classical monocyte percentage at the culprit site (Fig. 3D). Culprit site citH3 related to non-classical 
monocyte numbers accordingly, but was not statistically significant.

Figure 1.  Stimulation of monocytes with NETs in vitro. (A) Monocyte subset shift as % of total monoctes, 
expression of (B) CD11b, (C) CD142 and (D) CX3CR1 of classical, intermediate and non-classical monocytes. 
Monocyte subsets in percent (%) or mean fluorescence intensity (MFI) levels are displayed. Monocytes were 
stimulated in whole blood from healthy donors (n = 5) with NETs derived from isolated neutrophils from a 
healthy donor (n = 1) or vehicle control for 60 minutes. *p < 0.05, **p < 0.01, ***p < 0.001.
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In total cell numbers, intermediate (n = 69, femoral 23 [14–54] versus culprit site 29 [15–50] cells/l, p < 0.05) 
and non-classical monocytes (n = 69, femoral 22 [10–38] versus culprit site 26 [18–44] cells/l, p < 0.0001) were 
significantly increased, while classical monocytes were not significantly different (n = 69, femoral 580 [426–739] 
versus culprit site 547 [394–731] cells/l, p = not significant).

Monocyte subsets display differentially expressed activation markers at the culprit lesion 
site.  We determined surface receptors of monocytes at the culprit site compared to the femoral site by FC in a 
subset of patients (n = 36). As expected, classical monocytes displayed a constitutively low expression of CX3CR1, 
while intermediate and especially non-classical monocytes showed distinctly higher levels. The CX3CR1 expres-
sion was substantially decreased at the culprit site in all subsets (Fig. 4A).

Soluble CX3CL1 was measured in the same patients and was significantly decreased in culprit site compared 
to femoral plasma (n = 32, femoral site 620 ± 280 pg/ml versus culprit site 540 ± 300 pg/ml, p < 0.01).

Classical monocytes displayed increased CD11b expression at the culprit site compared to the femoral site 
(Fig. 4B), CD142 expression of intermediate monocytes was significantly increased at the culprit site (Fig. 4C), 
while HLA-DR expression was decreased (Fig. 4D). Other measured activation markers (CD11a, CD192, TLR2, 
TLR4) were not significantly different between the femoral site and the culprit site. All FC data are listed in 
Supplementary Table 1.

Low monocytic CX3CR1 expression is connected to higher NET burden and increased myocar-
dial injury.  Low CX3CR1 expression of non-classical monocytes correlated with high culprit site dsDNA 

Figure 2.  Surrogate markers of neutrophil extracellular traps. (A) Double-stranded DNA (dsDNA, n = 83, 
femoral 581.7 [519.8–672.7] versus culprit site 692.7 [552.7–888.0] ng/ml) and (B) citrullinated histone 3 levels 
(citH3, n = 87, femoral 233 [156.5–545.6] versus culprit site 380.5 [173.8–820.3] ng/ml) were significantly 
increased at the culprit site of STEMI patients. Enzymatic infarct size expressed as the creatine phosphokinase 
isoform MB area under the curve (CK-MB AUC) correlated with (C) double-stranded DNA (dsDNA, 
n = 65, rs = 0.409, p < 0.001) and (D) citrullinated histone 3 (citH3, n = 65, rs = 0.315, p < 0.01). Significance 
****p < 0.0001.
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(Fig. 5A) and citH3 levels (Fig. 5B). Interestingly, we detected a strong correlation between increased enzy-
matic infarct size measured as CK-MB AUC and low expression of CX3CR1 on classical monocytes (n = 30, 
rs = −0.517, p < 0.05), intermediate monocytes (n = 30, rs = −0.569, p < 0.01) and non-classical monocytes 
(n = 30, rs = −0.556, p < 0.01, Fig. 5C).

Symptom-to-balloon time did not correlate with monocyte frequencies, expression markers or NETs surro-
gate markers (n = 33).

Discussion
In the present study, we investigated monocyte subsets at the culprit site of STEMI patients. In absence of a suita-
ble model for coronary atherothrombosis and lack of an animal model that approximates human STEMI, the local 
pattern of immune cells at the culprit site of patients is crucial to unravel the pathophysiology of MI. Percentage of 
monocytes was decreased in culprit site blood compared to the femoral site, which might be explained by the local 
accumulation of neutrophils29. Neutrophils and NETs have a detrimental impact on reperfusion and infarct size 
in STEMI2,30. It has been proposed that NETs are involved in microvascular obstruction and downstream injury5. 
In line with previous data, we detected increased levels of NET surrogate markers in culprit site plasma, which 
correlated with higher enzymatic infarct size (Fig. 2)2,28,31. Of note, NETs are not the exclusive possible source of 
extracellular DNA and histones, thereby it could be very possible that dying cells are another important source 
of extracellular chromatin in STEMI patients. Although the exact mechanisms of reperfusion injury and adverse 
remodeling are unknown, one important component might be the interplay between neutrophils and mono-
cytes7. We investigated the influence of NETs on monocyte subsets in vitro and detected a significant shift from 
classical towards intermediate monocytes. Monocyte subsets most likely evolve from classical over intermediate 

Figure 3.  Monocyte subsets at the culprit lesion site of STEMI patients. (A) Classical monocytes (femoral 91.4 
[85.2–94.0] versus culprit site 89.2 [82.8–92.9] %), (B) intermediate monocytes (femoral 4.5 [2.9–7.9] versus 
culprit site 5.2 [3.1–8.9] %) and (C) non-classical monocytes (femoral 3.6 [2.0–7.19] versus culprit site 4.9 
[2.5–8.2] %) were determined by flow cytometry as % of total monoctes in femoral and culprit site whole blood 
samples of STEMI patients (n = 91). The gating strategy is depicted in Supplementary Fig. 2. (D) Culprit site 
dsDNA correlates with non-classical monocyte percentage (n = 63, rs = −0.224, p < 0.05). ****p < 0.0001.
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to non-classical monocytes15. Intermediate monocytes are associated with features of vulnerable plaques32 and 
were reported to be connected to worse outcome in STEMI21,33. Furthermore, we observed a strongly diminished 
CX3CR1 expression of intermediate and non-classical monocytes, but increased expression of CD11b and CD142 
(tissue factor) on classical and intermediate monocytes in vitro (Fig. 1). These findings underscore reports on the 
proinflammatory and prothrombotic effects of extracellular chromatin34–36.

We measured the same expression markers at the culprit site of STEMI patients and found a very similar 
pattern. Intermediate and non-classical monocytes (as percentage of monocytes as well as in total numbers) were 
significantly increased compared to the femoral site, and higher dsDNA correlated with lower non-classical mono-
cyte levels (Fig. 3). In spite of only partial comparability of human and murine monocyte subsets, Nahrendorf et 
al. proposed an interesting two-step model for myocardial healing after ischemia derived from animal data. An 
early CCR2-dependent influx of ‘inflammatory’ Ly6c-high monocytes is followed by a CX3CR1-dependent take-
over of ‘reparative’ Ly6c-low monocytes37. Indeed, it was shown that human CD16-positive monocytes, which 
most likely correspond to murine Ly6c-low monocytes, remain increased in peripheral blood up to 12 days after 
pPCI compared to CD16-negative monocytes, which peak after 3 days20,21. In autopsy studies, the CD16+ mono-
cyte number in the infarct zone peaked in the proliferative phase after MI38. Our data showing non-classical 
monocyte accumulation at the culprit site indicate that homing to the ischemic myocardium is initiated consid-
erably earlier after coronary occlusion.

High NET surrogate markers correlated with low CX3CR1 expression of non-classical monocytes (Fig. 5) and 
culprit site CX3CR1 expression was strongly reduced compared to the femoral site (Fig. 4). Yet, high CX3CR1 
expression by non-classical monocytes correlated with smaller infarct size (Fig. 5). The CX3CR1 receptor is dis-
cussed to enable effective non-classical monocyte trafficking and is critical for resolution of tissue inflammation 
and healing19. It was shown that repair after arterial injury is compromised in CX3CR1 knockout mice and can be 
rescued by application of wild type Ly6c-low monocytes39. Similar results were reported from a model of ischemic 
kidney reperfusion injury40. In contrast, it was shown that CX3CL1 neutralization in a murine myocardial infarc-
tion model resulted in improved survival41.

Soluble CX3CL1 (fractalkine), the major ligand of CX3CR1, was reported to be increased during STEMI42. 
We found decreased levels of CX3CL1 at the culprit site compared to femoral plasma. Hypoxia led to reduced 
CX3CL1 release of endothelial cells in vitro43. Of note, pulmonary endothelial cells responded differently44. 
Receptor internalization after ligand binding could be an alternative explanation for reduced CX3CR1 expression 
and CX3CL1 at the culprit site, however, our in vitro data do not support this hypothesis.

Interestingly, NETs also promote differentiation of monocytes into fibrocytes in vitro. In vivo, fibrocytes are 
increased at the culprit site, which appears to also favor adverse tissue remodeling31.

Figure 4.  Expression markers of monocyte subsets in STEMI patients. Expression markers were determined by 
flow cytometry in femoral and culprit site whole blood samples (n = 36). (A) CX3CR1, (B) CD11b, (C) CD142 
and (D) HLA-DR on classical monocytes, intermediate monocytes and non-classical monocytes. Data are 
presented as mean fluorescence intensity (MFI) of monocyte subsets. All expression marker data are listed in 
Supplementary Table 1. *p < 0.05, **p < 0.01, ***p < 0.001.
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Taken together, these data suggest that extracellular chromatin could promote a differentiated monocyte 
response and lower CX3CR1 expression on monocytes at the culprit site. This possibly leads to decreased trans-
migration into the ischemic tissue of non-classical monocytes and impaired myocardial healing. Targeting NETs 
in acute coronary syndrome may be a promising therapeutic strategy.

Limitations
With the present study, we provide information on monocyte subsets in MI. However, sampling from the culprit 
and femoral site of STEMI patients only yields a snapshot of ongoing processes. In this human system, causality 
cannot be established and our findings remain observational. The effect size of presented data from the femoral 
and culprit site is small, however paired comparisons are from the same circulatory system, therefore also small 
differences might be very meaningful.

Data availability
All data and protocols can be promptly made available.
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