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Genetic variation affects binge 
feeding behavior in female inbred 
mouse strains
Brandon A. Newmyer1,3, Ciarra M. Whindleton1,3, Nandan Srinivasa1, Marieke K. Jones  2 & 
Michael M. Scott1*

Identifying genetic variants that regulate binge eating (BE) is critical for understanding the factors 
that control this behavior and for the development of pharmacological treatment strategies. Although 
several studies have revealed specific genes capable of affecting BE behavior, less is known about 
how genetic variation modulates BE. Thus, through a paradigm that promoted binge-like food intake 
through intermittent access to high calorie diet (HCD), we quantified food-intake in four inbred mouse 
strains: C57Bl/6J (B6), NOD/LtJ (NOD), 129S1/SvlmJ (S1), and A/J (AJ). We report that genetic variation 
likely influences the chronic regulation of food intake and the binge-like consumption of a palatable 
HCD. AJ mice consumed more of both standard chow and HCD than the other three strains tested when 
both diets were available ad libitum, while S1 mice consumed significantly less HCD than other strains 
during intermittent HCD access. Behavioral differences were also associated with differential changes 
in c-Fos immunohistochemistry in brain regions traditionally associated with appetite regulation. Our 
results identify 129S1/SvlmJ as a strain that exhibits low levels of binge feeding behavior and suggests 
that this strain could be useful in the investigation of the influence of genetic variation in the control of 
binge food intake.

Binge eating (BE) is characterized as compulsive and unrestrained consumption of a large amount of food, typ-
ically highly palatable and calorically dense, within a brief time period1. While Binge Eating Disorder is recog-
nized as a psychiatric condition in its own right, BE is also often observed in diseases of disordered feeding such 
as bulimia2,3 and in subsets of patients with obesity4,5 and anorexia3. Identifying genetic variants that regulate BE 
is critical to both understanding the mechanisms driving this behavior and for the development of pharmacolog-
ical strategies to combat this condition.

Several gene deletion studies in mice have elucidated specific genes capable of affecting BE behavior: heterozy-
gous cytoplasmic FMR1-interacting protein 2 knockout reduces binge eating of palatable food but not chow con-
sumption in C57BL/6NJ mice6, while growth-hormone secretagogue receptor 1A (GHSR) knockout decreased 
intermittent high fat diet intake in CD-1 mice7. Although these and other studies utilizing genetic mouse mod-
els have revealed how select factors influence BE, considerably less is known pertaining to what extent natural 
genetic variation can affect BE behavior.

While differences in binge food intake between C57bl/6J and N lines6, in addition to DBA mice8, have been 
described, exhibiting varying levels of binge food intake depending upon the paradigm used to investigate this 
behavior9, we sought to investigate binge-like food intake across several mouse strains using a common experi-
mental approach.

Thus, using a paradigm that involved allowing mice intermittent access to a palatable, high-calorie diet 
(HCD)9, female mice from four inbred lines that form part of the Collaborative Cross population10 (C57Bl/6J 
(B6), NOD/LtJ (NOD), 129S1/SvlmJ (S1), and A/J (AJ)) were tested for BE behavior. When given ad libitum 
access to either chow or HCD in two separate experiments, little variation was observed between strains, with AJ 
mice consuming significantly more of both diets relative to the other strains tested. Interestingly, during intermit-
tent access to HCD, the four strains showed significantly more variation in binge food intake. NOD, S1, and AJ 
mice all consumed less HCD than the B6 mice during a 3 h HCD binge, while S1 mice ate significantly less HCD 
than NOD, and AJ mice. In addition, significant variation in neuronal activation was observed between strains 
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in select brain nuclei shown to modulate feeding behavior, suggesting that gene expression differences within 
circuits involving these neuronal populations may control binge food intake.

Methods
Several of the procedures described below have also been reported in our prior publication11.

Animals. Female mice that comprise four of the eight founder strains of the Collaborative Cross10 population 
were obtained from The Jackson Laboratory. We chose to perform this investigation in female animals as the inci-
dence of diseases of disordered feeding is high in females12 while significantly less is know about the binge-like 
food intake performance in female compared to male mice. 8 week old C57Bl/6J (B6), NOD/LtJ (NOD), 129S1/
SvlmJ (S1), and A/J (AJ) female mice were acclimated (single-housed) for 1 week upon arrival. 6–7 animals were 
used from each line in the food intake experiments and in the cFos analysis. Animal use was in accordance with 
guidelines approved by the University of Virginia Animal Care and Use Committee.

Measurement of food intake and binge feeding behavior. Our food intake paradigm was performed 
as described by Czyzyk et al.9, avoiding the use of animal stress or food restriction to produce the binge like intake 
of food (as diagramed in Fig. 1). Briefly, intake of regular chow (Teklad #2014, 4% fat, 17% protein and 48% car-
bohydrate (no sucrose), 2.9 kcal/g) or HCD (Teklad TD.88137, 21% fat, 48% sucrose, 17% protein 4.5 kcal/g) in 
the continual, ad libitum access groups was weighed daily following a 1-week acclimation period, then averaged 
over a 7 day period to obtain daily food intake values. In the intermittent food exposure group, mice initially 
received 48-hour continuous access to both chow and HCD. This initial access period was important to reduce 
neophobia and novelty for the HCD; parameters that would affect food intake. After 48 hr, the HCD was removed 
for 5 days while the chow diet was still available ad libitum. HCD then was reintroduced in addition to chow, 
starting 2 hours following the onset of the dark cycle. Chow and HCD were separated by a divider that was part 
of the metal rack top of the animal’s home cage. Position of the HCD and chow in the metal rack was varied to 
avoid position effects. Intake was monitored for 3 hours and then 24 hours, following initial HCD presentation 
(Indicated in Fig. 2I–L by an arrow at “day 3” on the x-axis). We describe this intake as “binge-like” as the animals 
exhibit the intake of an elevated amount of food relative to their average daily intake, within a brief time period1. 
Following the initial intermittent exposure period, HCD is then removed and animals are fed chow for 6 days. 
Following this 6 day period, HCD is returned for 24hrs for a second time. Data are presented from this second 
intermittent HCD exposure episode (Fig. 2. Binge feeding, intermittent exposure to HCD periods demarked by 
an arrow in Fig. 2I–L, at “day 10” on the x-axis). Food intake was normalized to body weight, as described by 
Czyzyk et al.9. Estrous cycle was not determined during testing.

c-Fos immunohistochemistry. Animals that were naïve for intermittent or constant HCD exposure were 
presented with 0.1 g of HCD and sacrificed 90 minutes following the onset of consumption. Importantly, all mice 
showed complete consumption of the small sample of HCD within 30 minutes of presentation. Mice were anes-
thetized i.p. with euthanasia solution (0.1 ml euthasol) and underwent trans-cardiac perfusion with buffered 
saline followed by fixative solution (4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4, containing 15% 
saturated picric acid). Each mouse was perfused with 50 ml fixative over a 5 min time period. Following perfusion, 
brains were dissected and post-fixed in the same fixative solution overnight, after which they were transferred to 
0.1 M phosphate buffer. Brains were blocked coronally into three equally sized sections using a mouse brain mold. 
The brain parts were blotted, dried and arranged into standard cryomolds (Tissue Tek, #4557) with brain sections 
from four to six different mice in each cryomold. The molds were then filled with warmed 10% gelatin solution, 
allowed to cool to solidify, and post-fixed in 4% paraformaldehyde solution at 4 °C overnight. The blocks were 
then removed from molds, trimmed, glued on polystyrene dishes, and cut into coronal sections (40 μm thick) 
using a vibratome (Leica). The sections were collected serially in six-well tissue culture plates such that each well 
contained a representative series with every 6th section present (distance between adjacent sections in each well 
was therefore 240 μm). Sections were stored at 4 °C in 0.1 M phosphate buffer containing 0.1% sodium azide as a 
preservative prior to immunohistochemical procedures.

Figure 1. Diagram describing the intermittent feeding paradigm that was used to produce binge-like food 
intake (modified from Czyzyk et al.9). Animals in the Intermittent access group first had 48 hr. access to both 
HCD and chow, after which time, HCD was removed and animals were maintained on chow. Following 
this period, HCD was reintroduced for 24 hr. Intake was then measured at 3 hr and 24 hr following HCD 
reintroduction (Fig. 2I–L, Intermittent exposure as presented on the x-axis at “day 3”). Following the initial 
intermittent exposure period, HCD was then removed and animals were fed chow for 6 days. Following this 6 
day period, HCD was returned for 24hrs for a second time (Fig. 2I–L, intermittent exposure as presented on the 
x-axis at “day 10”). Data from this second intermittent HCD exposure episode are used for all reported analyses.
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Sections were stained for c-Fos immunoreactivity using peroxidase staining11,13. Phosphate-buffered saline 
(PBS) was used for all rinses, whereas all antibody solutions were made in PBS containing 0.5% Triton X-100, 
0.1% sodium azide, and 2% normal goat serum. First, sections were pretreated with sodium borohydride (0.1%) 
in PBS for 20 min followed by immersion into 0.3% hydrogen peroxide and 0.1% sodium azide in PBS (30 min) 
to quench endogenous peroxidase activity. Next, the sections were immersed in blocking solution containing 2% 
normal goat serum and Fab’ fragments of goat anti-mouse IgG (1:1000) for 4 h at room temperature. Sections 
were then incubated in anti-c-Fos (Ab5, EMD Millipore, #PC38, 1:50,000) for 72 h followed by overnight incu-
bation in biotinylated goat anti-rabbit IgG (Jackson ImmunoResearch, 1:1000) with antibodies diluted in PBS 
containing 0.5% Triton X-100 and 0.1% sodium azide. Subsequently the sections were immersed in avidin– bio-
tin–peroxidase complex diluted in PBS with 0.1% Triton X-100 (ABC Elite kit, Vector; 1:1000, 4 h). Staining was 
completed using nickel-enhanced 3,3’ -diaminobenzidine (DAB, 0.02%, nickelous ammonium sulfate 0.15%) in 
Tris–HCl (0.05 M, pH 7.6) yielding a black reaction product.

Microscopy. The sections were examined with an Olympus BX51 microscope using 10, 20, and 40× objectives 
and digital images were captured using a Magnafire digital camera (Optronics, Goleta, CA, USA) and stored images 
in TIFF format or loaded into NIH Image (version 1.61) for counting cell nuclei stained for c-Fos immunoreactivity.

Figure 2. Daily food intake for mouse inbred strains consuming chow (A), HCD (B) and receiving intermittent 
access to HCD. (C) Significant differences in chow (A, 2-way ANOVA, effect of genotype, F3,21 = 6.762, 
p = 0.0023, effect of time, F6.5,135.6 = 2.176, p = 0.0446, interation of genotype x time, F36,252 = 1.342, p = 0.1021, 
Table 1 displays the multiple comparisons between genotypes)) and HCD (B, 2-way ANOVA, effect of 
genotype, F3,19 = 4.55, p = 0.0145, effect of time, F3.198,60.77 = 1.545, p = 0.2097, interaction of genotype x time, 
F33,209 = 0.8011, p = 0.7727, Table 2 displays the multiple comparisons between genotypes) intake were observed 
between strains. Intermittent exposure in each strain produced elevated intake, relative to continual chow 
or HCD intake (One way ANOVA with p values reported for the ANOVA and for Dunnett’s post hoc test 
comparing intermittent intake to chow and to HCD intake, (D) ANOVA p < 0.0001, F2,17 = 19.19, Dunnett’s 
p < 0.0001 (chow) p = 0.0004 (HCD), (E) ANOVA p = 0.0002, F2,19 = 13.52, Dunnett’s p = 0.032 (chow), 
p = 0.001 (HCD), (F) ANOVA p < 0.0001, F2,15 = 24.21, Dunnett’s p < 0.0001 (chow) p < 0.0001 (HCD), (G) 
ANOVA p < 0.0001, F2,17 = 51.02, Dunnett’s p < 0.0001 (chow), p < 0.0001, (HCD)) Significant variation 
between strains was also observed following binge feeding during intermittent exposure to HCD (2 H ANOVA, 
F3,25 = 25.05, p < 0.0001, multiple comparisons reported in Table 3). Panels I-L are derived from Panel C, 
demonstrating the timing of the intermittent HCD access/binge feeding episodes (arrows), with data reported 
from the day 10 intermittent exposure period. 6–7 animals from each genotype were used for each treatment.
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Counting of Fos+ cells. Quantitation of c-Fos expression was done using NIH Image (v.1.61). Images were 
first processed by equalizing brightness (background subtraction), and were then thresholded for binary con-
version. The number of particles (which corresponded to labeled nuclei) were then counted and recorded. For 
each brain area investigated, we chose two sections that showed well defined nuclei prominently present, and 
the number of c-Fos-labeled cells were counted bilaterally in each section and summated to yield the total num-
ber. We performed cell counts from nuclei centered on the following stereotaxic coordinates relative to mouse 
Bregma, as determined from the atlas of Paxinos and Franklin14. Medial (MO), ventral (VO) orbitofrontal cortex 
+3.08 mm, prelimbic (PL) and infralimbic (IL) cortex (combined to form the PFC cell counts) +1.8 mm, granular 
gustatory (Gran) cortex +1.8 mm, rostral accumbens (Acb) +1.54 mm, lateral hypothalamus (LH) −1.58 mm, 
arcuate nucleus (Arc) −1.58 mm, Ventral Tegmental Area (VTA) −3.16 mm, central nucleus of the amygdala 
(CeA) −1.22 mm, medial parabrachial nucleus (PB) −5.20 mm, nucleus of the solitary tract (NTS) −7.2 mm.

Statistical analysis. The amount of food intake consumed was analyzed using either a two-way or a 
one-way ANOVA with Tukey’s or Dunnett’s multiple comparisons test in GraphPad Prism (ver.6). All treatment 
groups were composed of 6–7 animals per group. Correlations between the intake of chow, HCD intake during 

ANOVA table SS DF MS F(DFn,DFd) P value

Time x Genotype 1.260 33 0.03819 F(33,209) = 0.8011 P = 0.7727

Time 0.8103 11 0.07367 F(3.198,60.77) = 1.545 P = 0.2097

Genotype 8.154 3 2.718 F(3,19) = 4.55 P = 0.0145

Residual 9.964 209 0.04767

Tukey’s multiple comparison’s test Mean Diff. 95% CI of Diff. Adjusted P value

S1 vs NOD −0.01582 −0.09141 to 0.05977 0.9476

S1 vs A/J −0.4188 −0.5819 to −0.2558 <0.0001

S1 vs B6 −0.08378 −0.1526 to −0.01497 0.0101

NOD vs. A/J −0.4030 −0.5693 to −0.2368 <0.0001

NOD vs B6 −0.06796 −0.1447 to 0.008760 0.1020

A/J vs B6 0.3351 0.1716 to 0.4986 <0.0001

Table 1. Statistical table describing the 2-way ANOVA output and the multiple comparisons made in Fig. 1, 
panel A, between mouse strains during chow food intake.

ANOVA table SS DF MS F(DFn,DFd) P value

Time x Genotype 1.639 36 0.04552 F(36,252) = 1.34 P = 0.1021

Time 0.8861 12 0.07384 F(6.456,135.6) = 2.16 P = 0.0446

Genotype 4.834 3 1.611 F(3,21) = 6.762 P = 0.0023

Residual 8.550 252 0.03393

Tukey’s multiple comparison’s test Mean Diff. 95% CI of Diff. Adjusted P value

S1 vs NOD 0.03131 −0.04737 to 0.1100 0.7300

S1 vs A/J −0.2750 −0.3780 to −0.1720 <0.0001

S1 vs B6 −0.003454 −0.07503 to 0.06812 0.9993

NOD vs. A/J −0.3063 −0.4160 to −0.1967 <0.0001

NOD vs B6 −0.03476 −0.1159 to 0.04634 0.6818

A/J vs B6 0.2716 0.1668 to 0.3764 <0.0001

Table 2. Statistical table describing the 2-way ANOVA output and the multiple comparisons made in Fig. 1, 
panel B, between mouse strains during HCD intake.

Tukey’s Multiple 
Comparisons Test Mean Diff. 95% CI or Diff. Adjusted P value

S1 vs NOD −0.05397 −0.09971 to −0.008228 P < 0.05

S1 vs AJ −0.05724 −0.1011 to −0.01341 P < 0.01

S1 vs B6 −0.1327 −0.1750 to −0.09033 P < 0.0001

NOD vs AJ −0.003271 −0.05039 to 0.04385 0.9975

NOD vs B6 −0.07871 −0.1245 to −0.03297 P < 0.001

AJ vs B6 −0.07544 −0.1193 to −0.03160 P < 0.001

Table 3. Statistical table describing the multiple comparisons made (1-way ANOVA, Tukey’s post hoc test) in 
Fig. 1, panel H, between mouse strains during the 3 hr intermittent exposure to HCD.
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continual exposure and HCD intake during intermittent exposure were performed in Graphpad Prism (ver.6). 
Analysis of c-Fos expression differences between genotypes were analyzed using multiple ANOVAs followed 
by Benjamini-Hochberg p-value correction for multiple comparisons, performed in R (ver. 3.5.3). All grouped 
values in the bar graphs are expressed as means and standard error of the mean (SEM). Differences with p < 0.05 
were considered statistically significant. Graphs were prepared in Graphpad Prism (ver.6).

Results
We investigated whether four inbred strains of female mice showed differences with respect to the ingestion of 
chow or HCD under constant or intermittent access conditions, with the intermittent exposure paradigm dia-
gramed in Fig. 1. Food intake for each individual strain during this paradigm is presented in Fig. 1I–L, with each 
intermittent HCD exposure period demarked by arrows, on days 3 and 10. Data from the second intermittent 
exposure period, at day 10, were used for analysis. While the S1, NOD and B6 strains all showed similar levels of 
chow and HCD consumption, A/J female mice showed an elevation in intake relative to the other mouse strains 
(Fig. 2A, 2-way ANOVA, effect of genotype, F3,21 = 6.762, p = 0.0023, effect of time, F6.5,135.6 = 2.176, p = 0.0446 
interaction of genotype x time, F36,252 = 1.342, p = 0.1021, Table 1 reports the multiple comparisons between gen-
otypes) and also exhibited an increase in HCD intake (Fig. 2B, 2-way ANOVA, effect of genotype, F3,19 = 4.55, 
p = 0.0145, effect of time, F3.198,60.77 = 1.545, p = 0.2097, interaction of genotype x time, F33,209 = 0.8011, p = 0.7727, 
Table 2 reports the multiple comparisons between genotypes). In addition to the elevated intake seen in A/J 
females, S1 mice showed reduced HCD intake when compared to B6 animals (Table 2). Mice undergoing the 
intermittent feeding paradigm all showed elevated intake of food during the intermittent exposure to HCD, when 
compared to daily intake seen in control groups of the same genotype that were either continually fed chow or 
HCD. (One way ANOVA with p values reported for the ANOVA and for Dunnett’s post hoc test comparing 
intermittent intake to chow and to HCD intake, Fig. 2D, ANOVA p < 0.0001, F2,17 = 19.19, Dunnett’s p < 0.0001 
(chow) p = 0.0004 (HCD), Fig. 2E, ANOVA p = 0.0002, F2,19 = 13.52, Dunnett’s p = 0.032 (chow), p = 0.001 
(HCD), Fig. 2F, ANOVA p < 0.0001, F2,15 = 24.21, Dunnett’s p < 0.0001 (chow) p < 0.0001 (HCD), Fig. 2G, 
ANOVA p < 0.0001, F2,17 = 51.02, Dunnett’s p < 0.0001 (chow), p < 0.0001, (HCD)).

Interestingly, when mouse strains had intermittent access to HCD, the resulting binge-like, elevated intake 
of HCD did not occur to the same extent across all strains (Fig. 2H). While all inbred strains showed an average 
intake during the 3 hour binge-like feeding episode that was less than that of the B6 strain, the S1 animals con-
sumed less than all other strains, showing a significant reduction in binge-like food intake (Fig. 2H, ANOVA, 
F3,25 = 25.05, p < 0.0001 with multiple comparisons reported in Table 3). These data suggest that genetic variation 
between the strains significantly affects binge feeding behavior. We then wanted to determine whether the regula-
tion of ad libitum food intake in these inbred strains correlated with intermittent food intake, as prior studies sug-
gest that the neuronal mechanisms that regulate food intake differ between these two behavioral paradigms9. As 
expected, intake in the ad libitum fed chow and HCD groups was highly correlated (Fig. 3A, r = 0.97, p = 0.0298, 
suggesting that similar neuronal systems may be involved in determining intake based on the caloric content 
of food. However, neither HCD nor chow intake correlated with the food intake of intermittent HCD exposed 
animals, either at 3 hr (Fig. 3B r = −0.03, p = 0.969, Fig. 3C r = 0.19, p = 0.806) or 24 hr (Fig. 3D r = 0.3385, 
p = 0.338, Fig. 3E r = 0.235, p = 0.235) time points. Thus, our work suggests that binge food intake and the reg-
ulation of food intake based on caloric value may be regulated by separate mechanisms that are affected by the 
genetic variation observed between the S1, NOD, B6 and AJ inbred mouse strains.

To begin to characterize whether neuronal activation within brain regions shown to regulate feeding is 
dependent upon strain genotype, we examined c-Fos expression following the ingestion of a small quantity 
(0.1 g) of HCD in naïve animals. Several brain areas exhibited genotype-dependent expression of c-Fos. The 
lateral hypothalamus (ANOVA, F3,24 = 13.55, p = 1.23 × 10−4), medial- (ANOVA, F3,23 = 14.46, p = 1.23 × 10−4) 
and ventral orbitofrontal cortices (ANOVA, F3,23 = 4.028, p = 0.0379), medial prefrontal cortex (ANOVA, 
F3,25 = 11.75, p = 1.98 × 10−4), ventral tegmental area (ANOVA, F3,22 = 3.992, p = 0.0379), and parabrachial 
nucleus (ANOVA, F3,23 = 6.856, p = 0.00502) all showed significant differences in c-Fos expression across geno-
type (Fig. 4). However, several other brain areas that have been demonstrated to regulate food intake exhibited no 
differences in c-Fos expression across the genotypes tested (Fig. 4): the arcuate nucleus (ANOVA, F3,25 = 1.017, 
p = 0.468), nucleus accumbens (ANOVA, F3,24 = 2.978, p = 0.07189) central nucleus of the amygdala (ANOVA, 
F3,25 = 2.947, p = 0.07189), granular cortex (ANOVA, F3,18 = 0.9769, p = 0.468) and caudal nucleus of the soli-
tary tract (ANOVA, F3,25 = 0.3978, p = 0.756). Differences in c-Fos expression can be readily observed in images 
presented from the S1, NOD, AJ and B6 strains, of sections from medial orbitofrontal cortex and parabrachial 
nucleus (Fig. 5A,B). Little difference in expression can be seen across genotype within the arcuate nucleus 
(Fig. 5C). Finally, we looked at whether differences in cFos expression in select brain nuclei correlated with var-
iation in 3 hr. binge-like food intake observed between the four inbred mouse strains. As we describe in Table 4, 
however, no significant correlations were observed.

Discussion
Our data suggest that genetic variation likely influences the regulation of excessive food intake over short periods 
of time. Minimal variation in food intake (either of chow or palatable diet) during constant, ad libitum access was 
observed between strains, with the A/J strain showing the largest increased consumption relative to other mice. 
However, the four strains tested showed markedly larger variation in levels of binge-like intake of HCD. Future 
studies, meanwhile, will be required to determine how the caloric content of the food is responsible for driving 
the binge-like consumption. Indeed, while chow- and HCD intake between mouse strains showed a high level of 
correlation, no correlation was observed between intermittent, binge-like intake and the levels of total food intake 
during ad libitum access conditions. These data then suggest that the genetic control of consumption during 
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continual access to chow or palatable food is possibly controlled by similar genetic factors. Lack of a correlation 
between binge food intake during intermittent HCD exposure and food intake during continual exposure to 
either HCD or chow suggests that the genetic factors that control binge intake differ from those that regulate food 
intake during continual exposure.

Interestingly, the lack of a significant correlation between cFos expression in select brain nuclei and variation in 
binge-like food intake suggests that the predictive power of single nuclei cFos activity is weak and that the genetic 
effects driving variation in binge-like food intake are likely llikely spread over multiple brain areas. It should be 
noted, however, that testing further mouse strains would help strengthen this interpretation, as our work was based 
on the analysis of just four of the commonly used inbred strains available at The Jackson Laboratory.

The identification of inbred mouse strains that show significant variation in binge food intake under an inter-
mittent exposure paradigm will be extremely useful in the investigation of genetic variants that influence exces-
sive reward-seeking behavior. While mouse strains such as DBA/2j exhibit high levels of binge food intake in 
certain paradigms8, our data using an intermittent exposure model system describes how inbred lines, most 
notably the 129S1/SvlmJ line, exhibit significantly reduced binge food intake, relative to these other commonly 
used strains. Consequently, the description of mouse strains that show both excessive and constrained binge feed-
ing could significantly increase our ability to identify the genetic networks that drive aberrant food- and possibly 
drug intake behavior.

Figure 3. (A) Chow food intake and HCD diet intake show high levels of correlation across mouse strains 
(r = 0.97, p = 0.298) Binge food intake shows little correlation with chow intake (B,D) or with HCD intake 
(C,E). Acute versus chronic feeding in the intermittent exposure to HCD group also shows little correlation 
across mouse strains (F).
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Significant variation between 129 substrains and the C57Bl/6j strain have been reported in prior work inves-
tigating both reward seeking and reward potency. For example, food and cocaine reinforcement in addition to 
place preference for cocaine was reduced in 129X1/SvJ animals compared to C57bl/6J mice15,16. Morphine, how-
ever, was significantly more potent in producing analgesia in 129 substrains compared to C57Bl/6 mice17. DBA 
animals, meanwhile, were shown to lack any sensitivity towards the rewarding effects of morphine unlike that 
observed with C57Bl/6j mice18. This variation in response to morphine is especially relevant, given that prior 
work has demonstrated the importance of the μ-opioid receptor in driving binge feeding behavior19,20. Our study 
therefore demonstrates that, in addition to exhibiting significantly different responses to drugs of abuse, these 
strains also exhibit differences in binge-like consumption of natural rewards.

The diversity outbred (DO)21 and collaborative cross (CC)10 populations both include the founder strains 
investigated here, suggesting that these mouse populations should be extremely useful for the study of binge 
feeding genetics. In addition to the inbred strains, the DO and CC also include wild-derived founder animals. 

Figure 4. cFos expression in response to HCD feeding. Animals were fed 0.1 g HCD 90 minutes prior to 
sacrifice, with all animals consuming the test diet. cFos expression was then determined in brain areas shown 
previously to regulate food intake behavior. While cFos expression does not show variation between mouse 
strains in select brain nuclei (A, Acb, B, Arc, C, CeA, D, Gran and G, NTS). cFos expression in the LH (E), 
MO (F), PB (H), PFC (I), VO (J), VTA (K) all exhibited genotype dependent differences (ANOVA, p < 0.05, 
Benjamini-Hochberg p-value correction for multiple comparisons).
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Although we attempted to investigate whether one of these wild derived strains, the Cast/EiJ line10, exhibits binge 
food intake, we found it impossible to measure consumption of the TD.88137 diet. Whether as a pellet or in a 
paste formulation, the Cast/J mice would disperse the food around their cage in small fragments, making meas-
urement of intake imprecise. Future work will focus on investigating how the wild-derived and inbred strains 
tested in the current report differ with respect to binge food intake, using a modified binge food intake paradigm.

When we examined the brain regions activated following exposure to calorically dense food, significant dif-
ferences in c-Fos expression were observed in several brain regions involved in food intake regulation based on 
palatability22–24. Significantly less of an effect on c-Fos expression was observed in brain regions shown to regulate 
food intake based on the metabolic requirement of the animal, similar to data reported previously25. Although it 
is difficult to conclude that our observed c-Fos expression differences reflect changes in the activity of brain areas 
that drive observed strain-dependent differences in binge food intake, our work is highly suggestive of this pos-
sibility, as the rank order of c-Fos expression in many frontal cortical brain areas reflects a similar rank order in 
levels of HCD intake. Whether the differences in cFos expression arise solely as a result of the exposure of the ani-
mal to HCD or reflect activity levels present in the absence of HCD stimulation will require further investigation.

Both the prefrontal and orbitofrontal cortices, brain areas that showed significant differences in c-Fos expres-
sion between strains, have previously been shown to play important roles in driving binge feeding behavior. In 
rodents, μ-opioid receptor activation has been shown to be both necessary and sufficient19,20 in these brain areas 
to affect binge-like food intake. Optogenetic manipulation of projections from the frontal cortex to the amyg-
dala, meanwhile, has revealed this subcortical projection to be both necessary and sufficient to regulate feeding 
behavior26. Additionally, changes in brain activity in medial prefrontal regions is often observed in fMRI studies 
in humans with altered food intake behavior. For example, reduced blood flow to fronto-striatal circuits is fre-
quently seen in people exhibiting eating disorders, suggesting that alterations in these brain regions could drive 
changes in both feeding behavior and impulsive action2,27. Furthermore, people who show successful weight loss 

Figure 5. Examples of cFos expressing brain areas from all four mouse strains challenged with HCD, as 
quantified in Fig. 3. Increased cFos expression was observed in the MO (A) and PB (B) across mouse lines, 
while little change in cFos expression was observed in the Arc (C).

Brain Region Acb Arc CeA Gran LH MO NTS PB PFC VO VTA

Pearson r −0.639 0.521 0.873 −0.82 −0.704 −0.9 −0.615 −0.909 −0.784 −0.893 −0.515

95% Confidence interval −0.9913 
to 0.8347

−0.8814 
to 0.9876

−0.5478 
to 0.9973

−0.9961 
to 0.6666

−0.9931 
to 0.7950

−0.9979 
to 0.4538

−0.9906 
to 0.8462

−0.9981 
to 0.4137

−0.9952 
to 0.7188

−0.9978 
to 0.4794

−0.9874 
to 0.8833

P value 0.361 0.479 0.127 0.181 0.296 0.100 0.385 0.0913 0.217 0.107 0.485

Table 4. Correlations between cFos expression in select brain regions and 3 hr. binge-like food intake levels in 
the inbred mouse strains.
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following the development of obesity demonstrate alterations in the activation of brain areas that regulate sensory 
processing, reward and impulsivity, when compared to overweight controls28.

In conclusion, our work demonstrates how genetic variation may directly or indirectly affect the activity of 
brain regions shown to regulate feeding behavior. We also suggest that the mouse strains tested in the current 
study could be utilized to map genetic variants that could contribute to the development of disordered feeding.

Data availability
The data sets generated during the current study are available from the corresponding author on reasonable 
request.
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