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Intrinsic Functional Connectivity is 
Organized as Three Interdependent 
Gradients
Jiahe Zhang   1,6, Olamide Abiose2,6, Yuta Katsumi1, Alexandra Touroutoglou3,4, 
Bradford C. Dickerson3,4 & Lisa Feldman Barrett1,3,5*

The intrinsic functional architecture of the brain supports moment-to-moment maintenance of an 
internal model of the world. We hypothesized and found three interdependent architectural gradients 
underlying the organization of intrinsic functional connectivity within the human cerebral cortex. We 
used resting state fMRI data from two samples of healthy young adults (N’s = 280 and 270) to generate 
functional connectivity maps of 109 seeds culled from published research, estimated their pairwise 
similarities, and multidimensionally scaled the resulting similarity matrix. We discovered an optimal 
three-dimensional solution, accounting for 98% of the variance within the similarity matrix. The three 
dimensions corresponded to three gradients, which spatially correlate with two functional features 
(external vs. internal sources of information; content representation vs. attentional modulation) 
and one structural feature (anatomically central vs. peripheral) of the brain. Remapping the three 
dimensions into coordinate space revealed that the connectivity maps were organized in a circumplex 
structure, indicating that the organization of intrinsic connectivity is jointly guided by graded changes 
along all three dimensions. Our findings emphasize coordination between multiple, continuous 
functional and anatomical gradients, and are consistent with the emerging predictive coding 
perspective.

The brain has been described as an internal model of the world, dynamically constructing simulations from gen-
erative combinations of prior experience1–3. Intrinsic connectivity networks – ensembles of widely distributed 
brain regions with statistically dependent fluctuations in activity over time4–6 – are hypothesized to play a pivotal 
role in implementing and adjusting this model7–15. A parcellation approach to intrinsic connectivity networks 
assumes they are spatially discrete (i.e., modules) within the brain, such that each region belongs to one and 
only one network (e.g.16–26). Yet brain regions often show fluid coupling with different networks27–29, sometimes 
conceptualized as affiliating with multiple intersecting networks (e.g.30–32), and some networks play a more cen-
tral role in the brain’s internal model than do others (e.g.10). A connectomics approach treats neural ensembles as 
overlapping sub-networks (e.g.33,34) that implement and update the internal model by communicating via densely 
connected “rich club” hub regions35,36. Connectomics does not, by itself, identify organizational features reflect-
ing the brain’s ongoing activity (but see37 for a recent example of a connectomics approach that makes functional 
inferences). A cytoarchitecture approach provides additional computational insights by positing that the relative 
differences in cortical lamination in two connected cortical regions strongly predicts the type of information flow 
between those regions (e.g.38,39). When integrated with the principles of predictive processing1,2,40, this approach 
suggests specific hypotheses for the role that intrinsic connectivity networks play in maintaining and updating 
the brain’s internal model, the key hypothesis being that the internal model (called predictions) and learning sig-
nals (called prediction errors) propagate across neurons arranged in a loose hierarchy (see also41), with internal 
representations originating in limbic cortices, including agranular cortices that lack a well-defined layer IV and 
have sparser layers II and III, as well as dysgranular cortices with a rudimentary layer IV, such as the cingulate 
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cortex, anterior insula and medial orbitofrontal cortex38. Moreover, via their projections to subcortical regions 
that regulate the autonomic nervous system and other systems of the internal milieu of the body (e.g., the hypo-
thalamus, amygdala, ventral striatum, periaqueductal gray, parabrachial nucleus, nucleus of the solitary tract), 
limbic cortices are anatomically well-positioned to integrate information in the service of generating more effi-
cient and accurate internal representations11,32. A crucial biological insight from the cytoarchitecture approach is 
that information flow in the cortex proceeds across continuous hierarchies. Notably, gradient-based approaches 
have also been successfully used to investigate cortical cell content42, thickness43, myelin content44, and genetic 
expression45–47. Therefore, across multiple levels of analysis, gradient-based approaches have facilitated investiga-
tions into the organizational patterns of brain structure and function.

In the current study, we integrated insights from the parcellation, connectomics, and cytoarchitectural 
approaches to develop a unified framework for describing the organizational features of intrinsic connectivity 
across the cerebral cortex. Specifically, we tested the hypothesis that intrinsic connectivity within the cortex is 
organized as interdependent gradients by which connectivity patterns show continuous similarity rather than 
discrete differences. Our approach emphasizes region-to-region affiliations in intrinsic connectivity (i.e., forming 
similarity gradients), which are largely ignored by the parcellation approach that focuses primarily on defining 
unique region-to-network affiliations. Our gradient-based analysis discovers how the connectivity of cortical 
regions shifts with changes in their location along several cortical hierarchies. Most importantly, our demonstra-
tion that intrinsic connectivity is organized on interdependent gradients is particularly novel, given that previous 
studies examining gradient-based cortical organization tended to treat connectivity gradients as statistically inde-
pendent properties of the brain (e.g.48–55).

To sample intrinsic connectivity across the cortical sheet, we selected 109 seed regions across five intrinsic 
connectivity network motifs (recurring topographical patterns) most commonly identified in literature (Fig. S1 
and Table S1) and estimated their intrinsic connectivity maps. This was done for two samples of participants 
(discovery sample N = 280, replication sample N = 270). For each seed, a group-level intrinsic connectivity map 
was computed and was used to generate a 109 × 109 similarity matrix with η2 56 as an index summarizing pairwise 
similarity between intrinsic connectivity maps (Fig. S2). We discovered the organizing properties within this 
similarity matrix using multidimensional scaling (MDS)57. Briefly, MDS produces a quantitative dimensional 
description of the underlying structure of the data and maps it to a Euclidean coordinate space while preserving 
the pairwise similarities between data points; closer proximity in the remapped space indicates higher simi-
larity. MDS confers several advantages over other techniques, such as principal component analysis (PCA), in 
understanding intrinsic connectivity organization: (1) MDS does not assume but can discover whether intrinsic 
connectivity neatly decomposes into non-overlapping components and (2) MDS tends to yield fewer, more inter-
pretable dimensions than PCA58.

MDS allows a geometric depiction of the similarity matrix, which was important because we predicted that 
similarities between intrinsic connectivity maps would be represented as a circular array referred to as a circum-
plex59 (Fig. S3A). A circumplex pattern would indicate that network similarities exist in a continuous rather than 
a discrete fashion, the latter of which involves connectivity maps clustering in certain parts of the N-dimensional 
space but not in others (Fig. S3B; e.g., a strict discrete parcellation scheme with high within-cluster similarity and 
between-cluster difference). A circumplex would also suggest that similarity among maps can be described using 
more than one feature (i.e., the similarity is heterogeneous – that is, two intrinsic connectivity maps compared 
using a single gradient would be incomplete because their similarities are simultaneously described by multiple, 
interdependent gradients reflecting multiple descriptive features60 rather than by uncorrelated, additive gradients 
(Fig. S3C; e.g., each gradient uniquely explains a functional domain, and knowing the affiliation of a brain region 
with one domain would reveal nothing about how the same region’s affiliation with another domain). These two 
non-circumplex alternative cases are referred to as simple structures61.

Results
Goodness-of-Fit.  Stress and explained variance indicated that a three-dimensional solution was optimal to 
describe the similarities among the intrinsic connectivity maps in both discovery and replication samples (Fig. 1). 
A three-dimensional solution brought normalized stress below 0.0557 and captured over 98% of the variance58. All 
reported findings in the following sections were obtained using the discovery sample; similar results identified 
with the replication sample are reported in the SI (Figs S4–6). The three-dimensional solution remained optimal 
when we removed global signal regression from preprocessing, and also when we uniformly sampled 264 seeds 
across the cortex per17 (Fig. S7), indicating that the three-dimensional solution was robust to variations in pre-
processing and seed definition.

Circumplexity.  We plotted the dimension loadings (ranging between −1 and 1) associated with all 109 
intrinsic connectivity maps in Fig. 2. As predicted, the similarity between connectivity maps displayed circumplex 
behavior, i.e., the maps arrayed in a circular formation rather than clustering in particular parts of the Euclidean 
space. In other words, the literature-based motifs were not distinct modules and instead showed graded similarity 
in a three-dimensional Euclidean space. According to definitions of a circumplex, (1) there should be no pre-
ferred rotation of the dimensions that anchor the structure62,63 and (2) all variables should have a constant radius 
from the center of the circle59,64,65. Statistics based on these two criteria suggest that the solution derived from our 
data can be described as a circumplex. First, there was no preferred rotational solution for the results, consistent 
with what would be observed in a true circumplex structure per66,67 (Rotation Test: RT = 0.01, p < 0.01; Variance 
Test: VT2 = 0.12, p < 0.01). Second, the maps had a mean distance of 0.69 from the center, with a standard devia-
tion of 0.09. The Fisher Test FT66,67; computed as coefficient of variation (the ratio of the standard deviation to the 
mean), was 12.79%, indicating that the maps varied within 6.5% on each side of the 0.69-radius circle. This vari-
ation was within the range reported for circumplex structures in previous literature64. As expected, we obtained 
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similar circumplex structure when sampling 264 seeds (RT = 0.06, p < 0.01; VT2 = 0.03, p < 0.01; FT = 11.45%), 
suggesting that the circumplex solution was robust to variations in seed definition (Fig. S8). Taken together, these 
findings, along with visual inspection of the solution, suggest that our solution indeed reveals circumplex features.

Within this circumplex organization, connectivity maps seeded in the same motif were closer together in 
Euclidean space (Fig. 2) and showed graded degrees of similarity with connectivity maps belonging to other 
motifs. For example, in Fig. 2A, maps that were seeded in the salience motif (dark blue; e.g., anterior insula, ante-
rior cingulate cortex and supramarginal gyrus) overlapped with those seeded in the executive (green; e.g., middle 
frontal gyrus and inferior parietal lobule) and attention motifs (red; e.g., frontal eye field and superior parietal 
lobule). In fact, all neighboring motifs shared some overlap except the maps seeded in the default mode motif 
(yellow; e.g., medial prefrontal cortex, posterior cingulate cortex, dorsolateral prefrontal cortex, angular gyrus, 
temporal pole, and lateral temporal cortex). In Fig. 2B,C, the lack of motif boundaries was even more prominent; 
default mode (yellow) and executive (green) motifs completely overlapped in Fig. 2B. Interestingly, connectivity 
maps within attention (red), exteroceptive (light blue) and salience (dark blue) motifs also showed large variabil-
ity along Dimension 3. For instance, some regions of the salience motif (e.g., cingulo-opercular regions) had high 
loadings on Dimension 3, whereas others regions of the same motif (e.g., frontoparietal regions) had low loadings 
on Dimension 3 (Fig. 2B,C).

As befits a circumplex, variation along one dimension was accompanied by variation along the others, indi-
cating the interdependence of the features represented by those dimensions60. For example, in Fig. 2A, as loadings 
for connectivity maps seeded in the executive (green) and salience (dark blue) motifs decreased on Dimension 2, 
the former transitioned from zero to positive loadings on Dimension 1 while the latter transitioned from zero to 
negative loadings on Dimension 1. Therefore network motifs can be compared and contrasted based on how their 
loadings differently co-varied on all three dimensions. For example, when comparing between regions belong-
ing to the default (yellow) vs. executive (green) motifs, we observe that both exhibit similar graded changes in 
Dimension 1 and Dimension 3 (Fig. 2B,C), however they exhibit remarkable differences in their involvement in 
Dimension 2 (Fig. 2A,C).

Dimension interpretation.  To determine the architectural gradients associated with the MDS dimensions, 
we created three “gradient maps” (these maps included subcortical components, which are not discussed here 
because they are not directly relevant to the predictive processing framework). For each dimension, we first multi-
plied every connectivity map by its corresponding dimension loading to create weighted maps and then summed 
across all weighted maps to create a final composite gradient map (i.e., a weighted sum akin to factor scores). In 
this way, each map’s contribution to a gradient map depended on how strongly it related to the MDS dimension. 

Figure 1.  Both goodness-of-fit estimates were highly replicable across the discovery and replication groups 
and suggested that a three-dimensional solution was optimal. Stress was plotted as a function of the number of 
estimated dimensions. Lower stress indicates better fit. The scree plot of normalized stress had an “elbow” when 
dimensionality was at 3, since further addition of dimensions did not substantially reduce normalized stress. 
Dashed line indicates normalized stress of 0.05. DAF was plotted as a function of the number of estimated 
dimensions. Higher DAF indicates better fit. Dashed line indicates DAF of 0.98.
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The summary gradient maps in Fig. 3 provide complementary interpretational value to the scatterplots in Fig. 2 
because we can directly examine the relationship between regions and gradients, bypassing the literature-based 
motif categories (to avoid confusion, we refer to values on MDS dimensions as dimension ‘loadings’ and values 
on gradient maps as gradient ‘scores’). The brain gradients captured three features of cortical architecture (Fig. 3).

Gradient 1 corresponded to an external vs. internal gradient, replicating51. Regions with lower scores on 
Gradient 1 belonged with motifs that are relatively important for representing signals that are external to the 
brain, such as the exteroceptive sensory motif (e.g., visual, auditory or sensorimotor networks; e.g.68), as well as 
motifs that are important for modulating the representations of those signals - e.g., the dorsal attention network69 
and the salience motif consisting of the cingulo-opercular70, multimodal71, salience72 or ventral attention69 net-
works. Regions with higher scores on Gradient 1 belonged with motifs that are relatively important for construct-
ing and maintaining the representations that constitute the brain’s internal model, such as the default mode73 
and mentalizing74 networks, and motifs that are important for modulating those representations - e.g., executive 
control72 or multiple-demand75 networks.

Gradient 2 corresponded to a representation vs. modulation gradient. Regions with lower scores on Gradient 
2 belonged with motifs that are important for representing mental content, such as sensory information in the 
primary sensory cortices and multimodal summaries of brain states in the default mode network68. Regions with 
higher scores on Gradient 2 belonged with modulation-related motifs (any process that operates on sensory or 
motor representations, such as attention regulation, goal maintenance, strategy selection, performance monitor-
ing), such as the executive control76 and salience77 motifs.

Figure 2.  MDS results revealed that intrinsic connectivity patterns followed a circumplex structure of 
similarity. We calculated intrinsic connectivity maps based on 109 seeds across five most frequently identified 
network motifs in the published literature: attention (red), default mode (yellow), executive (green), 
exteroceptive (light blue), and salience (dark blue). Each point in the scatterplot represents a connectivity 
map. We plotted (A) Dimension 1 vs. Dimension 2, (B) Dimension 1 vs. Dimension 3, and (C) Dimension 2 vs 
Dimension 3 to facilitate interpretation.

Figure 3.  Gradient maps visualized on the brain surfaces. For each dimension, we created a gradient map by 
weighting every connectivity map by its dimension loading and summing across all weighted maps to create a 
composite (i.e., a weighted sum akin to factor scores). Gradient 1 (external vs. internal) captured a functional 
contrast between processing information from the external environment and the internal milieu. Gradient 2 
(modulation vs. representation) captured a functional contrast between attentional modulation and content 
representation. Gradient 3 (anatomical centrality) captured a structural contrast between spatially central nodes 
and peripheral nodes. We visualized the gradient maps on inflated brain surfaces using Caret154.
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Gradient 3 corresponded to anatomical centrality (geometric term describing lack of Euclidean distance from 
center of the brain78). Regions with lower scores on Gradient 3 were more peripheral in the cortex, including 
the primary visual cortex, lateral frontal and lateral parietal regions. Regions with higher scores on Gradient 3 
occupied anatomically more central positions in the cortex. We empirically tested this gradient by correlating 
Dimension 3 loadings of the connectivity maps with anatomical centrality values of corresponding seeds (com-
puted as normalized proximity to anterior commissure; Fig. S9, see detailed description in SI). We found a strong, 
positive association (Fig. 4A; r = 0.676, p < 0.001), suggesting that seeds located closer to the anatomical center of 
the brain tended to anchor intrinsic connectivity maps with higher loadings on Dimension 3. Anatomical central-
ity (Fig. 4B) can be considered a proxy for laminar differentiation78 since cortices become progressively laminated 

Figure 4.  Gradient 3 corresponded to anatomical centrality. (A) Dimension 3 loadings correlated positively 
with anatomical centrality (N = 109; r(107) = 0.676, p < 0.001). (B) Anatomical centrality for each seed was 
computed as (maximal distance – node distance)/maximal distance, where maximal distance is the distance 
for the node with maximal distance from the anterior commissure, with 0 indicating minimum anatomical 
centrality (at maximum distance from the anterior commissure) and 1 indicating maximum centrality (at 
the anterior commissure). The anterior commissure was used as a proxy for the center of the brain since it is 
approximately equidistant from the most distal points of the cerebrum. We visualized anatomical centrality 
values on inflated brain surfaces using Caret154.

Figure 5.  Predictive processing framework. Starting with initial conditions in the body and in the world 
(T0), the brain is thought to continually predict forward in time (T1), preparing changes in the body’s internal 
systems to support upcoming motor actions. Efferent copies of these motor and visceromotor preparations 
function as their predicted sensory consequences, cascading to sensory systems to modulate the firing of 
sensory neurons in advance of incoming sensory inputs. Sensory inputs from the body and the world are 
continuously compared to prediction signals. If different, prediction errors are sent to update the brain’s internal 
model for future occasions. This framework is based on a structural model of cortico-cortical connections 
whereby predictions flow from less to more laminated (i.e., layered) cortices (‘feedback connections’), whereas 
prediction errors flow in the opposite direction (‘feedforward connections’)155,156. This structural model is 
consistent with a gradient- but not module-based organization scheme for intrinsic connectivity. This is because 
the whole brain is thought to participate in predictive processing, not by separating into mental modules, but 
by operating on a continuous two-way hierarchy. In the feedback direction, abstract predictions are unpacked 
into particular sensory simulations; at the same time in the feedforward direction, sensory information is 
compressed to be integrated with the brain’s internal model (see review in7). Figure adapted from104.
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as one moves from the central limbic cortices (forming a ring around the corpus callosum and defining the limits 
of each hemisphere, including anterior to midcingulate cortex, anterior insula, and temporal pole) towards the 
periphery of the cortex (see38,79;).

Discussion
Intrinsic functional connectivity within the cerebral cortex can be described by three interdependent architec-
tural gradients, which spatially correlate with two functional features (external vs. internal and representation 
vs. modulation) and one structural feature (anatomically central vs. peripheral) of the brain. When projected into 
geometric space, the similarities between connectivity maps were represented by a circumplex structure. This 
finding suggests that the organization of intrinsic functional connectivity shows continuous similarity across 
multiple, interdependent gradients rather than discrete differences. Overall, our findings highlight the impor-
tance of simultaneously considering functional and anatomical hierarchies in the brain, integrating parcellation, 
connectomics, and architectural approaches to understanding cortical function.

Our results are consistent with available evidence that intrinsic connectivity can be described with continuous 
local48,53,55,80 and global51,54,81,82 gradients, suggesting that intrinsic connectivity motifs do not constitute discrete 
networks. Prior research using the parcellation approach identified spatially discrete intrinsic connectivity net-
works by: (1) using methods that force independence (e.g., cluster analysis16–20), (2) setting arbitrary thresholds 
that dissociate networks (e.g.69,83,84), or (3) emphasizing independence rather than correlation between networks 
when using methods such as ICA (e.g.85–88). Although these techniques may be useful for certain purposes (e.g., 
to create heuristic parcellation schemes), their emphasis on assigning a unique network membership to each 
cortical region does not allow a fully realized interpretation of the organizing principles underlying intrinsic 
functional connectivity, which are actually based on continuous similarity gradients. This is an important limita-
tion of the parcellation approach, because recent evidence shows that network motifs are, in fact, connected, and 
overlapping in rich club hubs32, which has functional implications (e.g.8,89–91). Allowing coupling across networks, 
for instance, helps identify functional connections that are crucial for task-dependent global integration15,92.

More importantly, we observed that the similarities between functional connectivity patterns were not just 
graded, but their variations were also interdependent across the different gradients, as suggested by the circum-
plex ordering of similarities. The MDS solution satisfied two circumplex criteria: no preferred rotation and con-
stant radius. In an ideal circumplex, elements are arrayed in a circular fashion, so mathematically, there is not one 
rotational solution that best describes the data structure59. Note that while it is important to establish a lack of 
preferred rotation for quantifying circumplexity, it is also important to determine one set of dimensions that best 
represents the features underlying functional connectivity organization for interpretational purposes60,93. The set 
of three dimensions reported herein are consistent with other findings on structural and functional organization 
of the brain (detailed below), indicating that the observed three dimensions are valid and useful in characterizing 
the organization of intrinsic functional connectivity. Our discovery aligned with the hypothesized interdepend-
ency scenario (Fig. S3A). In contrast, if a discrete simple structure (Fig. S3B) were found, it would mean that 
intrinsic connectivity was organized in a fully modular fashion, where each domain was its own dimension and 
was unrelated to the other dimensions, as reflected by concentrated loadings on one end of the dimension only. 
If a non-discrete simple structure (Fig. S3C) were found, it would mean that dimensions were independent from 
each other, e.g., Gradient 1 (internal vs. external) and Gradient 2 (modulation vs. representation) do not covary. 
In other words, knowing that default mode regions scored high on internal-processing would tell us nothing 
about how they scored on the representation vs. modulation gradient.

Notably, our results are also robust across methodological variations. To test the optimal dimensionality and 
stability of the circumplex structure observed in our data, we varied preprocessing (global signal regression) and 
analytical (seed definition) parameters to see if they would disrupt ordinal orderings in the similarity matrix, 
which could lead to changes in the MDS solution58. We performed global signal regression because it is consid-
ered an effective means to reduce artifacts in resting state data94, and deviation scoring in general (removing mean 
signal in raw data) enhances statistical power in circumplexity tests by removing any potential general factor66,67. 
This technique is also known to artificially inflate negative correlations95–98 because it shifts the entire distribution 
of correlations in the negative direction94. We anticipated the ordering of pairwise similarities to be retained 
with or without the shift. In addition, we selected 109 canonical network seeds from published papers because 
they should yield maximal between-network differences and uncover simple structures in the data (Fig. S3B,C) 
if they did exist. Since these literature-based seeds did not identify simple structures, we expected that a more 
comprehensive sampling of 264 seeds would likely fill out the space within the circumplex structure. As expected, 
the optimal dimensionality and general circular ordering of similarities were not affected by changes in the pre-
processing and analytical parameters, and global signal regression improved the detection of circumplexity. These 
additional analyses demonstrate the robustness of the circumplex organization across methodological variations 
and provide strong support to our hypothesis of multiple interdependent gradients.

To interpret these gradients, we turned to a novel predictive processing framework that depends on cytoar-
chitecture to understand the intrinsic organization of the cerebral cortex. This predictive processing framework 
has been used to study topics as wide-ranging as sensory and motor systems99–101, individual neuron dynam-
ics102, brain energetics103, and consciousness (e.g.7,9,11,100). This framework is anchored by the hypothesis (outlined 
in7,104) that an animal’s cerebral cortex, the cerebellum (e.g.105) and the hippocampus (e.g.106) create an internal 
model of the animal’s body in the world, constantly using past experiences to anticipate the needs of the body in 
relation to predicted sensory inputs and preparations for motor action, and attempting to meet those needs before 
they arise, through a process called allostasis107,108 (see Fig. 5 for a schematic diagram of this framework).

The three gradients describing cortical intrinsic connectivity can be interpreted as capturing different com-
ponents of the predictive processing framework. Gradient 1 describes a gradient that runs, at one end, from 
the motifs that are important for processing the sensory input that continually confirms or refines the internal 
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model (low gradient scores) to, at the other end, the motifs that are important for generating the prediction 
signals that constitute the brain’s internal model (high gradient scores). Regions low on this gradient belonged 
with primary sensory, attention, and salience motifs, which are more associated with externally oriented pro-
cesses such as sensory perception, goal-directed selection for stimuli109, processing relevance of personally salient 
sensory information72, and the integration of multisensory information from the periphery71. Regions high on 
this gradient belonged with default mode and executive control motifs, which are more associated with inter-
nally oriented processes such as mind-wandering, introspection, and autobiographical planning110,111. This func-
tional contrast is also sometimes called ‘external’ versus ‘internal’ modes of cognition112,113, or ‘bottom-up’ versus 
‘top-down’ processing114. It is similar to the ‘principal sensorimotor-to-transmodal gradient’ obtained using a 
different dimension reduction technique on resting state fMRI data50,51, which was also anchored on one end by 
primary sensorimotor regions and on the other end by the default mode network. This gradient has been identi-
fied in tract-tracing studies of non-human primates (macaque51, and marmoset115) and is consistent with cortical 
myelin gradient49 as well as with genetic transcription gradient45–47,116, suggesting that the brain’s microstructural 
integrity and genetic profile are implicated in the brain’s functional wiring. Our interpretation is also consistent 
with evidence from the connectomics literature showing that default mode regions (high gradient scores) are 
capable of steering the brain into different states with little input of energy – i.e., using information available from 
the internal model (average controllability37), whereas salience regions (low gradient scores) drive the brain into 
states that require more input of energy – i.e., learning or encoding (modal controllability37).

Gradient 2 distinguishes voxels that belong to regions that predominantly represent prediction and prediction 
error signals from those voxels that belong to regions that predominantly implement attentional modulation, 
or precision117,118. Regions low on this gradient belonged with motifs that are more associated with content rep-
resentation. More specifically, the default mode regions represent multimodal summaries of brain states68,119 or 
supramodal conceptual knowledge120, and are hypothesized to represent the brain’s internal model, whereas the 
primary sensory regions represent sensory input from the external environment68 and from the body7,121. Regions 
high on this gradient belonged with executive control and salience motifs, which are thought to be involved in 
top-down modulation of the default mode and executive networks (e.g.122,123), and are hypothesized to tune the 
precision of predictions and prediction errors, respectively7,121. It is not surprising that regions with high scores 
on this gradient replicate the task positive network124 or multiple demand network75, because fMRI experimental 
tasks are typically designed to require attention modulation (e.g., randomized trials and jittered inter-trial inter-
vals elicit more deliberate, controlled and effortful processing104). The attention motif occupied the middle por-
tion of the gradient, consistent with its role in linking sensory information to motor responses125. This gradient 
appears similar to the third principal gradient reported in51,126, although the authors provided no interpretation 
of this dimension.

Gradient 3, like the previous two gradients, was computed based on functional connectivity. However, this 
third gradient appeared to represent anatomical centrality, which is a structural feature related to the systematic 
variation in the degree of cortical laminar differentiation. Specifically, limbic cortices form the spatial core of 
each hemisphere. Multimodal association regions (granular cortices, eulaminate I), followed by primary sen-
sory regions (granular or koniocortices, eulaminate II), spatially irradiate from the core limbic areas and exhibit 
increasingly developed laminar structure (reviewed in38,41,79,127–129). Consistent with this pattern, limbic corti-
ces scored highly on Gradient 3, whereas multimodal association regions, followed by primary sensory areas 
scored progressively lower on Gradient 3. To our knowledge, no published empirical study has identified this 
third gradient in describing the organization of intrinsic functional connectivity. Within the predictive process-
ing framework, the spatial position of the limbic core is important for several reasons. Developmentally, limbic 
cortices form first and generate widespread feedback projections to other regions in the brain38,130,131. They are 
hypothesized to easily modify neural activity in eulaminate areas and promote functional flexibility via its diverse 
feedback connections38. Therefore, limbic cortices have been hypothesized to create a highly connected, dynamic 
functional ensemble for information integration and accessibility in the brain11. Adding to this literature, our cur-
rent finding shows that the spatially central position of limbic cortices also has implications for the organization 
of intrinsic functional connectivity. Integrating information about the cytoarchitecture of the brain (i.e., laminar 
differentiation) into functional connectivity organization can help us understand known fractionation schemes 
of the default mode and salience motifs in the literature. The default mode motif has been found to fractionate 
into a relatively central subsystem (including medial limbic nodes such as the subgenual anterior cingulate cor-
tex, retrosplenial cortex, parahippocampal gyrus, and the hippocampal formation) and a relatively peripheral 
subsystem (including more lateral nodes such as the temporal parietal junction, lateral temporal cortex, and 
temporal pole)110. Similarly, the salience motif has been found to consist of a more central subsystem (including 
limbic nodes such as the amygdala, ventral anterior insula, and pregenual anterior cingulate cortex) and a more 
peripheral subsystem (including more lateral nodes such as medial frontal gyrus and supramarginal gyrus)84.

The novel evidence reported here encourages future research on several aspects related to the organization of 
intrinsic functional connectivity based on multiple interdependent gradients. First, following prior work reveal-
ing task-related modulation of intrinsic connectivity132, it would be important for future research to investigate 
whether the same gradients emerge during task states. Such work would clarify whether the three interdependent 
gradients found in the current study are stable features of functional cortical architecture regardless of situational 
demands. Second, our analyses involved correlation of blood-oxygen-level dependent (BOLD) activation time 
courses during a whole resting state scan, but recent research on dynamic functional connectivity shows that the 
amount of coherence between regions could vary in a short time period133,134 and in longer-term development135, 
prompting the question of whether the three-gradient architecture withstands dynamic reconfigurations in func-
tional coupling observed over time. Third, we calculated the connectivity similarity matrix on a group level and 
did not probe individual differences. Recent research revealed finer details of network fractionation that were 
only observable at the individual level136, suggesting that the distribution of regions on the similarity gradients 
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may slightly shift from person to person, as individual differences in functional coupling may arise given distinct 
past experiences. Examination of individual variations in the gradient-based organization of intrinsic connectiv-
ity, therefore, would be a promising avenue for future research in identifying its role in complex behaviors and 
psychological phenomena. To this end, high resolution fMRI acquisition and voxelwise analysis technique may 
facilitate a more nuanced understanding of individual-specific variations in similarity gradients. Fourth, our 
measure of anatomical centrality, based on distance to the anterior commissure, is one proxy for the laminar dif-
ferentiation gradient; other measures (e.g., neuronal density or myelin) have been proposed as well, although they 
contain important limitations in capturing laminar differentiation (see detailed discussion in127). Future studies 
might consider the advantages of other estimates of laminar differentiation. Finally, a few previous studies43,51 
have examined distance in the brain using geodesic distance along the curvatures of the cortical mantle instead of 
Euclidean distance. Future investigations should systematically compare the similarities and differences in their 
abilities to predict connectivity and other brain characteristics.

Materials and Methods
Participants.  Participants in this study were 660 healthy young adults (55% female, 18–30 years), previously 
described in16,32,137,138. All were native English-speakers with normal or corrected-to-normal vision and reported 
no history of neurological or psychiatric conditions. Experimental protocol was approved by the institutional 
review boards of Harvard University and Partners Healthcare. All research was performed in accordance with 
relevant guidelines and written informed consent was obtained from all participants. We removed 79 partici-
pants (11%) due to head motion and outlying voxel intensities, and 31 participants (4.7%) due to a lack of signal 
in superior and lateral parts of the brain (outside of acquisition field). Our final dataset of 550 participants was 
randomly divided into a discovery sample of N = 280 (62% female, 19.3 ± 1.4 years) and a replication sample of 
N = 270 (53% female, 22.3 ± 2.1 years).

MRI and fMRI.  Participants completed structural and resting-state MRI scans, as well as other tasks unrelated 
to the current analysis. MRI data were acquired at Harvard and the Massachusetts General Hospital across a series 
of matched 3T Tim Trio scanners (Siemens, Erlangen, Germany) using a 12-channel phased-array head coil. 
Structural data included a high-resolution multi-echo T1-weighted magnetization-prepared gradient-echo image 
(multi-echo MPRAGE). Parameters for the structural scan were as follows: repetition time (TR) = 2,200 ms, 
inversion time (TI) = 1,100 ms, echo time (TE) = 1.54 ms for image 1 to 7.01 ms for image 4, flip angle (FA) = 7°, 
voxel size 1.2 × 1.2 × 1.2 mm and field of view (FOV) = 230 mm. The resting state scan lasted 6.2 min (124 time 
points) and participants were instructed to remain still, stay awake, and keep their eyes open. The echo pla-
nar imaging (EPI) parameters for functional connectivity analyses were as follows: TR = 3,000 ms, TE = 30 ms, 
FA = 85°, voxel size 3 × 3 × 3 mm, FOV = 216 mm and 47 axial slices collected with interleaved acquisition and no 
gap between slices. To preprocess the resting state data, we removed first 4 volumes, corrected slice timing, cor-
rected head motion, normalized to the MNI152 template, resampled to 2 mm cubic voxels, removed frequencies 
higher than 0.08 Hz, smoothed with a 6 mm FWHM kernel and did nuisance regression (six motion parameters, 
average global signal, average ventricular and white matter signals)139–141. We also preprocessed the same dataset 
without global signal regression (GSR) and obtained similar results (‘109 seeds, GSR−’; Figs S7 and S8).

Selection of network seed regions.  From the network-parcellation literature, we selected 109 seed 
regions across five intrinsic connectivity network motifs most commonly identified in the literature. The rationale 
for choosing these canonical network anchors was to derive the most distinctive connectivity patterns possible 
and maximize the possibility of finding simple structures in functional organization if they existed. The attention 
motif consisted of visual attention regions, also collectively referred to as dorsal attention network16,69,83. For the 
default mode motif, we sampled seeds from amygdala affiliation142, default mode16,110, language143,144, and mental-
izing74 networks. For the executive control motif, we sampled seeds from executive16,72,83 and multiple-demand75 
networks. For the exteroceptive motif, we sampled seeds from amygdala perception142, auditory145–147, sensori-
motor16,146–148, and visual16,145,146 networks. For the salience motif, we sampled seeds from amygdala aversion142, 
cingulo-opercular70, multimodal71, salience72,84 and ventral attention16,149 networks. See seed locations in Fig. S1 
and MNI coordinates in Table S1. Homogeneity of each seed was calculated as the average temporal correlation 
between all unique pairs of within-seed voxels following previous reports18,81,150,151. The mean (M) and stand-
ard deviation (SD) of seed homogeneity for each network motif was identified as follows: Attention (M = 0.800, 
SD = 0.019), default (M = 0.822, SD = 0.016), executive (M = 0.810, SD = 0.016), exteroceptive (M = 0.795, 
SD = 0.023), and salience (M = 0.797, SD = 0.016). Overall, these values are comparable to or even higher than 
those reported in previous studies of functional connectivity parcellations, suggesting that seed homogeneity 
in the present study was sufficiently high on average. Seed homogeneity varied between the network motifs 
(F(4,1116) = 169.41, p < 0.001, ηp

2 = 0.378), as previously shown (e.g.81). However, the observed seed heteroge-
neity was not relevant for testing our hypotheses because we focused on gradients examining all network motifs 
along a continuum rather than analyzing discrete, modular networks. Therefore, no further analyses were per-
formed on this metric. We also sampled an alternative set of 264 seeds across the cortex17 and obtained similar 
results (‘264 seeds, GSR+’; Figs S7 and S8).

Functional connectivity and similarity matrix calculation.  We calculated group-level whole-brain 
intrinsic connectivity maps following established seed-based procedure83,84. For each seed, we created a 4 mm 
spherical region of interest (ROIs) and extracted the average time course of BOLD activity within the ROI. We 
computed Pearson’s product moment correlations, r, between the seed time course and all voxels across the brain, 
converted those r values to z values using Fisher’s r-to-z transformation, and averaged the resulting z map across 
all subjects within each sample to obtain two group intrinsic connectivity maps per seed (one for each sample). 
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To determine which connectivity values were meaningful in a group map, we relied on replication, as guided by 
classical measurement theory152, instead of imposing an arbitrary z threshold. This prevents type I and type II 
errors, which are enhanced with the use of stringent statistical thresholds153. It was uniquely important for us to 
consider all meaningful connectivity, including weaker but replicable connectivity, because its inclusion reveals 
more accurate degrees of similarity between intrinsic connectivity maps, while its exclusion means stronger con-
nectivity is given more weight in comparisons and therefore enhances differences between network motifs. We 
binarized both group intrinsic connectivity maps at z = 0 since the interpretation of negative correlations can be 
ambiguous95,141 and took the conjunction between the two samples. We then masked the original non-binarized 
group intrinsic connectivity maps using this conjunction map to retain strengths of all positive correlations that 
are reliable across both samples. This procedure was repeated for all 109 seeds. Finally, for each sample, we cal-
culated a 109 × 109 similarity matrix (η2 56) between all masked intrinsic connectivity maps. Functional connec-
tivity and similarity matrix calculation is illustrated in Fig. S2. Note that we used the ‘replication sample’ both for 
determining which connectivity was meaningful and for showing replicable MDS results. To demonstrate that the 
high replicability observed in our results was not solely driven by the method of thresholding, we also thresholded 
functional connectivity at z = 0.284,142 instead of using replication. As expected, these analyses yielded similar 
three-dimensional (Fig. S10) circumplex solutions (Fig. S11). Additionally, given that some anticorrelations may 
be meaningful98, we tested the effect of including negative connectivity below z = −0.2 as well. This analysis 
yielded replicable three-dimensional (Fig. S12) circumplex solutions (Fig. S13).

MDS analysis.  To model similarities in maps, we used the PROXCAL algorithm in SPSS 23 (www.ibm.com/
DataStatistics/SPSS). For each sample, we used the 109 × 109 similarity matrix as input and tested model fit for 
dimensionalities between 1 and 10. We determined the optimal dimensionality using two goodness-of-fit esti-
mates: stress and explained variance. Stress is the square root of a normalized ‘residual sum of squared’. Higher 
stress indicates worse fit. Optimal dimensionality often manifests as the elbow of the stress plot and brings stress 
below 0.0557. The measure we used for explained variance is dispersion accounted for (DAF), which is equivalent 
to squared Tucker’s coefficient of congruence. Both goodness-of-fit estimates across the two samples indicated 
3 was the optimal dimensionality (Fig. 1). Therefore, as output of the MDS analysis, we obtained 3 sets of 109 
dimension loadings for each sample.

Circumplexity evaluation.  According to definitions of a circumplex, (1) there should be no preferred rota-
tion of the dimensions that anchor the structure62,63 and (2) all variables should have a constant radius from the 
center of the circle59,64,65. We quantified the degree of circumplexity in the three-dimensional MDS solution using 
these two criteria, employing the Rotation or Variance Test, and the Fisher Test respectively66,67. The Rotation Test 
assesses the degree to which different rotations of the dimensions affects the solution. In addition, we also used 
the Variance Test (VT266 to assess the impact of rotation by measuring the coefficient of variation in the amount 
of variables that fall in between any orthogonal pair of axes. We compared the test statistics of the Rotation and 
Variance Tests to the critical values reported in66,67 to determine the likelihood that our solution achieved the for-
mal criteria for circumplexity. The Fisher Test assesses the degree to which the elements array in constant radius 
by measuring the coefficient of variation (i.e., the ratio of the standard deviation to the mean) in vector length64. 
When testing the circumplexity in the published literature in personality and affect data, the data are first devia-
tion scored (i.e., each raw score is subtracted from the subject’s mean score66,67). Since global signal regression at 
the individual subject level is comparable to deviation scoring, we only tested circumplexity of MDS results using 
data on which global signal regression was performed during preprocessing.

Anatomical centrality estimation.  To estimate anatomical centrality, we used the anterior commissure as 
a proxy for the center point of the brain, since it is approximately equidistant from the most distal points of the 
cerebrum on the x, y, and z axes, and approximately occupies the middle point along the y axis of the medial lim-
bic ring consisting of the cingulate cortex and medial orbitofrontal cortex (Fig. S9). We calculated the Euclidean 
distance between each seed (MNI x, y, z) and the anterior commissure (MNI 0, 0, 0) ( + +x y z( )2 2 2 ) and 
computed a normalized measure of anatomical centrality for each seed defined as (maximal distance – node 
distance)/maximal distance, where maximal distance is the maximal distance from the anterior commissure to a 
seed, so that the anterior commissure would have an anatomical centrality of 1 and the most distant seed would 
have an anatomical centrality of 0. Anatomical centrality has been shown to be related to the degree of laminar 
differentiation and predictive of topological organization in the cortex78.

Data availability
The data that support the findings of this study are available as part of the Brain Genomics Superstruct Project 
(https://www.neuroinfo.org/gsp138). Gradients maps are available at: https://neurovault.org/collections/5449/.
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